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Abstract: Autonomous driving is a safety-critical application that requires a high-level understanding
of computer vision with real-time inference. In this study, we focus on the computational efficiency
of an important factor by improving the running time and performing multiple tasks simultaneously
for practical applications. We propose a fast and accurate multi-task learning-based architecture for
joint segmentation of drivable area, lane line, and classification of the scene. An encoder–decoder
architecture efficiently handles input frames through shared representation. A comprehensive
understanding of the driving environment is improved by generalization and regularization from
different tasks. The proposed method learns end-to-end through multi-task learning on a very
challenging Berkeley Deep Drive dataset and shows its robustness for three tasks in autonomous
driving. Experimental results show that the proposed method outperforms other multi-task learning
approaches in both speed and accuracy. The computational efficiency of the method was over
93.81 fps at inference, enabling execution in real-time.

Keywords: drivable area estimation; autonomous driving; multi-task learning; lane line detection;
scene classification; real-time processing

1. Introduction

Recent studies on intelligent vehicles have advanced rapidly with the development
of deep learning-based computer vision techniques and much attention to self-driving
vehicles. Visual perception is playing a key role in this revolution. It enables the vehicle
to understand the driving environments and estimate drivable areas. The drivable area
estimation for safe driving requires a more high-level understanding than other tasks such
as free space detection, vehicle detection, pedestrian detection, and lane line detection [1].
According to the current environment in real-time, a drivable area is necessarily divided
into ego-lanes, other drivable lanes, sidewalks, and so forth [2].

Although many methods have shown successful results in drivable area estimation [3],
it is not straightforward to apply these methods to real-world applications. Knowing the
position of the lane line is essential to move the vehicle correctly on the road and avoid
traffic accidents with others. Single tasks, such as lane line segmentation, object detection
and semantic segmentation, alone, are insufficient to decide road affordability of driving
because many areas have different conditions such as the absence of lanes [4]. Furthermore,
the road is shared with all other vehicles. If the lane is occupied by an obstacle or the free
space of other vehicles coming from the opposite direction, it should also be considered.
Thus, understanding drivable areas to set the proper path where the ego vehicle can drive
is an essential function for safe driving. Although most studies have focused on improving
performance to address practical real-world autonomous driving applications that have
limited resources, reducing computational cost is also a vital factor. In particular, as safety
is vital for autonomous driving, the required perception tasks for autonomous driving are
diversified, whereas resources for understanding them are limited.

To address this issue, herein, we adopt the multi-task learning approach to small deep
network architecture to understand the environmental context of current driving vehicles
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and reduce the computation for real-time inference. This network has desirable properties,
such as low-power usage, real-time processing, and small model size while maintaining
competitive accuracy. Multi-task learning can improve learning efficiency and prediction
accuracy by learning multiple objectives from a shared representation [5]. Furthermore,
the multi-task learning approach allows the model to perform in real-time by combining
all loss functions to simultaneously learn multiple objectives in a single small model from
shared computations. For elaborate estimation of drivable areas, we performed three tasks
simultaneously as follows: (1) drivable area estimation, that pixel-wise classification of
road that vehicles can forward; (2) lane line segmentation, that detecting lane lines to divide
directly and alternatively drivable area, and (3) scene classification, that is, understanding
the global context of current driving environments. Figure 1 shows an input image and
three tasks for drivable area estimation. In Figure 1b, the red color region corresponds to
the ego-lane and blue color region indicates the alternative drivable lane. In Figure 1b,
the red color region corresponds to the ego-lane and the blue color region indicates the
alternative drivable lane. The drivable area is more likely around the lane lines. Therefore,
a unified structure that shares the representation can achieve not only better computation
efficiency, but also a better performance than separate architecture.

l Highway

(a) Input

l Highway

(b) Result

Figure 1. Our goal: Solving drivable area estimation, lane line segmentation, and scene classification through multi-
task learning.

In this paper, we propose a fast, simple, efficient, and accurate end-to-end neural
network architecture to enhance the simultaneous estimation of drivable areas, lane line
segmentation, and scene classification based on a multi-task learning approach. We focus
on computational times with competitive performances to enable safety-critical real-time
applications. To apply to three tasks, we used an encoder that generates feature maps and
a decoder that predicts the result of each task from shared feature maps. The comprehen-
sive understanding of the driving environment is efficiently learned through multi-task
learning. Our approach is very simple, can be trained end-to-end, and performs well in the
challenging Berkeley deep drive (BDD) dataset [4], showing a much faster computational
time with high performance in all three tasks. In summary, the three contributions of our
work are:

• Drivable area estimation, lane line segmentation, and scene classification are inte-
grated into one end-to-end framework;

• The proposed method can perform multi-task inference in real-time by utilizing shared
representation efficiently;

• We demonstrated the effectiveness of the proposed method on the public BDD dataset.

The subsequent sections of the paper are organized as follows: In Section 2, we
introduce the studies related to our work. We discuss the overall architecture in Section 3.
The experimental results are detailed and discussed in Section 4. Finally, we present the
conclusions of this work in Section 5.
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2. Related Work

The three tasks for intelligent driving are handled separately. In this section, we intro-
duce the research progress of the three tasks. Then some prominent multi-task networks
and efficient networks are introduced

2.1. Drivable Area Estimation

Most of the published papers focus on improving performance from the learning
method and network architecture. RBNet [6] learns to estimate the road and the road
boundary simultaneously based on a Bayesian model. Han et al. [7] proposed a road
detection method based on generative adversarial networks (GAN) and a weakly super-
vised learning method based on conditional GAN. Munoz et al. [8] proposed an enhanced
generalization technique for road detection with a random data augmentation method.

Although significant performance has been achieved in the segmentation task based on
the deep-learning approaches, the trade-off between accuracy and speed is still a challenge.
Asgarian et al [9] considered the process of drivable area estimation as a row-selection
task for efficient computation. A pixel-wise semantic segmentation network, SegNet [10],
uses encoders and decoders to minimize the required memory and computational cost.
The ErfNet [11] has fewer computational costs while providing better performances than
SegNet by exploiting the skip connections and 1D kernels.

2.2. Lane Line Segmentation

Lane line segmentation is a fundamental topic in the field of intelligent vehicles.
Despite the many studies in the literature, recently, many learning-based approaches have
been conducted to enhance its robustness. Neven et al. [12] proposed a lane detection
method based on the instance segmentation approach. In their method, each lane line is
considered as an instance. Expanded Self Attention (ESA) [13] propose a self-attention
mechanism that can predict the confidence of a lane along with the vertical and horizontal
directions. The ESA module extracts global contextual information by predicting the
confidence of the lane. SCNN [14] generalizes traditional deep layer by layer convolutions
to slice-by-slice convolutions. The message-passing procedure among consecutive pixels
make advantages in the segmentation performance. We argue that the main advantage of
the proposed method is their ability to infer lane line and drivable area at same time in one
forward path processing.

2.3. Scene Classification

Starting with the AlexNet [15], most of the image classification tasks utilize deep
learning. The residual network [16] allows the training of very deep networks without
exploding or vanishing gradient problems through skip connection. In the sense of scene
classification, deep neural networks that can effectively process an entire input image at a
fast speed are widely used [17,18]. In this paper, we classify road types to share the global
representation with drivable area estimation and lane line segmentation.

2.4. Multi-Task Learning for Intelligent Vehicle

The idea of a better representation through a multi-task learning approach by exploit-
ing many tasks has been adopted in this field. Several approaches have been proposed in
the context of CNNs [19,20]. Mask R-CNN [21] performed instance segmentation and object
detection at same time. BlitzNet [22] achieved real-time inference for scene understanding.
However, these networks are more like computer vision methods than intelligent vehicle
methods. Some researches focus on intelligent vehicle system that can be applied to traffic
scenarios directly. MultiNet [1] proposed a joint classification, detection and semantic
segmentation problem via a unified architecture that can run in real-time. The architecture
shares the same encoder and divides into three decoders for three tasks. DLT-Net [3]
simultaneously handles drivable area estimation, lane line detection, and traffic object
detection problem in a single framework. The context tensor between sub-task decoders
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effectively shares designate influence among tasks. Uhrig et al. learn semantic and instance
segmentations under a classification setting. Multi-task deep learning has also been used
for geometry and regression tasks. Fabio et al. [2] detect navigable area by estimating free
space inside each lane. The homoscedastic uncertainty estimation is used to achieve better
performances. In this paper, we propose an encoder and decoder-based multi-task learning
architecture for the comprehensive understanding of the driving environment through
shared representation.

3. Methods

In this section, the architecture of the proposed method is described. The overall
architectures of both the encoder and decoder are shown in Figures 2 and 3, respectively.
Our aim is to estimate drivable ares, lane lines and classify the scene. The network shares
an encoder to generate shared representation. The feature maps are divided into three
decoders for each task. The multi-task likelihood loss is simultaneously calculated for three
different tasks.

3.1. Encoder-Decoder Structure

Our model aims at a fast and accurate estimation of drivable areas with multi-task
learning approach. For this purpose, we designed an encoder and three decoders architec-
ture to extract rich features that contain all necessary information to perform the tasks of
drivable area segmentation, lane line segmentation, and scene classification from shared
computation. We conduct our network based on the MobileNetV3-Large networks [18]
with the lite reduced atrous spatial pyramid pooling (LR-ASPP) module to process input
frames. There are two main reasons that we build our network based on this architecture
as follows: (1) autonomous vehicles generally have better computational resources than
mobile phones, (2) it shows sufficiently fast speed and high accuracy.

In the backbone network, depthwise separable convolutions consists of two separate
layers: a light weight depthwise convolution for spatial filtering and a heavier 1 × 1 point-
wise convolution for feature generation. The depthwise separable convolution efficiently
factorizes traditional convolution by separating spatial filtering at feature generation
mechanisms. The removal of the both filtering layer and the projection of the bottleneck
layer enables fast computation. A linear bottleneck and inverted residual structure create
an efficient hierarchical structure. We employ the NetAdapt algorithm [23] to discover the
optimal number of filters per layer. A combination of these methods creates more efficient
building blocks. The global network structure is found by optimizing each network block
and platform-aware neural architecture search (NAS). The hard sigmoid is employed to
preserve the accuracy of the fixed-point arithmetic while replacing the inefficient operation.
The detail of a backbone network structure is shown in Table 1. SE denotes whether there is
a Squeeze-and-Excite [24] in that block. The LR-ASPP module enables efficient encoding for
the segmentation by deploying the global average pooling with a combination of squeeze
and excitation in a residual layer.

In Figure 2, two branches consist of a 1× 1 convolution and the global-average pooling
with a large stride and only 1 × 1 convolution. BN denotes a batch normalization. To
process three tasks in a single forward pass, the encoder generates feature maps f and f ′,
then the decoder predicts the results of the three tasks using shared representation for the
encoding efficiency. For the multi-task learning and further to obtain a faster inference
speed during the encoding process, the feature map f is extracted from the fifth layer,
and feature map f ′ comes from the layer just before the final convolution operation. The
atrous convolution is applied to the last block of the network to extract denser features, and
low-level features are captured to provide detailed information for the segmentation. Then,
two feature maps, f and f ′, are used to feed the three decoders. At the decoding stage,
the decoder assembles each feature map for each task. All decoders consist of following
configuration; (1) 1× 1 convolution to reduce channel size to the number of classes for each
task; (2) batch normalization; and (3) ReLU activation functions. In Figure 3, the feature
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map f is used for the multi-task inference, scene classification, drivable area estimation
and lane line segmentation task, and the feature map f ′ is used for drivable area estimation
and lane line segmentation, which are the tasks that require more detailed information for
semantic segmentation (or any dense pixel prediction). Both drivable area estimation task
and lane line segmentation task perform pixel wise classification. The encoder–decoder
network is trained using the sum of losses in three different tasks as described in the
following Multi-task learning Section.

Avg-Pool 1×1 conv Sigmoid Bilinear
Upsample

1×1 conv
BN

ReLU

Bilinear
Upsample

1/8 1/16

Backbone
Network F

128 128

128128

128

Figure 2. The architecture of encoder for the feature extraction. The light-weight segmentation head is delivered in LR-ASPP
module to mix features from multiple resolutions.

Scene
classification

Drivable area
estimation

Lane line
segmentation

Figure 3. Composition of three decoders for multi-task learning architecture. Each task is trained
simultaneously at the decoder using two feature maps having different resolutions. Multi-task
learning improves accuracy because losses from different tasks are used to regularize and improve
the generalization of another domain.
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Table 1. Model structure.

Input Operator Exp Size #out SE Stride

2242 × 3 conv2d - 16 - 2
1122 × 16 bneck, 3 × 3 16 16 - 1
1122 × 16 bneck, 3 × 3 64 24 - 2
562 × 24 bneck, 3 × 3 72 24 - 1
562 × 24 bneck, 5 × 5 72 40 X 2
282 × 40 bneck, 5 × 5 120 40 X 1
282 × 40 bneck, 5 × 5 120 40 X 1
282 × 40 bneck, 3 × 3 240 80 - 2
142 × 80 bneck, 3 × 3 200 80 - 1
142 × 80 bneck, 3 × 3 184 80 - 1
142 × 80 bneck, 3 × 3 184 80 - 1
142 × 80 bneck, 3 × 3 480 112 X 1

142 × 112 bneck, 3 × 3 672 112 X 1
142 × 112 bneck, 5 × 5 672 160 X 2
72 × 160 bneck, 5 × 5 960 160 X 1
72 × 160 bneck, 5 × 5 960 160 X 1
72 × 160 bneck, conv2d, 1 × 1 - 960 - 1
72 × 960 bneck, pool, 7 × 7 - - - 1
12 × 960 bneck, conv2d 1 × 1 NBN - 1280 - 1

12 × 1280 bneck, conv2d 1 × 1, NBN - k - 1

3.2. Multi-Task Learning

In the proposed architecture, three tasks are processed one image for training and
testing, simultaneously. One-encoder and three-decoder structure shares the computation
to generate generalized feature maps by learning multiple objectives. Thus, we trained our
model using multi-task loss to exploit a comprehensive understanding and computational
efficiency. However, because each task has different importance for and impact on the
overall performance, we observed a decrease in performance when we train the network
with the same weight for each task. To address this issue, we adopt multi-task likelihood
loss [5] to simultaneously learn various quantities with different units or scales in both
classification and segmentation. Equation (1) expressed the total loss function to train the
network, and it is the sum of three tasks.

Loss(d, l, s) =
1
3
(e−ηd Ld + ηd

+e−ηl Ll + ηl

+e−ηs Ls + ηs).

(1)

Ld and Ll are semantic segmentation loss functions, and Ls is the classification loss function.
The cross-entropy is used to obtain the scene classification loss, Ls. Ld is applied to the
drivable area estimation loss, and Ll is applied to the lane line segmentation loss. Simple
summation of the three losses with weight is used as the total loss function that helps to
learn the entire task reliably. The initial η value of each loss is set to zero.

4. Experiment and Result Analysis
4.1. Dataset

The proposed architecture was evaluated on the Berkeley deep drive dataset [4], which
is proposed for autonomous driving research, regarding rich annotation for drivable areas,
traffic objects, lane segments, image-level descriptive labels, and the road type for scene
classification. Furthermore, this large dataset covers the varying weather, scenes, and times
of the day compared to other datasets that have a relatively small number of samples
or tasks. This is important to understand the current autonomous driving environment



Appl. Sci. 2021, 11, 10713 7 of 11

of vehicles by distinguishing the area of the ego lane and other lanes or backgrounds.
There are three classes for the drivable area estimation task: (1) direct; (2) alternative;
and (3) background. The ability of the network to classify road types facilitates decisions
regarding whether to use the drivable area in different lanes. The other lanes include all
pixels that are part of the load, except the ego lane. The BDD dataset consists of 100 K
images with a resolution of 1280 × 720. We divided this dataset into three categories: 70 K
for the training set, 10 K for the validation set, and 20 K for the testing set, following official
standard in the training and testing process as done in the literature [2–4].

4.2. Implementation Details

In this experiment, we trained our system on the training split of the BDD dataset
from the scratch. For each image, we first performed image normalization using the
value µ = (0.485, 0.456, 0.406) and σ = (0.229, 0.224, 0.225). The model consists of 1.52 M
parameters. The input images were resized to 720 × 720 using a random crop technique.
We used AdamOptimzer with a learning rate of 0.1 × 10−3 and a minibatch size of 30. All
modules were implemented using the Pytorch framework [25]. We used an Intel(R) Xeon
Gold 6148 CPU and an NVIDIA GTX Titan Xp to run the experiment.

4.3. Experimental Results

For quantitative comparison with competing methods, we evaluated the performance
of the proposed system using two metrics: mean intersection over union (mIoU) for both
lane line segmentation and drivable area estimation, and accuracy (Acc.) for the scene
classification. The mIoU is defined as the mean of a single intersection over a union per class,
IoU = TP/(FP + TP + FN), where TP, FP, and FN denote true positive, f alse positive,
and f alse negative, respectively, for a single class. The accuracy was calculated using the
ratio of the correctly classified road to the total number of test images, (TP + TN)/(TP +
FP + TN + FN). We also measured the frame per second (fps), which denotes how many
frames can be processed in a second, to show the running time.

The performance comparison with that of the competing drivable area estimation,
lane line segmentation, and scene classification methods on the BDD dataset is listed
in Table 2. We compared our method with the winners of the Autonomous Driving
challenge for drivable area detection [26,27] and others [9,28]. We also compared the
lane line segmentation task with [13,14,29], which are single task approaches for lane line
detection or segmentation. The comparison with multi-task learning approaches [1–3] are
also provided in the table. Even though competing methods shows good results, most of
them are not suitable for real-time data processing, except VisLabs [2], SCNN [14], and
Asgarian [9]. In particular, IBN_PSA/P is based on IBN-Net [26], and both Mapillary
Research [27] and DiDi AI Labs [28] use a modified version of ResNet [16]. MultiNet [1]
is a well known multi-task learning approach that performed street classification, vehicle
detection and road segmentation on the KITTI dataset. DLT-Net [3] performed drivable area
estimation and traffic object detection, simultaneously. To the best of our knowledge, this
work is the first real-time multi-task learning approach consists of drivable area estimation,
lane line segmentation, and scene classification on the BDD dataset. Here, note that the
performances of competing methods were adapted from by [2,13], which might slightly
vary as the implementation details are only partially public.

As shown in Table 2, compared to competing multi-task learning approaches [1–3],
the proposed methods show improved performance in all three tasks. More accurate
drivable area estimation is achieved with a mIoU of 84.41%, and the accuracy of scene
classification reaches 78.4%, which is higher than that of the competing method. Compare
to other multi-task learning approaches, our approach significantly outperformed com-
peting methods in speed and accuracy. Specifically, the slowest version of our method,
which performs three tasks (drivable area estimation, lane line segmentation, and scene
classification) simultaneously executes at 93.81 fps. That is more than four times faster than
the VisLabs [2]. This is a remarkable advantage for practical applications that require a
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short time performance, such as in autonomous vehicles. Compared to the prevision single
task drivable area estimation methods [26,27], our method shows a slightly lower mIoU.
However, the competing method is not suitable for real-time application with 3.81 fps;
the proposed method exhibits more than 20 times faster inference time compared to the
competing methods while providing lane line segmentation and scene classification si-
multaneously. This implies that the proposed method has better computational efficiency,
which is also one of the advantages for mobility devices considering the limited resources.
We believe that it is competitive results considering that the multi-task approach can pro-
vide more rich information that can be utilized in other modules of autonomous driving
than a single-task approach.

Table 2. Quantitative evaluation on the BDD dataset. DAE, Lane, Scene, Multi, and Speed refers to
the drivable area estimation task, lane line segmentation task, scene classification task, multi-task
learning, and running time, respectively.

Method
DAE Lane Scene Multi Speed

mIoU(%) mIoU(%) Acc.(%) Yes/No fps

IBN_PSA/P [26] 86.18 - - no 3.81
Mapillary [27] 86.04 - - no 0.153
DiDiLabs [28] 84.01 - - no 3.35
Asgarian [9] 83.50 - - no 322
ENet-SAD [29] - 47.72 - no 12.1
SCNN [14] - 47.34 - no 123.6
ERFNet [13] - 51.77 - no 7.3
DLT-Net [3] 72.10 - - yes 9.30
MultiNet [1] 71.60 - - yes 8.6
VisLabs (DAE) [2] 83.35 - - yes 23.86
VisLabs (Scene) [2] - - 77.73 yes 27.58
VisLabs (DAE+Scene) [2] 82.62 - 76.53 yes 22.59

Ours (Lane + Scene) - 74.46 76.76 yes 96.34
Ours (DAE + Scene) 82.55 - 76.51 yes 106.38
Ours (DAE + Lane) 83.34 75.66 - yes 104.43
Ours (DAE + Lane + Scene) 84.56 78.57 78.4 yes 93.81

The results of the proposed drivable area estimation are depicted in Figure 4. The
drivable areas for both ego-lane and alternative drivable lanes are sufficiently well seg-
mented in a complex environment, for example, highway, city, night, curve, parking lot,
single lane. The light reflection can causes errors where light is insufficient at night, but
the drivable area is well preserved. The areas in the opposite lane are excluded from the
drivable area, and it was successfully differentiated from the opposite driving lane even on
a road with sparse lanes. Free space between the cars parked on the road was also well
detected. Figure 5 shows the lane line segmentation result. In this experiment, following
the ground truth of the BDD dataset, the crosswalk is considered as lane line. Some lane
lines are occluded by other objects on the road. However, the result shows that multiple
lanes lines are well estimated under various conditions even on a rainy day.
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Figure 4. Visualization of drivable area detection result. The red area corresponds to the ego-lane
and blue area indicates the alternative drivable area.

Figure 5. Visualization of lane line segmentation result.

5. Conclusions

In this study, we developed a fast and accurate unified end-to-end architecture that
can simultaneously estimate drivable area, segment lane lines and classify scenes in real-
time. Our simple encoder–decoder structure can learn the most important three tasks for
autonomous driving, simultaneously. The decoder successfully predicts the drivable area
with the ego-lane and alternative lanes. The experimental results demonstrate that our
approach achieves the fastest inference speed, surpassing that of all competing methods,
while maintaining competitive performances for the drivable area estimation in a very
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challenging BDD dataset. Furthermore, compared to the multi-task learning approaches,
the proposed method outperforms the competing method in both accuracy and speed. The
computational efficiency of the proposed architecture is notable, which is the most promis-
ing advantage for practical autonomous driving. However, performance improvement is
still required since the drivable area estimation is a safety-critical application. Avoiding
collision is an important function for the passenger’s safety. Thus, we expect that the
multi-task learning architecture detecting obstacles on the road will be our future research.
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