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Featured Application: 1. Estimate strength development of metakaolin composite concrete; 2. Es-
timate sustainability of blended concrete; 3. Material design of greener blended concrete.

Abstract: Metakaolin is reactive and is widely used in the modern concrete industry. This study
presents an integrated strength–sustainability evaluation framework, which we employed in the
context of metakaolin content in concrete. First, a composite hydration model was employed to
calculate reactivity of metakaolin and cement. Furthermore, a hydration-based linear equation
was designed to evaluate the compressive strength development of metakaolin composite concrete.
The coefficients of the strength evaluation model are constants for different mixtures and ages.
Second, the sustainability factors—CO2 emissions, resource consumption, and energy consumption—
were determined based on concrete mixtures. Moreover, the sustainability factors normalized
for unit strength were obtained based on the ratios of total CO2 emissions, energy consumption,
and resource consumption to concrete strength. The results of our analysis showed the following:
(1) As the metakaolin content increased, the normalized CO2 emissions and resource consumption
decreased, and the normalized energy first decreased and then slightly increased. (2) As the concrete
aged from 28 days to three months, the normalized CO2 emissions, resource consumption, and
energy consumption decreased. (3) As the water/binder ratio decreased, the normalized CO2

emissions, resource consumption, and energy consumption decreased. Summarily, the proposed
integrated strength–sustainability evaluation framework is useful for finding greener metakaolin
composite concrete.

Keywords: metakaolin; sustainability; strength; model; CO2; energy; resource

1. Introduction

Metakaolin mainly consists of SiO2 and Al2O3 and shows high reactivity. The ad-
dition of metakaolin can provide various benefits to concrete, such as increased late age
strength, enhanced chloride ingress and acid resistance, and lower shrinkage and green-
house gas emissions [1,2]. In recent years, metakaolin has increasingly been used for
concrete manufacturing.

Strength is one of the fundamental engineering properties of structural concrete.
The evaluation of strength development is meaningful for structural element design and
construction management. Many numerical models have been presented for evaluating
the strength of metakaolin composite concrete. Razak and Wong [3] proposed a strength
model that analyzes the efficiency of metakaolin using metakaolin replacement percentage,
water/binder ratio, and age. Using the concept of efficiency factor, Papadakis and Demis [4]
and Badogiannis et al. [5] proposed a software package that evaluates the strength class
and service life of blended concrete. In addition to the efficiency factor method, some
strength models have been proposed that use machine learning methods. Mustafa [6],
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Moradi et al. [7], Y. Sharifi and M. Hosseinpour [8] analyzed the strength of metakaolin
concrete by using artificial neural networks. Asteris et al. [9] analyzed the strength using
multivariate adaptive regression splines and an M5P model tree. Oluwatobi et al. [10]
analyzed strength development based on the method of gene expression programming.
Ayobami [11] evaluated the strength of self-compacting metakaolin composite concrete
using response surface analysis.

Sustainability is becoming more and more important for the modern concrete industry.
Many studies have evaluated the sustainability of concrete. Tae et al. [12] performed
lifecycle CO2 evaluations of different concretes and found that high strength concrete
can lower lifecycle energy consumption. Mena et al. [13] proposed a blended system
that can reduce CO2 emissions by 40% for structural light-weight aggregate concrete.
Possan et al. [14] proposed models to calculate the CO2 emissions and CO2 uptake of
composite concrete. Long et al. [15] calculated the CO2 emissions, energy consumption,
and resource consumption of self-compacting concrete with various mineral admixtures.
Gusano et al. [16] reported that material substitution and CO2 capture technology are useful
for making low-CO2-emission cement. Mane et al. [17] reported when 20% of cement was
replaced by pozzolanic materials, the number of cracks and width of cracks can be reduced.
Dawood et al. [18] made a cost analysis between ferrocement panels and conventional
reinforced concrete, and showed ferrocement panels can reduce the initial cost by about
27%. Konecny et al. [19] proposed an effective methodology of sustainable assessment of
concrete mixtures considering environmental impact, performance, service life, and cost.

Although various models have been used to evaluate strength and sustainability,
said models present some weakness. Regarding the strength evaluation models, machine
learning-based ones are black box techniques that do not consider the physical/chemical
processes of binder hydration and strength development. Moreover, the extrapolation abil-
ity of machine learning-based models is very weak. When the ranges of input parameters,
such as water/binder ratio, metakaolin/binder ratio, and age fall outside of the ranges of
the training data, a machine learning-based model cannot be used. In addition, although
the physical meaning of the efficiency factor method is much clearer than the workings of a
machine learning-based model, it is difficult to obtain an accurate equation for the efficiency
factor that accounts for various mixtures and curing ages. Lastly, previous models mainly
focused on single aims, such as a strength evaluation or evaluating CO2 emissions. A
dual-aim model which can evaluate both strength and CO2 emissions is necessary.

To conquer the weak points of previous numerical models, this research proposes
an integrated framework for evaluations of strength and sustainability. A linear equation
based on a composite hydration model is proposed to calculate the strength evolution
of metakaolin composite concrete. Moreover, the normalized CO2 emissions, resource
consumption, and energy consumption for unit strength were obtained. Methods for
greener metakaolin composite concrete were found.

The structures of this study are as follows: the current section is the introduction; the
second and third sections show evaluations of strength and sustainability, respectively; the
fourth section is the discussion, and the last section presents the conclusions.

2. The Strength Evaluation Model
2.1. A Hydration-Based Strength Model of Composite Concrete

The strength evolution of hardening concrete closely relates to binder hydration. As
binder hydration increases, the hydration products can fill the pore space and contribute
to the development of strength. Moreover, regarding the metakaolin composite concrete,
because cement and metakaolin reactions coincide, metakaolin composite concrete shows
a more complex hydration process than plain concrete without metakaolin [20].

In our previous studies [21–23], a composite hydration model was presented for
metakaolin composite concrete. Cement hydration and metakaolin reaction were simulated
separately. Moreover, the interactions between the reactions of metakaolin and cement
were considered using the contents of calcium hydroxide and the capillary water content.
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The hydration extent of Portland cement can be calculated as α =
∫ t

0

(
dα
dt

)
dt, where dα

dt
is the rate of Portland cement hydration, and the degree of reaction of metakaolin can
be calculated as αMK =

∫ t
0

(
dαMK

dt

)
dt, where dαMK

dt is the rate of metakaolin reaction. Our
previous studies [21–23] showed details of equations for the cement hydration rate and the
rate of metakaolin reaction.

Maekawa et al. [24] proposed that for plain concrete, strength can be expressed as a
linear equation of the degree of reaction of cement. Based on a similar idea, we assumed for
metakaolin composite concrete that the strength of concrete can be determined as a linear
equation of the hydration degree of Portland cement and the reaction extent of metakaolin
as follows:

fc(t) = A1 ∗
Cα

W
+ A2 ∗

MKαMK
W

− A3 (1)

where A1, A2, and A3 are strength coefficients; C, MK, and W are the masses of
Portland cement, metakaolin, and water in the concrete mix proportions, respectively.
The unit of strength coefficients A1, A2, and A3 is MPa. A1 ∗ Cα

W considers the effect of
cement hydration on strength. A2 ∗ MKαMK

W considers the effect of the metakaolin reaction
on strength, and A3 considers strength to start after a threshold age, not immediately at
time-point zero. This is like final setting (hardening of concrete starts after the time of final
setting). Moreover, because the composite hydration model considers the influences of
concrete mixtures and curing ages, the values of strength coefficients A1, A2, and A3 do
not change as concrete mixtures and curing ages vary.

2.2. Verification of the Strength Evaluation Model

The strength evaluation model was verified using experimental results from refer-
ences [25,26]. Poon et al. [25] measured the reaction extent of metakaolin in a cement–
metakaolin composite at 3, 7, 28, and 90 days of age. The water/binder ratio of composite
paste specimens was 0.30. The degree of reaction of metakaolin was measured using selec-
tive dissolution methods. Figure 1 shows the analysis results versus experimental results
of metakaolin’s degree of reaction. First, we can see that as the replacement percentage
of metakaolin increased from 10% to 20%, the degree of reaction of metakaolin decreased.
This is because of the reduction in the alkali activation impact of calcium hydroxide [27].
Second, at 90 days old, the degree of reaction of metakaolin was about 40–50%, which was
much lower than hydration degree of Portland cement. In other words, the pozzolanic
reaction of metakaolin is much slower than that of cement.
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Figure 1. Experimental versus predicted values for the degree of reaction of metakaolin.

Seddik et al. [26] performed extensive experimental studies on the strength of metakaolin
composite concrete. The mixtures of specimens are shown in the Table 1. In total, 24 mix-
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tures were used. The water/binder ratio of concrete specimens ranged from 0.45 to 0.65.
The metakaolin/binder ratios of concrete specimens ranged from 0 to 25%, the curing
temperature was 20 ◦C, and the ages during compressive strength measurements ranged
from 1 day to 365 days.

Table 1. Mixtures of specimens. Adapted with permission from ref. [26]. Copyright 2018 Elsevier.

Water/
Binder

Binder
(kg/m3)

Metakaolin
Percentage

(%)

Superplasticizer
(% of Binder)

Sand
(kg/m3)

5 to10 mm
Coarse

Aggregate
(kg/m3)

10 to 20 mm Coarse
Aggregate

(kg/m3)

Water
(kg/m3)

0.65 285

– 0.24

730 400 800 185

5 0.38
10 0.58
15 0.77
20 1.15
25 1.54

0.60 310

– 0.13

710 400 800 185

5 0.26
10 0.43
15 0.69
20 1.04
25 1.30

0.52 355

– 0.11

670 400 800 185

5 0.39
10 0.50
15 0.80
20 1.15
25 1.45

0.45 410

– 0.21

625 400 800 185

5 0.42
10 0.67
15 0.84
20 1.18
25 1.55

The input parameters of the hydration model are concrete mixtures and curing tem-
peratures. Based on the mixtures shown in Table 1, the degrees of reaction of cement
and metakaolin in cement–metakaolin binary composite concretes were determined. As
shown in Figure 2a, for the water/binder ratio 0.65 group, after the addition of metakaolin,
the improvement in the hydration extent of Portland cement was marginal. Compared
with the water/binder ratio 0.65 group, the hydration degree of Portland cement in the
water/binder ratio 0.45 group was slightly higher (shown in Figure 2b). This was because,
compared with the water/binder ratio 0.65 group, the dilution effect from the addition
of metakaolin for water/binder ratio 0.45 group was more obvious. Moreover, as the
water/binder ratio decreased from 0.65 to 0.45, the hydration extent of Portland cement
decreased. This was because of the shortage of capillary water for concrete specimens with
lower water/binder ratios.

Figure 3a,b show that, as the replacement ratio of metakaolin increases, the degree of
reaction of metakaolin greatly reduces. When the water/binder ratio changes from 0.65
to 0.45, the degree of reaction of metakaolin slightly reduces. Hence, compared with the
water/binder ratio, the impact of the replacement percentage on the degree of reaction of
metakaolin is more significant. Moreover, based on the comparison of Figures 2 and 3, we
can see the reactivity of Portland cement is much stronger than that of metakaolin.
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Figure 2. Hydration levels of Portland cement in cement–metakaolin blends. (a) hydration extent of Portland cement:
water/binder ratio 0.65. (b) hydration extent of Portland cement: water/binder ratio 0.45.
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Figure 3. Degrees of reaction of metakaolin in cement–metakaolin blends. (a) reaction extent of metakaolin: water/binder
ratio 0.65. (b) reaction extent of metakaolin: water/binder ratio 0.45.

Based on the results of concrete strength at various ages [26], the strength coefficients
A1, A2, and A3 of Equation (1) were calculated as 37.91, 116.71, and 6.48 MPa, respectively.
These strength coefficients do not vary for different mixtures and ages. The strength
coefficient of metakaolin A2 is much higher than that of cement A1. This may be because
metakaolin has higher SiO2 content than cement. Higher SiO2 content is helpful for the
formation of secondary calcium silicate hydrate, which is the essential hydration product
for concrete strength [28,29].

Figure 4a–d shows that at early ages, metakaolin composite concrete has less strength
than plain concrete. At early ages, more metakaolin means lower concrete strength. When
older, metakaolin composite concrete has greater strength than plain concrete because of
the pozzolanic reaction of metakaolin. In other words, the proposed strength development
model can reflect the crossover phenomenon of the strength between plain concrete and
metakaolin composite concrete [30]. Moreover, the strength development model also
found the strength development of concrete does not start immediately, but starts at a
threshold age. Before this threshold age, the strength is zero, and after this threshold age,
the strength is higher than zero. The threshold age is like final setting age. In concrete
terminology, final setting is the starting time for hardening. In addition, the strength
development model shows that as the water/binder ratio reduces, the strength of the
concrete increases. Given a certain water content, larger quantities of binder have two
effects. One is increasing the available binder for hydration, and the other is decreasing the
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extent of hydration. The overall results are the formation of more hydration products and
higher compressive strength. This agrees with Abram’s law. Figure 4e shows experimental
results versus analysis results. The root mean square error (RMSE) of the prediction was
3.72 MPa, the mean absolute percentage error (MAPE) of the prediction is 7.53, and the
coefficient of determination (R2) was 0.982. This high coefficient of determination shows
the accuracy of the proposed strength development model [31]. Summarily, the proposed
hydration–strength model can give reasonable evaluation results of strength for metakaolin
composite concrete with various mix combinations and various curing ages. Moreover,
because the strength evaluation equation is a linear equation with three coefficients, three
experimental data points of compressive strength are enough to calibrate the values of
strength coefficients A1, A2, and A3. Compared with the huge amounts of experimental
data used for machine learning-based methods, the number of experimental data required
for the hydration-based strength model is remarkably low.
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Figure 4. Evaluation of the strength of concrete. (a) water/binder ratio 0.65. (b) water/binder ratio 0.60. (c) water/binder
ratio 0.52. (d) water/binder ratio 0.45. (e) experiment versus prediction results.
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3. The Sustainability Evaluation Model and Methods for Achieving Sustainability
3.1. The Sustainability Evaluation Model

The sustainability of concrete depends on many indexes, such as CO2 emissions,
energy consumption, and resource consumption [32]. The CO2 emissions of concrete, TCO2 ,
can be determined as the sum of individual components [33–37] as follows:

TCO2 =
6

∑
i=1

miCO2i (2)

where i = 1,6 means concrete components, such as cement, metakaolin, sand, stone, super-
plasticizer, and water. mi means the mass of each component of concrete in the concrete
mixture (shown in the Table 1). CO2i denotes the CO2 emissions of 1 kg of each concrete
component (shown in the Table 2). Moreover, based on total CO2 emissions, the normalized
CO2 emissions, NCO2 for unit strength can be determined as follows:

NCO2 =
TCO2

fc(t)
(3)

Table 2. The CO2 emissions, energy consumption, and resource consumption of concrete components.
Adapted with permission from ref. [15]. Copyright 2015 Elsevier.

Items CO2 (kg/kg) Energy (MJ/kg) Resource (kg/kg)

Metakaolin 0.4 3.48 1.0
Cement 0.83 4.727 1.73

Sand 0.001 0.022 1.0
Coarse aggregate 0.007 0.113 1.0

Water 0.0003 0.006 0
Superplasticizer 0.72 18.3 0

In Equation (3), the unit of TCO2 is kg/m3, and the unit of NCO2 is kg/m3/MPa.
Moreover, based on similar methods, the normalized energy consumption for unit strength
can be calculated as the ratio of total energy consumption to concrete strength [38]. The
normalized resource consumption for unit strength can be calculated as the ratio of total
resource consumption to concrete strength. Moreover, because the strength is dependent
on age, the normalized CO2 emissions, normalized resource consumption, and normalized
energy consumption also depend on the curing age.

3.2. Methods for Achieving Sustainability

As shown in the Figure 5, the steps for the analysis of the sustainability of concrete
can be summarized as follows:

First, based on the composite hydration model, the strength of metakaolin composite
concrete can be determined using Equation (1). Second, based on concrete mixtures, the
total CO2 emissions, energy consumption, and resource consumption for 1 m3 of concrete
can be determined using Equation (2). Third, the sustainability factors—normalized CO2
emissions, normalized energy consumption, and normalized resource consumption—can
be determined using Equation (3). Finally, feasible methods for greener composite concrete
can be found based on the results of parameter studies.
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Figure 6 shows the results of sustainability for the water/binder ratio 0.65 group.
From 28 to 90 days, the strength of concrete increased (Figure 6a,b). Figure 6c,d shows
that as the replacement percentage of metakaolin increases, the normalized CO2 emissions
and resource consumption decreased. Moreover, as the design age changed from 28 to
90 days, the normalized CO2 emissions and resource consumption decreased. Figure 6e
shows the normalized energy consumption. When the replacement ratio of metakaolin
was less than 0.15, normalized energy consumption showed reductions as the content of
metakaolin increased. Once the replacement ratio of metakaolin was higher than 0.15,
normalized energy consumption showed slight increments as the content of metakaolin
increased. This is because the energy consumption of 1 kg of superplasticizer is far higher
than that of the rest of a concrete mixture. Moreover, as shown in the Table 1, as the
content of metakaolin increased, the content of superplasticizer significantly increased.
Figure 6f shows the effect of superplasticizer on normalized energy consumption. The
difference between accounting for and not accounting for the superplasticizer is more
obvious for mixtures with high metakaolin content, which contained amounts of high
superplasticizer. Moreover, if the contribution of the superplasticizer is ignored, we can
find a different trend; i.e., the normalized energy consumption continuously decreases as
the replacement percentage of metakaolin increases. Hence, it is important to consider the
energy consumption from the superplasticizer for a mixture with high metakaolin content.

Figure 7 shows the results of sustainability for the water/binder ratio 0.45 group.
Generally, the fundamental trends of the water/binder ratio 0.45 group are like those of
the water/binder ratio 0.65 group. As the replacement percentage of metakaolin increased,
the normalized CO2 emissions and normalized resource consumption decreased, and the
normalized energy consumption showed rapid reduction, followed by a slight increment.
Moreover, raising the design age from 28 to 90 days is effective at lowering suitability scores,
such as normalized CO2 emissions, energy consumption, and resource consumption.
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Figure 6. Sustainability analysis of the water/binder ratio 0.65 group. (a) strength on day 28 of water/binder ratio
0.65 group. (b) strength on day 90 of water/binder ratio 0.65 group. (c) normalized CO2 emissions of water/binder ratio
0.65 group. (d) normalized resource consumption of water/binder ratio 0.65 group. (e) normalized energy consumption of
water/binder ratio 0.65 group. (f) effect of superplasticizer on normalized energy consumption.

Figure 8 shows the influence of the water/binder ratio on sustainability. As the wa-
ter/binder ratio decreased from 0.65 to 0.45, the sustainability factors, such as normalized
CO2 emissions, energy consumption, and resource consumption, showed reductions. This
agrees with Tae et al.’s study [12].
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Figure 7. Sustainability analysis of the water/binder ratio 0.45 group. (a) strength on day 28 of water/binder ratio
0.45 group. (b) strength on day 90 of water/binder ratio 0.45 group. (c) normalized CO2 emissions of water/binder ratio
0.45 group. (d) normalized resource consumption of water/binder ratio 0.45 group. (e) normalized energy consumption of
water/binder ratio 0.45 group.
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Figure 8. The influences of the water/binder ratio on sustainability. (a) influence of water/binder ratio on normalized
CO2 emissions—28 days. (b) influence of water/binder ratio on normalized CO2 emissions—90 days. (c) influence of wa-
ter/binder ratio on normalized resource consumption—28 days. (d) influence of water/binder ratio on normalized resource
consumption—90 days. (e) influence of water/binder ratio on normalized energy consumption—28 days. (f) influence of
water/binder ratio on normalized energy consumption—90 days.

4. Discussion

Compared with previous strength and sustainability evaluation models, the frame-
work proposed in this study shows some benefits:

First, the strength models in the previous studies mainly can be divided into two
types, i.e., efficiency factor-based models and machine learning-based models. Regarding
efficiency factor-based models, because the degree of reaction of metakaolin varies among
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concrete mixtures and ages [39], it is not easy to find an appropriate efficiency of metakaolin
for different mixtures and ages [40]. Regarding machine learning-based models, because
lots of parameters are used in the regression equations, it is difficult to obtain the clear
physical meaning of these many parameters [41,42]. Contrastingly, the proposed strength
model is a linear equation that takes three types of values, i.e., cement hydration, metakaolin
degree of reaction, and threshold age. Compared with machine learning-based models, the
number of parameters in our strength model is far smaller, and each item of our strength
model has a clear physical meaning. Unlike efficiency factor-based models, the parameters
of our strength model do not change for various mixtures and ages. It is easy for other
researchers to use the proposed strength model.

Second, regarding sustainability evaluations, previous studies mainly focused on
CO2 emissions; studies about resource consumption and energy consumption are less
common [43,44]. Therefore, compared with previous studies, the proposed sustainabil-
ity evaluation model covers more aspects—not only CO2 emissions, but also resource
consumption and energy consumption. Moreover, the integrated strength–sustainability
procedure is convenient. After inputting concrete mix proportions and curing conditions,
the results of sustainability items can be automatically calculated.

Third, in future research, the following items should be studied: (1) the cost analysis
of reinforced concrete structures, which considers material cost, labor cost, and indirect
cost [18]; (2) the service life analysis in the operation stage, such as cracks and shrinkage,
corrosion of steel rebar, and freezing and thawing [17]; (3) sustainable design method with
various indicators, such as concrete performance, durability, and total cost. Moreover,
the global optimal design of reinforced concrete structures with multiple aims should
be performed [21,22].

5. Conclusions

This study presented an integrated strength–sustainability evaluation framework to
produce greener metakaolin composite concrete. The framework consists of a strength
model and a sustainability model. The input parameters are concrete mix proportions and
curing temperature; and the outputs are strength, normalized CO2 emissions, resource
consumption, and energy consumption.

First, based on a hydration model, the reaction extents of metakaolin and cement are
determined. Moreover, a linear equation is proposed for evaluation of concrete strength
development. Using the strength model, the strength development at various ages is
determined. The coefficients of the strength model do not vary for different mix combina-
tions and ages. The strength development model reflects the strength crossover between
composite concrete and plain concrete, and accounts for the fact that strength starts after a
threshold age, not immediately. The hydration strength model has a simple format and
high evaluation accuracy.

Second, the calculation results of the strength model are used as input parameters
for sustainability evaluation models. Based on the results of the sustainability analysis,
some methods for achieving greener concrete were found: extending the design ages and
lowering the water/binder ratios are effective ways to reduce normalized CO2 emissions,
resource consumption, and energy consumption. Increasing the replacement ratio of
metakaolin can lower the normalized CO2 emissions and resource consumption.

Third, when the replacement ratio of metakaolin was less than 0.15, normalized
energy consumption showed reductions as the content of metakaolin increased. When the
replacement ratio of metakaolin was higher than 0.15, normalized energy consumption
showed slight increments as the content of metakaolin increased. This is because the energy
consumption of 1 kg of superplasticizer is far higher than that of the rest of a concrete
mixture. It is important to consider the energy consumption of the superplasticizer for a
mixture with high metakaolin content.

In summary, it is helpful to use the proposed integrated strength–sustainability evalu-
ation framework in the production of greener metakaolin composite concrete.
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