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Abstract: As an important method for seismic data processing, reverse time migration (RTM) has
high precision but involves high-intensity calculations. The calculation an RTM surface offset (shot–
receiver distance) domain gathers provides intermediary data for an iterative calculation of migration
and its velocity building. How to generate such data efficiently is of great significance to the industrial
application of RTM. We propose a method for the calculation of surface offset gathers (SOGs) based
on attribute migration, wherein, using migration calculations performed twice, the attribute profile
of the surface offsets can be obtained, thus the image results can be sorted into offset gathers. Aiming
at the problem of high-intensity computations required for RTM, we put forth a multi-graphic
processing unit (GPU) calculative strategy, i.e., by distributing image computational domains to
different GPUs for computation and by using the method of multi-stream calculations to conceal data
transmission between GPUs. Ultimately, the computing original efficiency was higher relative to a
single GPU, and more GPUs were used linearly. The test with a model showed that the attributive
migration methods can correctly output SOGs, while the GPU parallel computation can effectively
improve the computing efficiency. Therefore, it is of practical importance for this method to be
expanded and applied in industries.

Keywords: reverse time migration (RTM); surface offset gathers (SOGs); parallel computation;
graphic processing unit (GPU)

1. Introduction

As an important branch of geophysics, seismic exploration uses seismic waves excited
on the Earth’s surface from seismic sources, such as explosions, and receives seismic
waves reflected on the Earth’s surface from underground to image underground structures.
It is widely applied in the exploration of oil, gas, minerals, and the probing of urban
underground structures [1].

As an important step in seismic data processing, migration image processing obtains
image profiles of underground structures by using acquired seismic data, which are then
used to explain geological structures. The imaging methods of exploratory seismic data
include the Kirchhoff method, the one-way wave equation method, and reverse time
migration (RTM) [2,3], of which RTM currently enjoys the highest precision.

In RTM calculations, although the velocity model of underground structures is one
of the vital factors influencing imaging precision, a pre-estimated initial velocity model
is often used to migrate, then the initial velocity model is updated with the imaging
results, thus generating an iterative process in the calculation of migration and velocity
models due to the precise velocity of underground models being unknown to us. For
such iterations, an intermediary data volume is needed, which we refer to as surface offset
gathers (SOGs) [4,5].

Currently, RTM-based SOGs are a research hotspot. Among these, the shot-domain
RTM, the simplest method to output SOGs, divides receiver data into a few parts by

Appl. Sci. 2021, 11, 10687. https://doi.org/10.3390/app112210687 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9033-7154
https://doi.org/10.3390/app112210687
https://doi.org/10.3390/app112210687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210687
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210687?type=check_update&version=2


Appl. Sci. 2021, 11, 10687 2 of 13

offsetting and then migrating them, respectively, and uses the mean offset to identify
different results so as to generate SOGs. In this method, it is necessary to perform a
migration calculation on data from every shot, so the calculation intensity is too large for
it to be implemented on industry scale [6]. The improved algorithm by Zhao et al. only
calculates a minority of sections of different offsets, and then supplements the necessary
data in offset gathers through interpolation [7]. Another method to output SOGs is the
wave equation method, called wave-equation Kirchhoff migration, which is named as such
because the Born equation it uses is similar to the Kirchhoff integration equation. The
difference between them is that in the calculation, the wave equation, rather than ray tracing,
is used in the Green’s function for propagation between shots and receivers [8,9]. The
attribute migration maps the geometrical and physical attributes in seismic data, such as
travel time, angles of reflection and incidence, and shot–receiver distance, to the migration
results through migration calculations performed twice, and extracts attributes from the
ratios of the results from imaging performed twice. This was proposed by Bleistein [10] and
applied in the calculation of three-dimensional (3D) stereotomography [11]. Giboli et al.
and Lemaistre et al. discussed the possibility of applying the method to output the
attributes of the shot–receiver distances [12,13]. In this study, based on attributive migration,
we investigated how to apply this method to the calculation of RTM SOGs.

The seismic migration calculation enjoys high computational intensity, and both
industry and academia have carried out much research on the acceleration of seismic
imaging. Owing to their multiple kernels and bandwidth, as well as advantages of low
power consumption and small occupied space, graphic processing units (GPUs) have been
introduced in general computations [14]. The application of NVIDIA GPUs in seismic
image processing has significantly improved computing efficiency, for instance, in time
migration and RTM and waveform inversion. [15–17], especially RTM, because it has the
highest calculation accuracy in the seismic migration but is also the most time-consuming.
Therefore, when GPUs appeared, it was used to accelerate RTM computation [18] by
includingthe useof random boundary instead of storing wavefields to save GPU global
memory [19], as well as some GPU computing strategies for the calculation of specific
form of RTM tilted transversely isotropic TTI RTM and Q-RTM [20,21]. Each type of
RTM attempts to take full advantage of the GPU’s characteristics of adapting to high-
density computing, the algorithm of RTM is also being changed to adapt to the GPU
architecture [22].

Since a single GPU is small in memory and is unfit for the calculation of RTM SOGs
that require large memory space, multiple GPUs allow the expansion of the processor
memory so as to effectively solve this problem [23].

Based on the typical characteristics of multi-GPU programming and high memory
demand of RTM SOGs, we propose a strategy to accelerate the calculation of RTM SOGs
with multi-GPUs, the typical feature beings that this strategy can conceal the time required
for data transmission between GPUs, thus achieving an increase in computing efficiency in
linear proportion to the increase in the number of GPUs.

This paper first describes the attribute migration-based strategy for the calculation of
SOGs and elucidates this process using a two-dimensional (2D) model. Then, based on the
process flow of the image calculation, we propose a multi-GPU calculation strategy, for
which we used a 3D salt model to test the efficiency and imaging effect.

2. Methodology
2.1. Theory of Shot-Domain Migration Aided by Attribute Migration to Output SOGs

The equation using the Born equation to express the prestack shot-domain depth
migration is:

I(x, s) =
x

G(x, t|s, 0)G(x,−t|r, 0) ∗
..
d(r, t|s, 0)drdt (1)

where x is the location of an imaging point; s is the location of the shot; r is the location of
the receiver; I(x, s) is the imaging result of the shot s at the point x; G(x, t|s, 0) is Green’s
function for forward propagation of shot-point data; G(x, −t|r, 0) is Green’s function for
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backward propagation of receiver data;
..
d(r, t|s, 0) is the second derivative at the shot s

and the receiver r versus time [24].
With a migration calculation performed twice, the quantitative parameters weighted

on the data can be estimated, which is described as the following process:

Iw(x, s) =
x

G(x, t|s, 0)G(x,−t|r, 0) ∗ (
..
d(r, t|s, 0)·w(x|s, r))drdt, (2)

where w(x|s, r) are the weighting parameters associated with the locations of the shot and
the receiver at the imaging point, acting directly on the pre-migration data, which may be
the angles of incidence and reflection and the coordinates of the shot and the receiver. The
weighting parameter can be estimated with the ratio of the results from the two migrations
using Equations (1) and (2).

w(x|s, r) ≈ Iw(x, s)
I(x, s)

. (3)

If the weighting coefficient w(x|s, r) is the offset attribute, the value of the offset at the
location of the imaging point can be calculated, thus outputting the SOGs.

Equations (1) to (3) are simplified to the cross-correlation imaging conditions of RTM
and are specifically expressed as:

I(x, s)=
∫

u(x, s, t)
∫

v(x, s, r, t)drdt, (4)

where u(x, s, t) is the shot wavefield at the time t; v(x, s, r, t) is the receiver wavefield at s
at the time t.

Multiplying the shot–receiver distance h = s − r and the shot-domain receiver data
and then migrating the product results in:

Ih(x, s)=
∫

u(x, s, t)
∫

hv(x, s, r, t)drdt. (5)

Using the ratio between Equations (4) and (5), the shot–receiver distance obtained
from a single shot at the imaging point x is:

hA(x, s) =
Ih(x, s)
I(x, s)

. (6)

According to the obtained values of the offset at various points in the imaging domain,
imaging results are placed from every shot to the proper SOG. The final SOGs can be
obtained by calculating the records at all shots successively and then iterating by

I(x, h) =
∫

I(x, s)δ(h− hA(x, s))ds, (7)

where δ is the pulse function.
As for 3D data, Equations (4)–(6) can be used to calculate the horizontal and vertical

offset, respectively, and then obtain the total value of the offset.
According to Equation (5), the result from the weighted data migration of horizontal

shot–receiver distances is

Ihx(x, s) =
∫

u(x, s, t)
∫
(rx − sx)v(x, s, r, t)drdt, (8)

Similarly, the result from the weighted data migration of vertical shot–receiver dis-
tances is

Ihy(x, s) =
∫

u(x, s, ω)
∫ (

ry − sy
)
v(x, s, r, ω)drdt, (9)
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The values of the shot–receiver distances in two directions from Equation (6) are,
respectively,

hAx(x, s) =
Ihx(x, s)
I(x, s)

,hAy(x, s) =
Ihy(x, s)
I(x, s)

. (10)

Based on the obtained attributes of the offset in two directions, the calculation is
repeated for every shot to obtain the final imaging results, which are

I(x, h) =
∫

I(x, s)δ
(

h−
√

h2
Ax + h2

Ay

)
ds. (11)

2.2. RTM SOG Test Using the 2D Marmousi Model

The aforesaid calculative process can be validated using the 2D Marmousi model. First,
modulation calculation is performed to all of the 240 single-shot records by multiplying
each trace data by the shot to receiver distance, the single-shot records before and after
modulation, as shown in Figure 1. Second, RTM is performed on the original shot data and
modulated shot data, leading to two migrated data of each shot being obtained. Third, the
offset values can be calculated with two migrated results with Equation (6), the original
shot data migrated data can be sorted to an offset gather by these values. Finally, every
singleshot is summed up to the offset gather andobtain the final SOGs.
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Figure 1. (a) The original single-shot records from the Marmousi model and (b) the results from the
modulation of offsets.

The original data and modulated data are migrated using the same imaging parame-
ters, respectively (e.g., Figure 1a,b) and solve the ratio of the results (Figure 2a,b) from the
two migrations to obtain the value of the offset at the imaging point.The imaging result is
sortedby the calculated values of the surface offsets (Figure 2c) into SOGs, and the records
of all the shot gathers are calculated and inserted following the aforesaid processes to
obtain the SOGs of the imaging results.
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In the calculation of SOGs, for gathers, the minimum offset was set at 200 m, the
maximum offset was set at 2600 m, and the step of the offset was 100 m. Figure 3 shows
two SOGs obtained from a calculation at common middle point CMP 150 and CMP 350,
respectively. RTM SOGs were mainly used to update the velocity model in the offset
calculations, and the events in gathers were horizontal, indicating that the velocity model
used in the migration was accurate. Where the velocity was low, the event features warped
upward, and where it was high, the event tilted downward. Figure 4 shows the SOGs
calculated after the values of the velocity model value were adjusted up and down by 5%,
respectively, from which we can see the changes of the gathers; when the velocity is higher
than the correct velocity, the events in the gathers will bend down, and when the velocity
is lower than the correct velocity, the events will bend up, which also demonstrates that
the gathers calculated with RTM can be used for velocity updates. Some methods, such as
tomography or residual velocity analysis, will convert the event curvature to the velocity,
and acquire the updated velocity model.
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2.3. Process Flow for RTM-Based Calculation to Output SOGs

The RTM calculation is high in intensity, requiring parallel computing. With the devel-
opment of computer technology, especially the emergence of GPUs, the RTM calculation
can be improved significantly by accelerating the RTM finite difference with multiple
kernels, substantially raising the computing efficiency of RTM, thus promoting its calcula-
tive application in industries. In the RTM calculation using a GPU, to break through the
bandwidth bottleneck between the central processing unit (CPU) and the GPU, random
boundary processing conditions [19] are used to calculate the wavefield propagation of
shots twice to exchange computation for storage, which saves time consumed for data
transmission. The RTM calculation process on the GPU is as follows: the shot wavefield is
forward-propagated to the boundary where it is randomized and reversed; the receiver
wavefield is propagated backward; both are imaged at the same time; the shot-by-shot
migration is completed to obtain the entire imaging profile.
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The shot-domain RTM migration outputs the zero shot–receiver distance profile,
namely, the stacked profile, and in this study, the strategy of attribute migration was used
to output SOGs from the RTM calculation. According to the aforesaid theory on attribute
migration, it was necessary to calculate the values of offset at imaging points using the
ratio of the results from the migration of the modulated and original shot data, thus sorting
to obtain the migrated SOGs. Compared with the stacked profile RTM calculation process,
the two kinds of migration results are the same, except for the input receiver data, and
other imaging elements are the same. Therefore, only the RTM calculation process needs
to be modified in order to be used in a calculation to output the offset gathers; thus, the
calculation process is now as follows: the shot wavefield is forward-propagated to the
boundary where it is randomized and then backward-propagated; the wavefields of both
the receivers and the modulated receivers are backward-propagated, respectively; one shot
wavefield and two receiver wavefields are coherently imaged at the same time, outputting
results from two kinds of single-shot migration; the ratio of the two wavefields is used
to obtain the offset attribute, thus sorting to generate SOGs. The above calculation and
sorting are completed shot by shot and obtain the final results of the imaged SOGs.

Figure 5 shows the process for the RTM-based calculation to output SOGs. Obviously,
if the imaging part of the modulated wavefields is removed, it is a common RTM. Since the
forward and reverse propagations of the shot wavefield are unchanged, only the modulated
wavefield is added to the forward propagation of the receivers, so the total calculation is
only increased by about one-third. In the next section, we will introduce how to improve
these wave propagation kernels on GPUs.
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2.4. Calculation of RTM SOGs with Multi-GPUs

In the RTM calculation, the kernel of the wavefield propagation is a finite-difference
calculation. Among them, the best GPU calculation strategy for spatial difference has been
achieved in previous studies with a single GPU [25]; it can achieve nearly 100% occupancy,
defined as the ratio of active warps on an SM to the maximum number of active warps
supported by the SM. However, with an increasing demand on computation, the memory
of a single GPU cannot meet the requirements for larger storage space. A GPU enables two
solutions: (1) it provides a unified memory space in which a memory pool is built using
larger CPU memory, thereby enabling data in the memory pool to be read by the CPU
and GPU simultaneouslysolving the demand for large memory, but reading the memory
slowly; (2) it introduces a multi-GPU calculation, which achieves the common calculation
by dividing the computational domain into different sub-cells, placing them in different
GPUs within the same network for calculation, and exchanging data in the overlapped
domain when necessary. We used two GPUs as an example and focused on expounding the
second solution. In the calculation, the wavefield space to be calculated was divided into
two mutually overlapped subspaces, in the z direction, and they were calculated on two
GPUs, respectively. For the single GPUs in the multi-GPU calculation, the finite-difference
calculation was still based on the conventional methods, and the only distinction was that
after the finite difference of each time step was completed, data exchange in the overlapping
area was needed.

The difference calculation space was divided in two GPUs as shown in Figure 6, in
which Figure 6a shows the entire computational space, and Figure 6b shows the compu-
tational space partitioned into two equal subspaces. However, based on the order in the
finite-difference calculation, an overlapped domain was needed for data exchange and
updating, as the green part shows in Figure 6b. Figure 6c is a slice along the z direction, in
which the red is the computational domain, and the green is the overlapped domain for
data exchange.
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In terms of memory management methods, for multi-GPU computations, the com-
putational process can be illustrated as shown in Figure 7. The entire imaging space
was divided into two independent parts in the z direction, which were calculated with
GPU0 and GPU1, respectively. Some of the overlapped domain was used to exchange
boundary data at different times of propagation, and the radius was determined by the
finite-difference order. For each GPU computation, we focused on the management and
calculation of data in the overlapped domain, which involved data transmission between
two GPUs. To realize the overlap of calculation and data transmission, it was necessary to
adopt different methods when dividing the computational domain. For example, for GPU1
computations, the computational domain partitioned to it was further divided into three
parts, of which, d_wf11 and d_wf21 were calculated in different job streams, respectively,
and after d_wf20 was computed, it was directly exchanged to the corresponding domain
of GPU1 through point-to-point transmission, and GPU1 was calculated using the same
process as for GPU0. Here, the magnitude of d_wf20 and d_wf11 was by the order of
spatial finite difference and was much smaller than that of d_wf10 and d_wf20. If the
computation and transmission of a small domain on a single GPU are placed in the same
stream, when the computation is not completed in the larger domain, the computation and
transmission are completed in the small area, so the transmission of data between different
GPUs is completely concealed.
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Based on the above analysis, in the RTM calculation of offset gathers, we used two
GPUs to establish job streams to achieve the overlap of all calculations and transmissions
between GPU0 and GPU1, and realized the calculation of wavefields of shots and receivers
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in GPUs at the same time.Each GPU contained seven independent job streams, and the
content of the computation included the propagation of shots and receivers and the P2P
transmission between two GPUs. Both GPUs had the same types of jobs, but they computed
on different parts of the imaging space; the entire process is shown in Figure 8.
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Figure 9 shows the shot wave-filed propagation slice processing on two GPUs based
on the process shown in Figure 8. GPU0 calculated the upper half of the shot propagation,
while GPU1 calculated the lower half, and stream 0 calculated the small zone 0-0 of the
imaging space and copied the data in the overlapped domain to zone 1-1 of GPU1, while
stream1 calculated the main part of the shot propagation. Stream 7 of GPU1 calculated the
small zone 1-0 in the lower half and copied it to zone 0-1 of GPU0, while stream 8 calculated
the main part of the lower half. The composition for the calculation of the propagation of
the two receivers was consistent with that of the shot propagation.
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2.5. Testing of Calculation with 3D Salt Model and Analysis of Efficiency of
Multi-GPUs Computation

The 3D salt model is a model usually used in calculation tests.The velocity model grid
size was 901 (subline) × 901 (crossline) × 250 (depth), at the intervals of 15 × 15 × 10 m3,
respectively.For the forward calculation, a total of 3134 shots were collected, with the
interval between shots was 120 m. There were 16,081 traces for each shot, and the interval
between receivers was 30 m. The record of a single trace was 8m long, and the sampling
interval was 4 ms. The RTM image calculation was in the shot domain, the imaging
aperture was changed to test the efficiency of migration, and the imaging space grid for a
single shot was changed from 96 × 96 × 250 to 450 × 450 × 250.

The hardware used to run the KPSDM is GPU/CPU clusters that consists of 3.40 GHz
Intel (R) Xeon (R) E3-1231 v3 CPUs, which had 16 GB of DDR3 memory, andNVIDIA Tesla
K40 GPUs; the architecture is Kepler, and the global memory was 12 GB; in total, it had
2880 cores.

Figure 10 shows a comparison between the computational efficiency of the CPU and
the GPU, and the propagation steps of both were constantly 16,000. Figure 10a shows
a comparison between the computing time of a single CPU and GPU, while Figure 10b
shows a comparison between the computing time of a single GPU and dual GPUs. It was
observed from this that the GPU had significantly higher computing efficiency than the
CPU, and the dual GPU had about two-times higher computing efficiency than that of
a single GPU, indicating that the application of a stream completely conceals the data
transfer between GPUs.
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Figure 10. Comparison between the computing efficiency of (a) a single CPU and a single GPU;
(b) comparison between computing time of a single GPU and dual GPU.

When the GPU number are more than two, the image space can be evenly distributed
to each GPU nodes, and the source and receiver fields can be calculated parallelly, but
because there is chaos between each two GPU, it may need some time for data transfer;
the time for data transfer is less than the main space finite difference computation.Thus, in
this paper, we have used steams andP2P feature of GPU to conceal this time. Figure 11 is a
computation time comparison when the imaging space is 384 × 384 × 384; we can see that
when more GPUs are used, the speedup can be nearly linear.

Figure 12 shows a slice (d) of the migration results of the original single-shot record (a)
in a 3D salt model, and the data (b,c) modulated with the two offset directions, respectively,
as well as the results (e, f) from their migration. Figure 13 shows a profile and some SOGs of
it from the image calculation with the 3D salt model. It was found that in the 3D calculation,
because the velocity model used in the migration was the correct velocity, the events in the
SOGs were flat, which is the ideal status. If the velocity is lower or higher than the correct
velocity model, the events will bend up or down, and it will affect the image quality of the
seismic profile, that can be achieved by summing up all of the gathers in the same SOGs.
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Figure 12. Part of single-shot records, modulated results, and imaged depth slices in the calculation
of 3D SOGs: (a) part of the original single-shot records; (b) part of the single-shot records modulated
with transverse offset; (c) part of the single-shot records modulated with horizontal offset; (d) depth
slice of the results from the migration of original single shots; (e) depth slice of the results from the
migration of Figure 12b; (f) depth slice of the results from the migration of Figure 12c.
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3. Conclusions

We have described an RTM method for the calculation of SOGs based on attribute
migration. This method has been shown to be simple in terms of computation and has high
efficiency compared with current methods. Based on the computing intensity demands
required by the RTM calculation itself, we designed a strategy to accelerate the calculation
using multiple GPUs and GPU features, such as stream and P2P data transmission between
GPUs, to calculate the image space by dividing it into different blocks, while concealing the
data transmission process between GPUs so that the efficiency improvement of multi-GPU
computing was linearly related to the number of GPUs. Additionally, the calculation using
multiple GPUs also solves the problems that occur when the image space is too large and
the memory of a single GPU is insufficient. The 2D Marmousi model and the 3D salt model
were applied to demonstrate the correctness and efficiency of the method in the calculation
used to output SOGs. In this paper, we did not introduce the usage of the SOGs, but it can
be used to update the velocity model, such as the Kirchhoff-based SOG using methods such
as tomography or residual velocity analysis. Furthermore, for the GPU implement of RTM
SOG calculation, we compared the efficiency with our CPU version, which may be not the
best solution. We will continue this work on new GPU hardware and new CUDA features.
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