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Abstract: Edges are a basic and fundamental feature in image processing that is used directly or
indirectly in huge number of applications. Inspired by the expansion of image resolution and
processing power, dilated-convolution techniques appeared. Dilated convolutions have impressive
results in machine learning, so naturally we discuss the idea of dilating the standard filters from
several edge-detection algorithms. In this work, we investigated the research hypothesis that use
dilated filters, rather than the extended or classical ones, and obtained better edge map results. To
demonstrate this hypothesis, we compared the results of the edge-detection algorithms using the
proposed dilation filters with original filters or custom variants. Experimental results confirm our
statement that the dilation of filters have a positive impact for edge-detection algorithms from simple
to rather complex algorithms.

Keywords: dilated filters; edge-detection operator; edge detection; first-order edge detection; Canny
algorithm; Laplace algorithm; Laplace of Gaussian; Marr–Hildreth algorithm; Shen–Castan algorithm;
edge drawing

1. Introduction

An edge in an image is the most basic feature and has been intensively researched
over time. A huge variety of mathematical methods have been used to identify points
in which the image brightness changes sharply or has discontinuities. Edge detection is
one low-level technique that is used for the goal of objects boundary detection. This is
a fundamental tool in image processing, image analysis, machine vision and computer
vision, particularly in the areas of feature detection and feature extraction.

The purpose of edge detection is to localize variations in the image and to identify the
physical phenomena that produce them. Edge detection must be efficient and reliable to
have the possibility of the completion of subsequent processing stages afterwards [1–3].

There are many approaches to basic feature detection depending on the pixel prop-
erties of the image. The methods have been defined from the gray scale levels to color
slicing or from local features (such as lines or shapes) to global matching features (such as
the shape of objects or meta object property). The standard local edge-detection filters are
built for highlighting intensity change boundaries in the near neighborhood image regions.
As previous authors have mentioned [4], the problem of edge finding has no universally
accepted technique and this is a motivation for ongoing researching how to improve the
edge detection methods.

The most successful edge-detection algorithms have considered local methods, where
the closest neighborhood of a pixel is considered to be important for the pixel itself.
Nowadays, images are containing more information than in the past (due to the sensors
technologies) and we could say that the pixel itself is not similar only to its direct neighbors,
but a bigger neighborhood could be important. From early morphological edge detection
operators definition [5] the extension idea was well presented. From another perspective,
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the dilated convolution methods have been recently proven very beneficial in many highly
cited computer-vision papers: for small objects detection [6], in dense prediction tasks [7,8],
on prediction without losing resolution [9], for feature classifications in time series [8] or
beneficial for context aggregation [10].

Merging those ideas we propose not just to increase the filter size but to simply dilate
standard edge-detection filters in order to characterize the pixel itself through non-direct
neighbor properties. We define the dilation operation for filters that consists of simply
adding gapes in the well-known classical filters. This method of dilation is neither in the
mathematical morphological sense [5], nor the geometric extension of the kernels discussed
in the literature [11].

In our previous work we evaluated the dilation effect on classical first-order edge-
detection algorithms and the classical Canny algorithm followed, naturally, with an analysis
on which approach is better: to expand from lower level or to dilate, see [11,12]. The result
of the evaluation revealed that dilating the filter produces better results than expanding
them. These initial set of positive results encouraged us to further investigate this topic. In
Figure 1 we can observe the effect on a edge-detection algorithm when applying the dilated
kernel. To better show the benefits we used green edge pixels to highlight discovered by
dilating and red for the edge pixels that are lost by dilatation techniques.

Figure 1. Example of edge map results using Canny algorithm configured with the same parameters.
Columns are: Original image; Canny using 3 × 3 kernel; Canny using dilated 5 × 5 kernel; Canny
using dilated 7 × 7 kernel.

In order to obtain the edge maps presented in Figure 1, we used the Canny algo-
rithm [13] with the exact parameters (Gaussian sigma value, low threshold and high
threshold) and changed just the filter with a dilated version. As we can observe in the
images, each level of dilation can bring with it extra edge points. This aspect can be a
benefit for the overall results and in this manuscript we desire to explore this aspect. In
Figure 2 we present results of Canny algorithm with different thresholds. From left to right
we use a higher combination of thresholds and the rows represent the filters, from classic
to dilated. As a brief interpretation of the results one can say that dilation is sensitive to
artifacts at lower threshold. On the other hand, in the last column, for a higher threshold,
dilated filters discover new edge points. These outcome that we see in Figures 1 and 2
encouraged us to investigate the benefits of dilating on different algorithms in the future.



Appl. Sci. 2021, 11, 10716 3 of 33

Figure 2. Example of edge map results using Canny algorithm configured with different parameters. Columns are the low
and high threshold combinations used: (20, 60); (50, 90); (70, 110); (90, 130); (110, 150); (130, 170); (150, 190). Rows represent
the filter used: 3 × 3 filter edge; 5 × 5 dilated filter; 7 × 7 dilated filter.

In this paper we desire to extend our work to other edge-detection algorithms that
have as a defining step the use of edge detection kernels. The classical edge detection
methods Sobel [14], Prewitt [15] and Scharr [16], together with more complex boundary
detection algorithms such as Canny [13], Marr–Hildreth [17] or Shen–Castan [18] are
considered for testing with our proposed dilation technique. With this extended research
work we wish to prove the research hypothesis that dilatation of kernels can bring forward
better edge maps.

The main contributions of this paper are summarized as follows:

1. Extend our previous analysis on first-order derivative orthogonal gradients based
algorithms and Canny algorithm, that was performed in Bogdan et al. [11].

2. Analyze and evaluate the effect of dilated filters upon first-order derivative com-
pass gradient based algorithms, Frei–Chen algorithm [19,20] and Edge Drawing
algorithm [21].

3. Analyze and evaluate the effect of dilated filters upon second-order derivative based
algorithms such as: Laplacian [22], Laplacian of Gaussian [23], Marr–Hildreth or Shen–
Castan.

4. Analyze and evaluate if the effect of dilated is maintained when using different
kernels for the mentioned algorithms.

5. Analyze and evaluate the effect of noise level of an input image upon the dilated filters.
6. Prove the research hypothesis that dilated filters in general bring forward better

results than classical or extended versions of them.

In order to complete our evaluation of the dilation benefits over an edge-detection filter,
we will not limit our analysis to the first-order derivative gradient-based edge-detection
filters but consider the second-order filter too. Details regarding the new approached
algorithms and steps we used in order to obtain the edge map format are presented in
Section 3. Section 4 highlights the new results of our hypothesis regarding the dilated filters.
For completing the comparison we used two different datasets and evaluation measures,
one based on natural images and one based on synthetic images, that are presented in
Section 3.11.
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2. Dilated Filters

In order to benefit from a higher neighborhood of a pixels to obtain a pixel edge we
define dilated filter as in Definition 1. When we dilate the kernels, we are considering the
newly added positions as gaps and we ignore them by setting zeros [11]. We can admit that
dilating the kernels can cause a noise sensitivity reduction in the kernel; however, from our
experiments, from this and previous work, it seems that it is an acceptable loss considering
the benefits.

Definition 1. A dilated filter is obtained by expanding the original filter by a dilation factor [11].

By dilating the kernels we increase the distance between important pixels. We consider
that this new distance will positively influence the result of the convolution. The bigger
region of interest resulted can translate into stronger intensity changes in the image. In
order to highlight our definition on a filter, we use a generic kernel and represent the
dilation in Figure 3.

a b c
d e f
g h i




a 0 b 0 c
0 0 0 0 0
d 0 e 0 f
0 0 0 0 0
g 0 h 0 i





a 0 0 b 0 0 c
0 0 0 0 0 0 0
0 0 0 0 0 0 0
d 0 0 e 0 0 f
0 0 0 0 0 0 0
0 0 0 0 0 0 0
g 0 0 h 0 0 i


f actor = 0 f actor = 1 f actor = 2

Figure 3. General kernel dilated with different factors.

Dilating the filters, rather than extending them, helps in finding more edge pixels
than the standard or extended variants of the filters. Another benefit worth mentioning of
dilating is the fact that the number of operations does not increase with the dilating factor
resulting in the same time cost for the edge detection [11].

Another considered approach was presented in [12], where we compare and analyze
the dilation of filters defined in [11] with the reconstruction from a lower scale pyramid
level. Feature extraction in lower pyramid scale level is a common practice in the domain
because of the benefits of lower computation resources which are needed.

The resulting edge map from a dilated 3 × 3 filter is equivalent to an edge map
calculated in a lower scale pyramid level and expanded back to original size. Dilating
a factor of one is similar with applying the same filter in the immediately lower scale
pyramid level. Dilating with a factor of two is similar with applying the filter in two scales
lower in pyramid level and so on. This hypothesis stands because in both cases the region
we take into consideration to find edges is no longer a 3 × 3 matrix but a 5 × 5 matrix.

We have examined the equivalence between lower level processing and dilating in
our previous work [12]. As expected, we obtain similar results when dilating to when
processing in the lower levels. Dilating provides benefits regarding the neighborhood we
consider and computation time; however, extracting features in lower levels has benefits of
its own.

3. Methodology

In this section, we present all the edge-detection algorithms that are considered in our
analysis. The presentation order of the algorithms is in order of their implementation in
our experiments.
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For our evaluation, we chose to use the classical version of the algorithm and variants
in which the users are responsible for choosing the parameter configuration for each
algorithm. Even if these approaches are more costly than choosing an automated threshold
scheme [24–30], they provide us the possibility to better highlight the effect of the kernel
dilatation. By using the original version of each algorithm we avoid bringing in the
evaluation suppositions or assumptions that are made by the parameter choosing scheme.

In order to benchmark our results, all the edge maps need to have the values of
the pixels between 0 and 255 and thickness of 1 pixel. To achieve this, we use a global
thresholding algorithm followed by a thinning algorithm where this is necessary. For
thinning the resulting edge maps, we use the Guo–Hall algorithm [31].

3.1. Guo–Hall Algorithm

The Guo–Hall algorithm [31] is one of the most efficient thinning algorithms and is
based on a subiteration approach of alternatively deleting north and east and then south
and west boundary pixels. If we have one group of 8-connected 1s around a position P,
see Figure 4, the deletion of P will not break the connectivity of the elements in a 3 × 3
window. This approach on thinning will preserve the connectivity properties of an image.P9 P2 P3

P8 P1 P4
P7 P6 P5

  1
1 P1 1

1

 1 1 1
1 P1 1
1 1 1


(a) (b) (c)

Figure 4. (a) 3 × 3 window showing 8-neighborhood of a pixel; (b) 4-connectivity; (c) 8-connectivity.

For an input binary image, let the object to be thinned be represented by a set S, and
the background and holes in the image be represented by a complement set S̄ [31].

Thinned lines should be a curve or a union of curves, which are referred to as medial
curves. A set of pixels G, is curve-like if most of the pixels of G have exactly two 8-neighbors
in G, a few pixels in G are end-points (with one 8-neighbors in G) or branch points (more
than two 8-neighbors in G) [31].

Let us define the following: C(P1) is defined as the number of distinct 8-connected
components of 1s in the 8-neighborhood; ∧ as the AND operator; ∨ as the OR operator; ¯ as
a logical complement. A variable N(P1), defined in Equation (1), helps with the detection
of end-points as well as achieving thinner results. The N1(P1) and N2(P1) are defined in
Equations (2) and (3). Each break the ordered set of P1’s neighboring pixels into four pairs
of adjoining pixels and count the number of pairs that contain one or two 1 s [31].

N(P1) = min[N1(P1), N2(P1)] (1)

N1(P1) = (P9 ∨ P2) + (P3 ∨ P4) + (P5 ∨ P6) + (P7 ∨ P8) (2)

N2(P1) = (P2 ∨ P3) + (P4 ∨ P5) + (P6 ∨ P7) + (P8 ∨ P9) (3)

The algorithm that is applied for each pixel p(i, j) is defined in Algorithm 1. The
conditions in the algorithm are necessary for preservation of local connectivity when P1 is
deleted and avoids deletion of pixels in the middle of medial curves.
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Algorithm 1 Guo–Hall Algorithm.

1: while points are deleted do
2: for all pixels p(i, j) do
3: if odd iterations then
4: if C(P1) = 1 AND 2 ≤ N(P1) ≤ 3 AND (P2 ∨ P3 ∨ P̄5) ∨ P4 = 0 then
5: Delete pixel p(i, j)
6: end if
7: else
8: if C(P1) = 1 AND 2 ≤ N(P1) ≤ 3 AND (P6 ∨ P7 ∨ P̄9) ∧ P8 = 0 then
9: Delete pixel p(i, j)

10: end if
11: end if
12: end for
13: end while

3.2. First-Order Derivative Orthogonal Gradient Operators

First-order derivative orthogonal gradient operators are the most basic operators
and have been extensively researched over the decades. We consider in our analysis the
following edge-detected operators and their extensions: pixel difference operator [32],
separated pixel difference operator [32], Sobel operator and the extension to a 5× 5 or 7× 7
kernel [33–37], Prewitt operator and the extension to a 5 × 5 or 7 × 7 kernel [34,36], Kirsch
operator [38] and the 5 × 5 kernel expansion [33], Kitchen and Malin operator [39], Kayalli
operator, Scharr operator and the extensions to 5 × 5 kernel [36,40], Kroon operator [41]
and Orhei operator [42].

All the kernel masks for the operators are presented in Figures A1, A3 and A6 from
Appendix A. All those operators are orthogonal discrete filters so we represent only one of
the kernels. To obtain the other kernels we just need to rotate it by a fraction of π

2 .
The gradient is a measure of change in a function, and an image can be considered

to be an array of samples of some continuous function of image intensity, typically the
two-dimensional equivalent of the first derivative. The magnitude is calculated using
Equation (4), where f (x, y) is the image and Gx, Gy are the gradient elements on x and y
directions. The direction of the gradient is calculated using Equation (5) [23].

G[ f (x, y)] =
√

G2
x + G2

y ≈ |Gx|+ |Gy| (4)

θ = tan−1
[

Gy

Gx

]
(5)

The result of this algorithm is an edge map formed by edges that are not topically 1
pixel width, this aspect can deform the result of our evaluation. So for a better evaluation,
we choose to thin the resulting edges beforehand using the Guo–Hall algorithm [31].
We add two steps to this algorithm that are commonly used, see [43]: smoothing and
thresholding. Smoothing of images is a common practice for enhancing the results as
thresholding will eliminate “weak” edges that are found. We present the flowchart for
these edge detections in Algorithm 2.
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Algorithm 2 First-Order Derivative Operators steps.
Input: RGB image
Output: Binary edge map
Parameters: Sigma value (S), Gradient Threshold (TG)

1: for edge operator do
2: Convert image to gray-scale image
3: Apply Gaussian filter smoothing
4: Apply convolution with kernel

. kernel rotated with π/2, found in Figure A1 (for Gradient magnitude)

. kernel rotated by a fraction of π, as in Figure A2 (for Compass magnitude)

. kernel found in Figure A7 (for Frei–Chen)
5: Calculate gradient magnitude using

. Equation (4) (for Gradient magnitude)

. Equation (6) (for Compass magnitude)

. Equation (7) (for Frei–Chen)
6: Apply global threshold algorithm
7: Apply Guo–Hall thinning algorithm [31] to remove the excess edge points
8: end for

3.3. First-Order Derivative Compass Gradient Operators

Compass gradient operators are commonly used in the edge detection and usually
detect the influence of the neighbor pixels in a compass rotating directional components.
They are commonly used as an alternative for the orthogonal gradient operators.

The gradient magnitude is calculated using Equation (6), where: k is the number of
kernels and L is the kernel size minus 1, divided by 2; z is the rotation index; g represents
the kernel and f the image. The resulting value of intensity is normalized or thresholded to
eliminate low confident edges. The local edge orientation is estimated with the orientation
of the kernel that yields the maximum response, as in [44,45].

G[ f (x, y)] = max
z=k

L

∑
i=−L

L

∑
j=−L

g(z)ij ∗ f (x + i, y + j) (6)

The operators are also orthogonal discrete filters so we represent and use only Gx
kernel. To obtain the other kernels for this template gradient we need to rotate it by a
fraction of π, different from the previous ones.

For our analysis we found in the literature the following: Prewitt Compass operator [15],
Robinson Compass operator [15,46] and Kirsch operator. All kernel mask details can be
found in Figure A2 from Appendix A.

Similar to orthogonal gradient operators, because the resulting edge map is not 1 pixel
width, neither with the same magnitude, we threshold and thin the results before the evalu-
ation. Similar to other algorithms to obtain the better results we apply a smoothing process
using the Gaussian filter before performing the edge detection. Details are presented in
Algorithm 2.

3.4. Frei–Chen Operator

The Frei–Chen operator works on a 3 × 3 footprint but applies a total of nine convolu-
tion masks to the image. The masks one through nine, defined a 3 × 3 window span of the
edge, line and average subspaces. All the kernel masks for the operators are presented in
Figure A7 from Appendix A. Kernels G1 and G2 are isotropic average gradient basis vectors
and kernels G3 and G4 are the ripple vectors, all of them contributing to the edge detection
subspace. Kernels G5 and G6 are the line basis vectors, respective kernels G7 and G8 are the
discrete Laplacian vectors and are used for the line subspace detection. From [19], Kernel
G9 is the average mask.
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To use the Frei–Chen operator for edge detection we apply Equation (7) for the first
4 masks. For line detection Equation (8) be used with the next 4 masks.

G[ f (x, y)]edge =

√√√√√√√√
4
∑

k=1
(Gk)2

9
∑

k=1
(Gk)2

(7)

G[ f (x, y)]line =

√√√√√√√√
8
∑

k=4
(Gk)2

9
∑

k=1
(Gk)2

(8)

In some way, the Frei–Chen operator is a first-order derivative compass gradient
operator , and we treat it as such. The evaluation steps are: the image is smoothed using a
Gaussian filter, the resulting edge map is thresholded and in the last step the edge map is
thinned. In our evaluation, we only considered the results for edge detection; to this end,
we used Equation (7), see Algorithm 2.

3.5. Laplacian Edge Operator

The Laplacian is a 2D isotropic measure of the second spatial derivative of an image.
The Laplacian of an image highlights regions of rapid intensity change and is therefore
often used for edge detection. Another difference between Laplacian and other operators
is that Laplacian does not take out edges in any particular direction. The formula for
the Laplacian is the second-order derivative by each component of a 2D function as is
presented in Equation (9).

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 (9)

From the literature [22,23,45,47] we can find different estimations of isotropic kernels
for the Laplacian operator that we present in Figures A4 and A5 in Appendix A. For our
work, we consider all of them so we can highlight changes that appear on the edge map
when choosing different approximations of the Laplace function.

We apply Equation (9) to obtain the raw edge map; however, to be able to evaluate,
we need to transform the edge result from natural range of (−256, 255) to (0, 255). The
obtained scaled edge map, which now has only positive values, is thinned using the Guo–
Hall algorithm for the final result. We can accept that this is not the normal usage of the
Laplace operator but we wanted to evaluate it separately from Laplace of Gaussian or
Marr–Hildreth operators. The details are presented in Algorithm 3.

Algorithm 3 Laplace and LoG Operator steps.
Input: RGB image
Output: Binary edge map
Parameters: [Sigma value (S) − only LoG], Gradient Threshold (TG),

1: for edge operator do
2: Convert image to gray-scale image
3: Apply edge detection operator using

. Equation (9) (for Laplace Operator)

. Equation (10) (for LoG)
4: Scale the edge pixels from (−256, 255) to (0, 255) range
5: Apply global threshold algorithm
6: Apply Guo–Hall thinning algorithm [31] to remove the excess edge points
7: end for
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3.6. Laplacian of Gaussian—LoG—Or Mexican Hat Operator

The Laplacian of Gaussian (LoG) approach is that the image is convoluted with a
Gaussian filter to reduce the noise followed by a Laplacian convolution to expose the edges.
The LoG function with the three-dimensional plot looks similar to a Mexican hat, hence
the name of the operator [23,48]. We can use two mathematical variants for obtaining LoG,
(see Equation (10)): convolve the image with a Gaussian smoothing filter and afterwards
compute with the Laplacian operator, or convolve the image with the linear filter that is
the Laplacian of the Gaussian filter (Equation (11)).

LoG(x, y) = ∇2[(g(x, y) ? f (x, y))] = ∇2[g(x, y)] ? f (x, y) (10)

∇2g(x, y) = − 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (11)

Similar to the Laplace operator, we need to transform the resulted edge map from
range of (−250, +250) to a (0, 250) so the determined edge map is scaled followed by
thresholding and thinning. The details are presented in Algorithm 3.

3.7. Marr–Hildreth Algorithm

Another method of detecting edges in digital images is the Marr–Hildreth algorithm,
which is used in continuous curves that feature strong and rapid variations in image
brightness.

The Marr–Hildreth edge detection method is simple and operates by convolving the
image with the Laplacian of the Gaussian function, or, as a fast approximation by difference
of Gaussian. Zero crossings are detected in the filtered result to obtain the edges. A zero
crossing at pixel level implies that the signs of at least two opposite neighboring pixels are
different [17,49].

For our implementation of the zero crossing algorithm, we chose to implement a
threshold that permits us to discriminate better relevant zero crossing according to the
difference in intensity [49,50]. This variant of zero crossing produces better results than the
classical version that threshold the results at zero regardless of intensity change. All the
steps used for simulations are presented in Algorithm 4.

Algorithm 4 Marr–Hildreth Operator steps.
Input: RGB image
Output: Binary edge map
Parameters: Sigma value (S), Gradient Threshold (TG),

1: for edge operator do
2: Convert image to gray-scale image
3: Apply edge detection operator using Equation (10)
4: Apply Zero Crossing [49] algorithm
5: Apply Guo–Hall thinning algorithm [31] to remove the excess edge points
6: end for

3.8. Canny Algorithm

The Canny edge-detection algorithm is a classical and robust method for edge detec-
tion in gray-scale images. The edge-detection algorithm is widely used due to its short
operation time and relatively simple calculation process.

The traditional Canny algorithm has the following steps: (1) smooth the image with
a Gaussian function, (2) apply the first-order operator, (3) non-maximum suppression of
the magnitude of the gradient and (4) double threshold is used for edge connections. The
classic Canny algorithm is presented in Algorithm 5.
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Non-maximum suppression is an important step for the Canny algorithm. The pur-
pose of it is to find the local maximum value of the pixels, and set the gray value corre-
sponding to the non-maximum point to zero, so that a large part of non-edge points can be
eliminated. It is a technique through which the edges are made thinner by checking, for
each edge pixel, if the adjacent pixels which fall between the gradient angle have a smaller
value. If not, the edge pixel is suppressed [13].

After the non-maximum suppression phase using the two thresholds, we double
threshold and edge link by hysteresis the edge points. If an edge pixel’s gradient value is
higher than the high threshold it is set as a strong edge pixel. Similarly, if an edge pixel’s
gradient value is smaller than the high threshold value but larger than the low threshold
value, it is marked as a weak edge pixel. If an edge pixel’s gradient value is smaller than
the low threshold value, it will be suppressed. At the end, the remaining “weak” and
“strong” pixels are connected as long as there is one strong edge pixel that is involved in
the blob.

Algorithm 5 Canny Operator steps.
Input: RGB image
Output: Binary edge map
Parameters: Sigma value (S), Low Threshold (TL), High Threshold (TH),

1: for edge operator do
2: Convert image to gray-scale image
3: Apply Gaussian filter smoothing
4: Apply convolution with kernels on the x and y axes
5: Calculate gradient magnitude with their kernels on the x and y axes
6: Apply non-maximum suppression, as in [13]
7: Apply edge tracking by hysteresis using double threshold
8: end for

3.9. Shen–Castan Algorithm

The unique feature of the Shen–Castan algorithm is that it uses the infinite symmetric
exponential filter (ISEF) [18], which offers better noise reduction. The detection steps used
by Shen–Castan and Canny are similar, but the Shen–Castan ISEF filter provides better
signal-to-noise ratios and better localization. The implementation of Canny’s algorithm
approximates his optimal filter by the derivative of a Gaussian, whereas Shen–Castan uses
the optimal filter directly [51].

ISEF is described as a real continuous function for one dimension by Equation (12)
and for two dimensions by Equation (13), where p is the thinning factor and a is the
normalization coefficient; more details can be seen in [52]. To speed up the convolution, we
used the discrete version of ISEF, the recursive filter, Equation (14), where b is the thinning
factor and its values lie in between 0 and 1.

f (x) =
p
2

e−p|x| (12)

f (x, y) = a · e−p(|x|+|y|) (13)

f (x, y) =
(1− b) · b(|x|+|y|)

1 + b
(14)
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Shen–Castan edge detector has a unique step that overcomes noise in the input image
by using the ISEF, see [53]. The algorithm has the following steps: (1) smooth the image
with the ISEF filter, (2) convolve the smoothed image with a Laplace binary operator,
(3) threshold the edge strong edge pixels using zero crossing, (4) link the edge points
by hysteresis and (5) thin the results at the end. Details regarding the steps we use for
obtaining the edge map are presented in Algorithm 6.

The approximation of the Laplacian is computed by subtracting the original image
from the smoothed one. The result is a band-limited Laplacian image. Next, a binary
Laplacian image is generated by setting all the positive valued pixels to 1 and all others to
0, as in [53].

For our analysis we do not use the Laplace binary operator, which is considered to
be optimal as run time for this algorithm but instead use the versions of Laplace isotropic
kernels presented in Section 3.5.

Algorithm 6 Shen–Castan Operator steps.
Input: RGB image
Output: Binary edge map
Parameters: Smoothing Factor of ISEF (SF), Threshold of Laplace (TG), Zero crossing

window (W), Threshold for zero crossing (R), Thinning Factor (TN)

1: for edge operator do
2: Convert image to gray-scale image
3: Apply recursive ISEF filter smoothing
4: Apply Laplace Operator
5: Apply Zero Crossing replacing the pixel values by 1 for positive and 0 for negative
6: Apply non-maximum suppression using adaptive gradient method with fixed

width W
7: Apply edge tracking by hysteresis using double threshold
8: end for

3.10. Edge-Drawing Algorithm

Edge drawing (ED) is an edge-detection algorithm that works by computing a set
of anchor points, which are most likely to be edge elements, and linking them with a
predefined set of rules, which we call smart routing [21].

The ED algorithm can be summarized in the following steps: smooth the image with
a Gaussian filter [54], calculate the gradient magnitude and orientation using Sobel filter,
extract the anchor points and connect the anchor points using the smart routing concept.
The steps of the ED algorithm are presented in Algorithm 7.

The mechanism of connecting anchors is considered the most crucial step of ED. Con-
necting consecutive anchors is achieved by passing from one anchor to the next following
the cordillera peak of the gradient map mountain. This process, as in [21], is guided by
the gradient magnitude and edge direction maps computed. If a horizontal edge passes
through the anchor, we start the connecting process by proceeding to the left and to the
right. If a vertical edge passes through the anchor, we start the connection process by pro-
ceeding up and down. The process stops if we move out of the edge area or we encounter
a previously detected edge.
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Algorithm 7 Edge Drawing Operator steps.
Input: RGB image
Output: Binary edge map
Parameters: Gaussian Kernel (GK), Threshold of Laplace (TG), Anchor Threshold (TA),

Scan Interval (SI)

1: for edge operator do
2: Convert image to gray-scale image
3: Apply Gaussian filter smoothing
4: Apply convolution with kernel rotated with π/2, found in Figure A1
5: Calculate direction map if |Gx| ≥ |Gy| vertical edge otherwise horizontal edge
6: Apply a global threshold scheme by TG value
7: Extract anchors using TA and SI
8: Smart routing
9: end for

3.11. Benchmarking the Edge Operators

Edge-detection evaluation methods are an important aspect and multiple solutions
are presented in the literature, but it still is a challenging and not totally solved problem.
Edge-detection evaluation methods can be categorized in several ways. First, they can
be classified as subjective or objective methods. The subjective method uses human
observation to decide the edge detection evaluation. In objective methods, quantitative
measures are defined based solely on images and the edge-detection results. Secondly,
edge-detection evaluation methods can be categorized based on test images: synthetic-
image-based methods and real-image-based methods [55–57].

In edge detection evaluation, the measurement process can be classified as: unsu-
pervised or supervised evaluation criteria. The first method concerns only the input data
image and generates a score of coherence that qualifies the algorithm result. The second
computes a similarity/dissimilarity measure between the resulted image and a ground
truth obtained from synthetic data or an expert judgment [58].

Multiple evaluation schemes are found in the literature for measuring supervised
evaluation criteria, as in [3,58–60]. For the evaluation of edge detection, the confusion
matrix remains a cornerstone in boundary detection evaluation methods. If we consider
the ground truth image as Igt and the predicted image as Ip we have the following possible
set of points:

• True positive points (TPs), common points of Igt and Ip.
• False positive points (FPs), false detected edges of Ip.
• False negative points (FNs), missing edge points of Ip.
• True negative points (TNs), common non-edge points.

To evaluate our proposed algorithms, we used two different supervised evaluation
criteria on two different datasets: one synthetic and one constructed on expert judgment. In
order to select the correct dataset, we analyzed multiple datasets [12,61–68]. For the expert
judgment, we used the Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)
in correlation with the pixel corresponding metric (PCM) [69]. Regarding the synthetic
dataset, we used the dataset from [12] in correlation with the symmetric figure of merit [58]
(SFoM) metric. Due to the different nature of the datasets and their different evaluation
criteria, we performed an objective evaluation.

BSDS500 is a widely used dataset in the field of computer vision for benchmarking
edge-detection algorithms as a measures of boundary detection. It contains natural images
that have been manually segmented and is considered the ground truth in many boundary
detection comparisons. The benchmark is used to evaluate the result images generated by a
specific algorithm with the segmented images in the dataset. For edge detection evaluation
we used the Pixel Correspondence Metric (PCM) algorithm, defined in [69]. The BSDS500
benchmark offers 500 images for testing, presented in few different sets. The images are
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natural images marked for the boundaries and edges of the objects and structures that they
represent or contain, as we can see in Figure 5.

Figure 5. Example of images and corresponding ground truth from BSDS500.

For evaluating the obtained edge maps we used the PCM algorithm [69]. This metric
is reliable for correlating similarities because it searches for the optimal matching of the
pixels between the edge images and then estimates the error produced by this matching.
In Equation (15), we present the definition of PCM between two images f and g, where
C(Mopt( f , g)) is the cost of an optimal matching, η is the maximum localization error and
| f ∪ g| is the total number of pixels that are not zero in both images. The optimal matching
algorithm used is an approximation of the weighted matching algorithm (more details
in [69]), with a depth of 5 and localization error of 5 pixels.

PCMη( f , g) = 100 · (1−
C(Mopt( f , g))

(| f ∪ g|) ) (15)

For each benchmark image, three different probability measures are computed: precision
(P), recall (R) and F-measure (F1) defined in [70]. Precision (Equation (16)) is the probability
that a resulting edge/boundary pixel was labeled as a true edge/boundary pixel. Recall
(Equation (17)) is the probability that a true edge/boundary pixel was detected.

F-measure (Equation (18)) is the accuracy measure computed as an average between
precision and recall. Further, we need to specify that TP (true positive) represents the
number of matched edge pixels, FP (false positive) the number of edge pixels that are
incorrectly highlighted as edge pixel and FN (false negative) the number of pixels that
have not been detected as an edge pixel but inthe dataset has been labeled as an edge pixel.
The highest possible value of an F-score is 1.0, indicating perfect P and R. The F1 score is
also known as the Sørensen–Dice coefficient or Dice similarity coefficient (DSC).

P =
TP

TP + FP
. (16)

R =
TP

TP + FN
. (17)

F-measure = 2 ∗ P ∗ R
P + R

=
2 ∗ TP

2 ∗ TP + FP + FN
(18)

The synthetic dataset chosen was used in our previous work [12] and was constructed
using the principles presented in [68]. The gray-scale dataset contains various edge types
(such as step edges, ramp and roof edge), widely varying angles, various junctions and
brightness changes. To offer a suitable dataset, we introduced in certain images different
levels and types of noise (such as uniform noise in Figure 6e or Gaussian noise in Figure 6b)
and blurring (see Figure 6d). All these different aspects aim to provide a better evaluation
of any certain edge detection algorithm.

The benefit in using a synthetic dataset, rather than a natural dataset, is the fact that the
subjective human-vision interpretation of the edge localization and nature is diminished.
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(a) (b) (c) (d) (e)

Figure 6. Synthetic gray-scale test images (a–e).

Figure of merit (FoM) is a widely used and popular discrepancy measure for edge
images. This distance measure has ranges from 0 to 1, where 1 corresponds to a perfect
evaluation. In Equation (19), we used the following notation: f is the predicted image, g is
the ground truth image, k is the constant 1

9 and dg(p) represents the minimal Euclidean
distance between pixel p from f and g [71].

FoM( f , g) =
1

max(| f |, |g|) · ∑p∈g
1 + k · d2

g(p) (19)

Symmetric figure of merit (SFoM) is inspired by other evaluation measures, such
as [72], as a way to avoid the computation of only the distance of FPs in FoM and to
consider a combination of FoM( f , g) and FoM(g, f ) as we can see in Equation (20). Similar
to FoM, SFoM is also normalized but takes into consideration both distance of FNs and
FPs resulting in a better global evaluation of the predicted image [58].

SFoM( f , g) =
1
2
· FoM( f , g) +

1
2
· FoM(g, f ) (20)

4. Experimental Results

In this section, we present the results of our analysis for each edge operator presented
in Section 3. In our presentation, we provide visual results, statistical results and remarks
for each subsection.

We attempt to prove the hypothesis that dilating the filters will cause better edge-
detection results for each algorithm evaluated. To do so, we divide our evaluation into two
sections: one evaluates the best versions (parameter configuration) of each edge operator
using classical, extended or dilated kernels and the second evaluates if the trend results
obtained in the first experiment are maintained if we change the kernels used with different
ones found in the literature.

For our simulation to be reproducible and easy to use we have used the End-to-
End Computer Vision Framework -EECVF- [73,74]. EECVF is an adaptable and dynamic
framework designed for researching and testing CV concepts, which does not require
the user to handle the interconnections throughout the system. All the edge operators
and algorithms are present in the framework and can be reproduced by running the
main_dilated_ f ilters_ f or_edge_detection_algorithms module.

4.1. Effect of Dilation

In this Section, we analyze the hypothesis that dilating the filters yields better results
than the original or expanded version. Because the topic of our evaluation is classical edge-
detection algorithms, we have to take into account the direct effect of parameters over the
resulting edge map. So we vary all the parameters (depending on the algorithm, see the
details below) to find the best suited one for each variant. Because this parameter finding task
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results in a considerable number of variants, we only consider the best results for each variant
that are evaluated with BSDS500. For the evaluation on the synthetic dataset, the results are
presented in figures on this section. Due to the nature of the metrics used, in this case, we
could consider a representation method that permits us to show all variants results.

In Figures 7 and 8 we present the results for edge-detection operators that are based
on first-order discrete kernels. As we can observe, we chose to vary the parameters for
each version of the kernels (classic, extended or dilated) to obtain the best results we can
with each one. For the edge operators presented in this figure, we have chosen the classical
Sobel operator; for the first-order derivative compass Gradient we have used instead the
Robinson Compass operator. An exception for this is the Frei-Chen algorithm that has a
particular kernel.

In Figures 9 and 10, we present the results of edge-detection operators that are based
on second-order discrete kernels. For the edge operators presented in this figure, we have
chosen the classical Laplace operator. For our simulation results and evaluation, we first
searched for the best threshold value (see the interval searching details below) by using the
Laplacian kernel V1 that we can find in Figure A4 from the Appendix A.

4.1.1. Operators Based on First-Order Discrete Kernels

In Figure 7a, we present the results for the first-order derivative orthogonal gradient
operator. As we can observe, we have searched for the best F1 results in a range of the
threshold between 30 and 160 with a step of 10 and sigma value between 0.25 and 3.0 with
a step of 0.25. As expected, a higher threshold will produce less edge points, as we can
see in Figure A8, but with a fair confidence that resulted in a high R because of the lack of
points. For the images, we use the following notations: Gaussian sigma is S and threshold
is TG.

From the results presented in Figure 7a, we can observe that we obtain equal F1 scores
for the 3 × 3 classical, 5 × 5 extended and 7 × 7 dilated kernel versions. On the other hand,
we clearly see that expanding the kernel to 7 × 7 performs worse than dilation; the best
results with 7 × 7 extensions were 0.374.

In Figure 7b, we follow the F1 results for the first-order derivative compass gradient
operators using some similar ranges of the threshold, between 30 and 160, and sigma value
between 0.25 and 3.5. In the figure, we use the the same notations: Gaussian sigma is S and
threshold is TG. In Figure 7b, we can notice that the 3 × 3 classical kernel obtains equal
results similar to the 5 × 5 dilated or 7 × 7 dilated version. A notable difference in this case
is the lack of extended kernels as they were not present in the literature.

The Frei–Chen operator is a special case of the compass gradient operators and is
presented Section 3.4. We fine-tune the parameters of the algorithm for a range of the
threshold between 30 and 160 and sigma value of the Gaussian filter blur between 0.25 and
3.2. The results are presented in Figure 7c, where we use the same notations: Gaussian
sigma is S and threshold is TG. In this case with the Frei–Chen operator, the 7 × 7 dilated
kernel version yields the best F1 results followed by the dilated 5 × 5 kernel. Similar to the
compass gradient operators, an extension of this operator was not found in the literature
for comparison.

One of the most popular first-order-derivative-based edge-detector operator is Canny,
presented in Section 3.8. For parameter tuning, we varied the following configurations:
Gaussian sigma value from 0.2 to 3.0 with a step of 0.25, low threshold from 70 to 150
with a step of 10 and high threshold from 90 to 200 with a step of 10. We performed the
parameter tuning phase for the original kernel, extended and dilated to find the best suited
ones. For the images, we use the following notations: Gaussian sigma is S, low threshold is
TL and high threshold is TH.
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(a) (b)

(c) (d)

(e)

Figure 7. Best results on BSDS500 for classic, extended and dilated using different parameters for: (a) first-order derivative
orthogonal gradient operators; (b) first-order derivative compass gradient operators; (c) Frei–Chen edge operator; (d) Canny
operator; (e) ED edge operator.
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(a) (b)

(c) (d)

(e)

Figure 8. Best results on the synthetic dataset for classic, extended and dilated using different parameters for: (a) first-order
derivative orthogonal gradient operators; (b) first-order derivative compass gradient operators; (c) Frei–Chen edge operator;
(d) Canny operator; (e) ED edge operator.

For the ED algorithm, described in Section 3.10, we searched for the best combination
of Gaussian smoothing kernel size, gradient threshold, anchor threshold and scan interval
interval. We varied the parameters as follows: Gaussian kernel (GK) between 3 to 9 with a
step of 2; gradient threshold (TG) between 10 and 150 with a step of 10; anchor threshold
(TA) between 10 and 60 with a step of 10; scan interval (SI) in range of 1, 3, 5.

As we can see in Figure 7d,e, the best results we obtain were when using the 7 × 7
dilated filter. Another conclusion we draw is that using extended kernels will produce a
significant degradation of the edge map results, supported by the lower score. An aspect
worth mentioning for these two algorithms, Canny and ED, is the fact that for the ED
algorithm, when using extended kernels, good results are obtained; it is also similar for the
dilated 7 × 7 case. It is not the case for Canny, where the extension technique does not help
anymore.

For the evaluation using SFOM, presented in Figure 8, we used the same parameter
variation values in order to respect the same evaluation methodology.

From the results presented in Figure 8a, we can observe a clear degradation of the
obtained edge map when considering the 7 × 7 extended kernel, with a maximum SFoM
value of 0.379. When we look over the max peaks obtained when using 5 × 5, 7 × 7 dilated
and 5 × 5, we observe that they are very close.
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When looking over the results from the compass first-order operators, Figure 8b, we
can observe similar max peaks but the median values increase directly with the dilata-
tion factor.

In case of Frei–Chen edge operator, Figure 8c, we can observe a clear increase in the
median values and max peak when using dilated kernels.

An interesting evolution can be observed in the case of the Canny algorithm, Figure 8d,
where expanding the kernel to 5 × 5 brings benefits to the resulting edge map but expand-
ing to 7 × 7 produces a significant degradation of the results. In case of dilating the kernels,
improvements can be observed with the peak max values reaching up to 0.679 for the 7 × 7
kernel.

The exception from the trend comes when talking about the ED algorithm, Figure 8e.
In this case, expanding to 5 × 5 or dilating to 5 × 5 produces similar results(0.658 for
expanding and 0.668 for dilating). The difference occurs when looking at dilated 7 × 7
where we actually have a degradation of the results. The best results were actually obtained
using the classical 3 × 3 with a value of 0.673.

4.1.2. Operators Based on Second-Order Discrete Kernels

The Laplace edge operator is one of the most popular edge detectors based on second-
order derivative discrete kernels, described in Section 3.5. We have chosen to vary the
threshold from 15 to 245, the results can be observed in Figure 9a, where TG is the notation
of the threshold.

(a) (b)

(c) (d)

Figure 9. Finding the best results for classic, extended and dilated using different parameters for: (a) Laplace edge operator;
(b) LoG edge operator; (c) Marr–Hildreth edge operator; (d) Shen–Castan edge operator.
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A natural extension of the Laplace operator is the Laplacian of Log, described in
Section 3.6. We searched for the best combination of sigma for constructing the LoG kernel
and the threshold. The results can be observed in Figure 9b. We have chosen to vary
the threshold from 5 to 60, avoiding a bigger threshold. Bigger threshold values would
not generate better results because of the small intensity resulted after the convolution.
Regarding the sigma for the Gaussian blur kernel, we chose to vary between 0.2 and 2.0,
while going higher would generate a lack of resulting edge points. For the images, we use
the following notations: Gaussian sigma is S and threshold is TG.

Marr–Hildreth operator, presented in Section 3.7, is similar to the Log operator. We first
searched the best combination of sigma for constructing the LoG kernel and the threshold
of zero crossing. The results can be observed in Figure 9c and for a better visualization,
we have chosen to show only the best results in F1 order. We have tried the combination
of sigma value from 0.2 to 3.0 with gradient threshold of 30 to 90 of the gradient image,
considering that is the interval where these parameters bring good results to the output.
For the images, we use the following notations: Gaussian sigma is S and threshold is TG.

The results and evaluation of Shen–Castan operator, described in Section 3.9, are
presented in this section. We searched again for the best combination of threshold of
Laplace, smoothing factor, window size, thinning factor and ratio factor of the algorithm.
We chose a threshold value of 40 for the Laplace edge detector and vary the rest of the
values as follows: smoothing factor of ISEF filter (SF) from 0.5 to 0.9; adaptive zero crossing
window size (W) of 5, 7, 9; threshold for zero crossing (R) from 0.5 to 0.9; thinning factor
(TN) of 0, 0.5 and 0.9.

There are multiple hyperparameter value combinations that yield the same F1 score.
For example, the dilated 7 × 7 filter obtains an F1 score equal to 0.576 for 4 different
combinations of values for R and TN: (TG = 4, SF = 0.9, W = 11, R = 0.5, TN = 0),
(TG = 4, SF = 0.9, W = 11, R = 0.5, TN = 0.5), (TG = 4, SF = 0.9, W = 11, R = 0.9,
TN = 0), (TG = 4, SF = 0.9, W = 11, R = 0.5, TN = 0.5).

(a) (b)

(c) (d)

Figure 10. Finding the best results for classic, extended and dilated using different parameters for: (a) Laplace edge operator;
(b) LoG edge operator; (c) Marr–Hildreth edge operator; (d) Shen–Castan edge operator.

Looking over the results from Figure 9a–d, we can observe that the best results were
obtained using the 7 × 7 dilated version, followed by the 5 × 5 dilated version. We can also
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conclude that for this operator using the 5 × 5 extended kernel deteriorates the resulted
edge map.

Similar to first-order-based algorithm, we chose to vary all the parameters in the
same limits for these evaluation. These is important so we can correlate the results on the
different datasets.

First we look over the results we obtained when evaluating the Laplace operator, see
Figure 10a and we see that dilating bring forward significant improvements. We see a peak
value of 0.478 for 5 × 5 dilated and 0.470 for 7 × 7.

If we look over the results from LoG operator, see Figure 10b, the dilatation produces
slightly better results, but an interesting fact is the compression that we can see in the
evaluation results interval.

In case of Marr–Hildreth, which can be seen in Figure 10c, the dilatation produces
slightly increased max values, from 0.396 for the 3 × 3 to 0.410 for the 5 × 5 dilated. We can
observe in the opposite part a decrease in evaluation results in case of the 5 × 5 version.

In the Shen–Castan results presented in Figure 10d, we detect a clear improvement
when using dilated kernels. The max values are obtained when we use the 5 × 5 dilated
version: 0.442, whereas the classical version obtains 0.315.

As a conclusion from the evaluation of second-order-based operators using SFOM,
we can clearly see that using 5 × 5 dilated yield better results in the edge map.

4.1.3. Preliminary Conclusion

In Table 1, we present for each edge operator the best results we could obtain and
also specify the kernel that was used. From our experiments, we can conclude that for
all edge-detection operators, using the dilated version of the kernels has a positive effect
upon the resulting edge map when evaluating using PCM on BSDS500. When looking
over the evaluation using SFoM, we observe that we obtained better results when we used
the dilated kernels, with the exception of the ED algorithm.

Table 1. Overall best results for each edge operator analyzed.

Operator PCM [69] SFOM [58]

Kernel P R F1 Parameters Kernel SFoM Parameters

First Order Orthogonal 7 × 7(D) 0.571 0.679 0.621 TG = 50, S = 2.75 7 × 7(D) 0.754 TG = 30, S = 2.25
First Order Compass 5 × 5(D) 0.565 0.687 0.620 TG = 50, S = 2.25 7 × 7(D) 0.753 TG = 30, S = 2.25
Frei–Chen 5 × 5(D) 0.554 0.673 0.608 TG = 60, S = 2.25 7 × 7(D) 0.481 TG = 30, S = 0.25
Laplace 7 × 7(D) 0.309 0.794 0.445 TG = 95 5 × 5(D) 0.478 TG = 15
LoG 7 × 7(D) 0.490 0.659 0.562 TG = 30, S = 1.8 7 × 7(D) 0.491 TG = 5, S = 1.0
Marr–Hildreth 7 × 7(D) 0.450 0.744 0.561 TG = 0.2, S = 2.0 5 × 5(D) 0.411 TG = 0.2, S = 1.6
Canny 7 × 7(D) 0.478 0.813 0.602 S = 1.5, TL = 90, TH = 130 7 × 7(D) 0.679 S = 2.25, TL = 70, TH = 100
Shen–Castan 7 × 7(D) 0.483 0.711 0.576 TG = 4, SF = 0.9, W = 11, TN = 0 5 × 5(D) 0.442 TG = 4, SF = 0.9, W = 11, TN = 0.5
ED 7 × 7(D) 0.556 0.704 0.621 TG = 50, TA = 5, SI = 1, GK = 7 3 × 3 0.673 TG = 50, TA = 5, SI = 1, GK = 7

The exception we have for the first-order derivative orthogonal gradient operators
and first-order derivative compass gradient operators was that the 7 × 7 dilated version
of the kernels obtained the same F1 score as the classical 3 × 3 ones. We chose to use the
dilated because of the higher p value.

4.2. Noise Effect on Dilation

Edge detection algorithms have a different sensitivity regarding the noise level of
the input image. In this section, we analyze the effect that the addition noise had upon
the resulting edge map, when using a dilated filter. To do so, we used an image from the
synthetic dataset [12] and applied it to different levels of noise (Gaussian noise) at various
peak signal-to-noise ratio (PSNR) values (from 16 dB to 10 dB), see Figure 11.
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original 16dB 14dB 12dB 10dB

Figure 11. Image used to evaluate at different levels of noise (PSNR).

In order to have a complete evaluation of the dilated filter impact, we conducted simi-
lar experiments for noise sensibility analysis, as was presented in [58,59,75]. To maintain
consistency in our evaluation, we used the two algorithms presented in Section 3. For each
image with different noise levels, we varied the algorithm parameter as we described in
Section 4.1; however, we evaluated them using the SFoM measure. We chose the first-order
derivative orthogonal gradient algorithm as we consider it to be the most sensitive to noise
from the first-order derivative group. Similar to the second-order derivative group, we
chose the Laplace operator. In order to have a more objective analysis we have eliminated
the smoothing step from the first-order gradient, see Algorithm 2. Further, for a complete
evaluation of the dilated filter impact we conduct similar methodology for noise sensibility
analysis, as was presented in [58,59]. In Figure 12, we highlighted the visual results
obtained for first-order gradient algorithm. In the first row are the filtered images without
any noise, for 3, 5, 7, dilated 5 and dilated 7 filters. For each new row the noise increases
from 16 dB to 10 dB. We can observe that dilation is not that sensible for noise, and requires
statistical analysis.

3 × 3 5 × 5 7 × 7 5 × 5(D) 7 × 7(d)

Figure 12. Visual results at different levels of noise (PSNR) for one image. Rows represent: original;
16 dB; 14 dB; 12 dB; 10 dB.

Interpreting the statistical results that we obtained in Figure 13, one can observe
that the noise has the same effect upon the classical or dilated versions of the filters. We
can observe as the noise level is growing the median and maximum value of the SFoM
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decreases. For the first-order derivative orthogonal gradient operator, the noise does not
have a huge impact over our dilated proposed approach. From the left to right, with the
noise increasing, it is normal to obtain some degradation; however, the classical Sobel 3× 3
or the extension obtained the same degradation. With all the noises, the dilated filters are
above the classical methods in performance, even in the average or mean of the results.

In the second line of Figure 13, we present the statistical results of the second derivative
operator. We can see that noise has the same impact in the classical Laplace results and for
our dilated filter approach. What is worth mentioning in both cases, Sobel and Laplace,
is that 5× 5 extended seems that it is increasing, but looking closer to the SFOM values,
we can observe that it actually has a stable variant (e.g., is always between 7 and 8 on the
second order).

The more complex algorithms that are presented in this paper are extensions or
improvements of one of the two algorithms. In this case, we consider that extending our
analysis will not bring considerable improvements. We can conclude that the noise level
affects the classical and dilated filters to the same extent.

16 dB 14 dB 12 dB 10 dB

Figure 13. SFoM results for first-order-based operators on different levels of noise (PSNR) on the test image; Rows are:
first-order derivative orthogonal gradient operators; Laplace edge operator.

4.3. Dilation with Different Operators

In this Section, we analyze if the hypothesis that dilating the filters yields better results
than the classical approach is maintained if we change the kernel used. In Figure 14,
we present the results for edge-detection operators that are based on first-order discrete
kernels and in Figure 15, we present the results of edge-detection operators that are based
on second-order discrete kernels. From the previous results, because both metrics showed
similar conclusions, we consider in the next part of this paper, only the BSDS500 dataset
evaluation.

For each version of the kernel (classical, extended or dilated) we used the best-
suited parameters found in Section 4 for this evaluation. Statistical metrics are presented
in Figures 14 and 15 and visual comparison results of the operators are presented in
Figures A8–A12 from Appendix B.

4.3.1. Operators Based on First-Order Discrete Kernels

For this section, we alter the classical Sobel kernel with the following filters: pixel
difference operator, separated pixel difference operator, Sobel operator, Prewitt operator,
Kirsch operator, Kitchen and Malin operator, Kayalli operator, Scharr operator, Kroon
operator and Orhei operator.

For the first-order derivative compass gradient operators, we found in the literature
the following: Prewitt compass operator, Robinson compass operator and Kirsch compass
operator. For this section, we do not consider the Frei–Chen operator where the kernel is
fixed. Analyzing the effect of changing the kernel is not the focus of this research.
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(a) (b)

(c) (d)

Figure 14. Results for classic, extended and dilated using different operators for: (a) first-order derivative orthogonal
gradient operators; (b) first-order derivative compass gradient operators; (c) Canny operator; (d) ED edge operator.

The first aspect worth mentioning for Figure 14 is that for each algorithm, the best
results were obtained when using dilated versions of the kernels. Another important aspect
is that in most cases, even if we change the kernel we obtain the same trend, which is that
dilation obtains better results.

For the first-order derivative orthogonal gradient operators, Figure 14a, we observe
that using the Kirsch operator obtains good results in all cases classical, extended or dilated.
In the opposite part, we have the Kayyali operator, where dilating the filters produced a
degradation of the resulting edge map.

In Figure 14b, we present the results for the first-order derivative compass gradient
operators, where we observe that for both variants of the Robinson compass operator, we
obtained similar results if we use the classical or dilated approach. Unfortunately, we can
see clear diminution of the F1 metric when dilating using Prewitt compass operator.

In the case of the Canny operator, Figure 14c, we see that the trend we observed for
the Sobel operator is maintained for most of the other operators we experimented with.
We consider it worth mentioning that we used the dilated 7 × 7 Prewitt operator, and we
see a significant increase in the overall results. In the case of this algorithm, we actually
observed that the pixel difference operator and separated pixel difference operator do not
obtain any noticeable results.

In Figure 14d, we can see that, for the ED algorithm, we obtained the same close
results for the dilated 7 × 7 and extended 7 × 7 for several operators, such as: Sobel, Kroon,
Prewitt and Orhei. Actually, in this case, the first results were where the extended kernels
produced the best overall results. On the other hand, we can conclude that the Kayyali
operator has no benefit when it is used in this algorithm.
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(a) (b)

(c) (d)

Figure 15. Finding the best results for classic, extended and dilated using different parameters for: (a) Laplace edge operator;
(b) LoG edge operator; (c) Marr–Hildreth edge operator; (d) Shen–Castan edge operator.

4.3.2. Operators Based on Second-Order Discrete Kernels

For this section, we change the classical Laplace kernel with the alternative approxi-
mations we found in the literature; see Figures A4 and A5 in Appendix A.

The first aspect worth mentioning for Figure 15 is that, for each algorithm, the best
results were obtained when using dilated 7 × 7 versions of the kernels. Another important
aspect is that in most cases even if we change the kernel we obtained better results with
dilation.

For the Laplace operator, Figure 15a, we can observe that in the case of kernels V1, V4
and V5 we have the same trend for the top three in the results: classic 3 × 3, dilated 5 × 5
and the best dilated 7 × 7; however, we have to mention that for the V3 and V2 the best
results were obtained with the classical approaches.

In Figure 15b, where we see the results for the LoG algorithm, we can conclude that
for all versions of the kernels, we obtained better results for the dilated versions. This trend
is maintained for the Marr–Hildreth algorithm as presented in Figure 15c.

For the Shen–Castan algorithm, we obtained another exception from the trend we
observed in the case of kernels V2 and V3; see Figure 15d. Similar to the other algorithm,
we obtained the worst metrics for the 5 × 5 extended version of the kernels.

4.3.3. Preliminary Conclusion

By analyzing the results obtained in this section, see Figures 14 and 15, we find that in
most cases, even if we changed the kernel used, we obtained better results when we dilated
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the kernels. As expected, changing the operators we used has an effect on the resulting
edge map but not in the trend of the results (performance of classic, extended or dilated).

5. Conclusions and Future Work

In this paper, we extend our work (see the previous papers [11,12]) regarding dilation
of a classical convolution edge-detection filters. In Section 3, we present the theoretical
background where we present the algorithms that took part in the simulation from Section 4.
The experimental results confirm our hypothesis that the dilation of filters have a positive
impact for edge detection.

From the summary made in Table 1, we can state that the dilated filter yields, generally
speaking, better results. This hypothesis was proven using two different metrics, PCM and
SFoM, on two different datasets. The evaluation that we performed helped us demonstrate
the initial hypothesis that the dilation of the kernels leads to edge-detection improvements.

Dilating first-order derivative kernels yields results similar to the classical 3 × 3 kernel
in the worst case, and sometimes significant improvements in the best case, as we can see in
Figure 7d or Figure 8d. When experimenting with different kernels, we observed that the
respective trends in terms of the results is maintained, see Figure 14.

Dilating the second-order discrete approximation filter did yield considerable improve-
ments to the edge map, as we see in Figure 9c when using the Marr–Hildreth algorithm or
in Figure 9d for the Shen–Castan algorithm. When we experimented with different Laplace
kernels, we observed the same behavior except with a reduced number of cases such as V3
in the case of Laplace operator; see Figure 15a. When evaluating with the SFoM metric,
we observed improvements overall when using the 5 × 5 dilated kernels as we can see
Figure 10a–d.

Statistically and visually, we could observe that by dilating the filters we find more
edge pixels than by the classical operators. By dilation, we obtained a better precision and
F1-score, which can be observed in the results we presented. By the simple structure of the
dilated filters, they are also a good choice when the runtime matters. The other classical
filter extensions from [33,35–37,40] require a larger number of operations in order to return
the resulting edge pixels, whereas the custom dilated filters always have the same number
of operations for any extension. It seems that the gaps imply a speed up. We can point out
that, for the ED algorithm, see Figure 14d, we have obtained the best results when using
the 7 × 7 kernel with the Prewitt kernel.

In Section 4.2, we explored the effect of noise on the dilated filter and concluded that it
has a similar effect as in classical filters. We may, in our future work, continue this analysis
of the dilated-threshold-noise effect by using different metrics, such as the minimum score
proposed by [59].

In our research, we focused on dilating 3 × 3 filters, but in our future work, we will
concern ourselves in dilating bigger kernels as a starting point. This can be analyzed from
the definition of the dilation. Another aspect worth exploring in the future would be to run
experiments in automated threshold versions of the algorithms. Our current experiments
focused on the classical version of edge-detection algorithms, but looking into the combined
effects of dilating and automated threshold could enhance the resulted edge map.

In our approach, for comparison purposes, the focus was to fine-tune the classical
edge-detection algorithms in order to obtain the optimal threshold and sigma values. We
are certain that if we would have fine-tuned the algorithms for the dilated kernel, the
results would have been better.

In general we can state that using the dilated kernels yields benefits regarding the
edge map, as a result of the edge-detection of the classical algorithm and the run-time
needed. We obtained similar or better results when taking into consideration a bigger
neighborhood.
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Figure A1. 3 × 3 kernel masks.
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Appendix B

Figure A8. First-order derivative orthogonal gradient operator results. Columns: Original, 3 × 3,
Dilated 5 × 5 and Dilated 7 × 7. Rows: Pixel Differences, Separated Pixel Difference, Sobel, Prewitt,
Kirsch, Kitchen, Kayyali, Scharr, Kroon and Orhei.

Figure A9. First-order derivative compass gradient operators and Frei–Chen operator results.
Columns: Original, 3 × 3, Dilated 5 × 5 and Dilated 7 × 7. Rows:Robinson Cross, Robinson
Modified Cross, Kirsch, Prewitt, Frei–Chen Edge and Frei–Chen Line.
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Figure A10. Laplace operators and Laplace of Gaussian results. Columns: Original, Laplace 3 × 3,
Laplace Dilated 5 × 5, Laplace Dilated 7 × 7, LoG 3 × 3, LoG 5 × 5, LoG Dilated 5 × 5 and LoG
Dilated 7 × 7 Rows: Laplace kernel V1, Laplace kernel V2, Laplace kernel V3, Laplace kernel V4 and
Laplace kernel V5.

Figure A11. Marr–Hildreth operators and Shen–Castan operator results. Columns: Original, MH
kernel 3 × 3, MH kernel dilated 5 × 5, MH kernel dilated 7 × 7, SC kernel 3 × 3, SC kernel dilated
5 × 5 and SC kernel dilated 7 × 7. Rows: Laplace kernel V1, Laplace kernel V2, Laplace kernel V3,
Laplace kernel V4 and Laplace kernel V5.
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Figure A12. Canny and ED results. Columns: Original, Canny 3 × 3, Canny Dilated 5 × 5, Canny
Dilated 7 × 7, ED 3 × 3, ED Dilated 5 × 5 and ED Dilated 7 × 7. Rows: Pixel Differences, Separated
Pixel Difference, Sobel, Prewitt, Kirsch, Kitchen, Kayyali, Scharr, Kroon and Orhei.
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11. Bogdan, V.; Bonchiş, C.; Orhei, C. Custom Dilated Edge Detection Filters. J. WSCG 2020, 28, 161–168. [CrossRef]
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