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Abstract: This paper aims to numerically validate the aerodynamic performance and benefits of
variable camber rate morphing wings, by comparing them to conventional ones with plain flaps,
when deflection angles vary, assessing their D reduction or L/D improvement. Many morphing-
related research works mainly focus on the design of morphing mechanisms using smart materials,
and innovative mechanism designs through materials and structure advancements. However, the
foundational work that establishes the motivation of morphing technology development has been
overlooked in most research works. All things considered, this paper starts with the verification of the
numerical model used for the aerodynamic performance analysis and then conducts the aerodynamic
performance analysis of (1) variable camber rate in morphing wings and (2) variable deflection
angles in conventional wings. Finally, we find matching pairs for a direct comparison to validate
the effectiveness of morphing wings. As a result, we validate that variable camber morphing wings,
equivalent to conventional wings with varying flap deflection angles, are improved by at least 1.7%
in their L/D ratio, and up to 18.7% in their angle of attack, with α = 8◦ at a 3% camber morphing
rate. Overall, in the entire range of α, which conceptualizes aircrafts mission planning for operation,
camber morphing wings are superior in D, L/D, and their improvement rate over conventional ones.
By providing the improvement rates in L/D, this paper numerically evaluates and validates the
efficiency of camber morphing aircraft, the most important aspect of aircraft operation, as well as the
agility and manoeuvrability, compared to conventional wing aircraft.

Keywords: camber morphing; flaps; airfoil configurations; low Reynolds number; aerodynamic
performance; lift-to-drag ratio; lift; drag; comparative analysis

1. Introduction

The term morphing is from “metamorphosis” and means a change of the form, or
nature of a thing, or a person, into a completely different one by natural or supernatural
means [1]. In the aerospace and aviation industry, morphing technologies have been
adopted to aim for enhanced flight performance by adjusting the aircraft’s structure,
particularly wing shapes, to optimize flight states and conditions by matching with the
corresponding flight mode. If the concept of morphing in wings is broadly defined,
control surfaces in conventional aircrafts could also be included; however, morphing wings
typically refer to active, continuous, and more substantial changes in the wing structures
from its initial design stage. Whereas conventional wing aircrafts manoeuvre and change
their flight dynamics by changing the deflection angles of various control surfaces such
as flaps, aileron, elevator, rudder, and so on, as well as the wing area by expanding chord
lengths, the concept of morphing wing aircraft relies on irregular changes of wing structures
including changes in airfoil thickness, camber, span lengths, sweep angles, span bend, and
twist as depicted in Figure 1 [2].
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A major and well-acclaimed aerodynamic benefit of a morphing structure is from its 
potential to create unusual and substantial shape changes that could satisfy various flight 
conditions, which a conventional aircraft could not generate. On the basis of these changes 
one can expect to implement, design, and test morphing wings and equip aircrafts to op-
timize their flight condition, which could also imply that the morphing aircraft could fly 
longer, consume less fuel, be more energy effective, and more agile than the same weight 
conventional ones. One of the important aerodynamic parameters linked to fuel consump-
tion or energy saving could be D, the drag forces exerted on the aircraft during flight, so 
a reduction in D should preserve fuel. The aforementioned morphing wings can poten-
tially initiate a larger envelope in flight performance that enables extra residual flight 
modes of better or smaller D by continuously altering wing shapes. 

The different types of morphing along with the geometric parameter that is modified 
to create the morphing are shown in Figure 1, and amongst them, this paper explores 
camber change or camber rate morphing. The camber rate of an airfoil (denoted by the 
first digit in the four-digit NACA airfoil series) describes the convexity of an airfoil be-
tween its leading and trailing edges. Continuously changing the camber has benefits in 
terms of L distribution, improved manoeuvrability, improved L/D, expanded flight enve-
lope, and tactical capabilities [1]. A conventional wing with deflecting control surfaces 
and a morphing wing with varying camber is shown in Figure 2. 
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Figure 2. A conventional wing with control surfaces [3] (a) and a camber morphing wing (b). Control Surfaces: (1) winglet, 
(2) low-speed aileron, (3) high-speed aileron, (4) flap track fairing, (5) Kruger flaps, (6) slats, (7) three-slotted inner flaps, 
(8) three-slotted outer flaps, (9) spoilers, (10) spoilers-air brakes. 

Most of the morphing wing research works focus on either the design and implemen-
tation of morphing concepts using selected materials and structures [4–11], or the analysis 

Figure 1. Categories of morphing types in fixed-wing aircraft.

A major and well-acclaimed aerodynamic benefit of a morphing structure is from
its potential to create unusual and substantial shape changes that could satisfy various
flight conditions, which a conventional aircraft could not generate. On the basis of these
changes one can expect to implement, design, and test morphing wings and equip aircrafts
to optimize their flight condition, which could also imply that the morphing aircraft could
fly longer, consume less fuel, be more energy effective, and more agile than the same
weight conventional ones. One of the important aerodynamic parameters linked to fuel
consumption or energy saving could be D, the drag forces exerted on the aircraft during
flight, so a reduction in D should preserve fuel. The aforementioned morphing wings can
potentially initiate a larger envelope in flight performance that enables extra residual flight
modes of better or smaller D by continuously altering wing shapes.

The different types of morphing along with the geometric parameter that is modified
to create the morphing are shown in Figure 1, and amongst them, this paper explores
camber change or camber rate morphing. The camber rate of an airfoil (denoted by the first
digit in the four-digit NACA airfoil series) describes the convexity of an airfoil between
its leading and trailing edges. Continuously changing the camber has benefits in terms
of L distribution, improved manoeuvrability, improved L/D, expanded flight envelope,
and tactical capabilities [1]. A conventional wing with deflecting control surfaces and a
morphing wing with varying camber is shown in Figure 2.
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Figure 2. A conventional wing with control surfaces [3] (a) and a camber morphing wing (b). Control Surfaces: (1) winglet,
(2) low-speed aileron, (3) high-speed aileron, (4) flap track fairing, (5) Kruger flaps, (6) slats, (7) three-slotted inner flaps,
(8) three-slotted outer flaps, (9) spoilers, (10) spoilers-air brakes.

Most of the morphing wing research works focus on either the design and imple-
mentation of morphing concepts using selected materials and structures [4–11], or the
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analysis of the structural and aerodynamic performance of suggested morphing concepts
and their mechanisms [12–15]. Researchers have developed camber morphing mechanisms
using smart materials [16–18], corrugated structures [19], multi-unit rib structures [20],
vertically slitted rib structures [21], truss elements and runners [22], pressure-actuated
cellular structures [23,24], bio-inspired FishBAC structures [25], monolithic compliant
mechanisms [26], or combined form [27] to introduce and validate their effectively working
models and design implementation. Some morphing wing design implementations were
even validated with an effectively flown test model [27–31]. Probably one of the most
similar works done by [32] took the CFD study of morphing wings and compared them
with an analytical solution to validate the effectiveness of the suggested numerical models
and approaches. It is noted that over the last decades, significant and meaningful papers
and projects have been written and performed from various different aspects [33–37].
However, the ultimate aerodynamic benefits of using morphing wings (in terms of its
aerodynamic efficiency, L/D, compared to different configurations of conventional wings
with control surfaces deflected to different angles)—probably one of the most important
aspects and foundational milestones for designing and analysing morphing wings—has
not been addressed or quantitatively validated so far in the literature.

2. Problem Statement

Research works on the computational performance of morphing technology mainly
focus on the aerodynamic analysis of targeted configurations of certain morphing styles
and their mechanisms [38,39] only, or additionally, on the morphing concept’s degree of
deformation and power consumption [40,41]. The main objective of this work is to clarify
the actual and quantitative benefits of morphing wings regarding their D reduction by
comparison of various camber morphing rates with different configuration of conventional
wings generated for various flap deflection angles.

It is important to understand and validate the benefits of morphing wings, and the
methodology authors use in this paper is through a numerical approach employing a
high-fidelity CFD software ANSYS Fluent. Through a rigorous analysis, the aerodynamic
forces are computed over a range of α for both the morphed and deflected configurations by
varying the maximum camber rate for the morphing cases and varying the flap deflection
angle for the deflecting cases. The computational methodology is presented in Section 2,
along with the validation study, details about the ANSYS Fluent setup, grid generation,
and the geometries of the airfoil configurations. The computed results are discussed in
Section 3, where the authors verify any improvement of L/D in morphed configurations,
for configurations matched in L between morphing and conventional wing pairs. The L
profiles are matched to establish the same conditions for comparison while α is varied and
D analysed and compared. Lastly, the conclusions are given in Section 4. It is of interest to
evaluate the actual benefits of camber morphing wings in terms of their L/D improvement,
indicative of enhanced sustainability for more practical aspects of real-world applications,
and mission planning along an assigned trajectory.

3. Methodology
3.1. Computational Method and Verification

The fluid flow around the 2D airfoils was simulated using CFD software ANSYS
Fluent to predict the aerodynamic forces: L and D. The adopted numerical technique is a
finite volume discretization method, with a pressure-based solver to solve the Reynolds-
averaged version of these equations, coupled with a one-equation Spalart–Allmaras (S-A)
turbulence model [42] to compute the Reynolds stresses in the Reynolds-averaged Navier–
Stokes (RANS) equations. The calculations depend on computing the S-A working variable,
which obeys the following transport equation:
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A C-type unstructured mesh was used in the fluid domain, with a C segment radius
of 7.5 m and a rectangular block measuring 16.5 m by 15 m. These dimensions were set
based on the length recommended for simulating the flow around an airfoil of chord length
1 m [43]. Then, 25 inflation layers were generated around the airfoil, with a growth rate of
1.1 to resolve the viscous sublayer in the near-wall region and the first layer thickness, y,
computed from the given equation [44]:

y =
y+µ

ρ
√

1
2 Cfv2

(2)

where:
Cf = 0.058 Re−0.2 (3)

The values for the ρ and v used in the equation correspond to the Re the flow was
being simulated for, and the first layer thickness calculated to maintain y+ values of less
than 1 at the wall. It was confirmed that the y+ values at the airfoil boundary in all our
setups were in a range of 1 to less than 1, as shown in Figure 3, which also shows the
computational domain, and the grid from one of our setups.
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airfoil Wall Yplus (y+).

A mesh independence study was conducted as well. A Richardson extrapolation
has been adopted to calculate the grid convergence index, and it was confirmed that an
index of less than 3% was obtained for the various grids tested. Computational time also
plays a role in deciding the mesh element size. The grid comprising 7,060,448 elements
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(element size: 0.01 m) was the most refined mesh tested, but as shown in Figure 4, varying
the element size and thus the number of cells, shows only minor changes in the values
of CD obtained from the simulations. Therefore, the element size was adjusted to 0.05 m
for the rest of the study, which would generate around 350,000 elements for the geometric
configurations tested.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20 
 

a role in deciding the mesh element size. The grid comprising 7,060,448 elements (element 
size: 0.01 m) was the most refined mesh tested, but as shown in Figure 4, varying the 
element size and thus the number of cells, shows only minor changes in the values of C஽ 
obtained from the simulations. Therefore, the element size was adjusted to 0.05 m for the 
rest of the study, which would generate around 350,000 elements for the geometric con-
figurations tested. 

 
Figure 4. Mesh independence study (NACA 0012 airfoil, Re = 6 million, α = 0°). 

The values for the flow properties such as the freestream velocity and the fluid den-
sity, and parameters of viscosity such as μ, input in the setup, were set to correspond to 
the Re the flow was being simulated for. A Re of 76,630 was chosen for this study since we 
compare the performance of a camber morphing and a conventional airfoil with a plain 
flap, at actual flight conditions, of a small UAV or MAV. A velocity-based inlet and a 
pressure-based outlet were used as the boundary conditions with a no-slip condition im-
posed on the airfoil surface. In the solution methods, a coupled scheme was found to be 
more accurate and compatible with our unstructured mesh, and a convergence criterion 
of 10−6 was set for all computed residuals. 

In the ANSYS Fluent setup, we set the α as a parameter and compute the corre-
sponding L and D values. With each setup being a parametric study of the respective 
morphing or conventional airfoil cases, over a range of α from 0° to 15°, the L and D 
would need to be computed with respect to the α the flow was being simulated for. How-
ever, ANSYS Fluent does not have the option to set the L and D’s direction vector as a 
parameter so the normal x and y components, FX and FY, were generated using ANSYS 
Fluent and those values were transformed using a rotation matrix to compute the L and 
D. The L, D in the matrix corresponds to the α, and the equations used are stated below:  

ቂ  ܮ
ቃ ܦ  = ቂ    cos α sin α 

 −sin α cos α ቃ ൤Fଡ଼ 
 Fଢ଼ ൨ (4)

To verify the reliability, the flow was simulated around a NACA 0012 airfoil at 6 
million Re and the ܥ௅  and ܥ஽ were computed and compared with the validation case 
provided by NASA’s Langley Research Center [45,46] as shown in in Figure 5. Two dif-
ferent turbulence models, (1) Spalart–Allmaras (S-A) and (2) k-omega with SST (k–ω) were 
tested. Although both can be seen to be in good agreement with the validation cases, the 
S-A turbulence model was selected for the aerodynamic simulations as it has good accu-
racy, comes at a relatively low computational cost, and is recommended for low-Re flow 
simulations [43]. 

Figure 4. Mesh independence study (NACA 0012 airfoil, Re = 6 million, α = 0◦).

The values for the flow properties such as the freestream velocity and the fluid density,
and parameters of viscosity such as µ, input in the setup, were set to correspond to the
Re the flow was being simulated for. A Re of 76,630 was chosen for this study since we
compare the performance of a camber morphing and a conventional airfoil with a plain flap,
at actual flight conditions, of a small UAV or MAV. A velocity-based inlet and a pressure-
based outlet were used as the boundary conditions with a no-slip condition imposed on the
airfoil surface. In the solution methods, a coupled scheme was found to be more accurate
and compatible with our unstructured mesh, and a convergence criterion of 10−6 was set
for all computed residuals.

In the ANSYS Fluent setup, we set the α as a parameter and compute the corresponding
L and D values. With each setup being a parametric study of the respective morphing or
conventional airfoil cases, over a range of α from 0◦ to 15◦, the L and D would need to be
computed with respect to the α the flow was being simulated for. However, ANSYS Fluent
does not have the option to set the L and D’s direction vector as a parameter so the normal
x and y components, FX and FY, were generated using ANSYS Fluent and those values
were transformed using a rotation matrix to compute the L and D. The L, D in the matrix
corresponds to the α, and the equations used are stated below:[

L
D

]
=

[
cos α sin α
−sin α cos α

][
FX
FY

]
(4)

To verify the reliability, the flow was simulated around a NACA 0012 airfoil at 6 million
Re and the CL and CD were computed and compared with the validation case provided by
NASA’s Langley Research Center [45,46] as shown in in Figure 5. Two different turbulence
models, (1) Spalart–Allmaras (S-A) and (2) k-omega with SST (k–ω) were tested. Although
both can be seen to be in good agreement with the validation cases, the S-A turbulence
model was selected for the aerodynamic simulations as it has good accuracy, comes at a
relatively low computational cost, and is recommended for low-Re flow simulations [43].
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3.2. Airfoil Geometry Configuartion

The airfoil geometry imported into the Design Modeler was designed using the CAD
design software Fusion 360, based on the airfoil coordinates generated using a NACA 4-
digit airfoil calculator [47]. Figure 6 shows the geometry of a morphing and a conventional
airfoil with the indicated baseline (dotted line). For the morphing airfoil cases, the position
of maximum camber was fixed at 40% from the leading edge and the first digit of the
4-digit NACA airfoil series varied (the first digit, i.e., the X in NACA X412, denotes the
maximum camber rate). For the conventional airfoil case, the flap joint was placed at
70% of the chord length of the NACA 0012 airfoil and the angle rotated clockwise at the
joint for the flap deflection angle. The maximum camber rate was varied from 0% to
9% with increment of 1% to generate the morphing airfoil configurations and the flap
deflection angle varied in increments of 0.25◦ from 0◦ to 21.5◦ to generate deflecting airfoil
configurations. These geometries were then exported in step format to be used in ANSYS
Fluent for the numerical analysis.
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Figure 6. A schematic diagram of (a) a conventional airfoil with a deflecting flap (purple) and (b) a morphing airfoil
(yellow).

4. Results

CFD simulations were run and the CL and CD computed for various morphed and
deflected airfoil configurations, over a range of α from 0◦ to 15◦. The plots of the CL of
different morphed cases are presented in Figure 7 and the deflected cases in Figure 8. For
clarity, only those configurations that match the L profiles of morphing configurations or
contribute to the overlapping regions were included in the conventional airfoil L plots in
Figures 8 and 10.
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From Figures 7 and 8, it is noted that morphing airfoils stall starting at a higher
α than the conventional, deflecting airfoils. Typically, the stall region for airfoils in the
50,000–100,000 Re regions is between 10◦ to 14◦ [48] and our results confirm that. The
approximated stall angles extrapolated from the plots or identified based on the readings
are presented in Table 1.
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Table 1. Summary of the matching cases.

Matching
Cases

Morphing Airfoils Conventional Airfoils
Overlapping

RegionMaximum Camber
Rate (%)

Stall
Angle (◦)

Flap Deflection
Angle (◦)

Stall
Angle (◦)

Baseline NACA 0012—0% 11◦ 0◦ 11◦ All angles
Case 1 NACA 1412—1% 11.8◦ 1.5◦ 11◦ 10 angles
Case 2 NACA 2412—2% 12.6◦ 3◦ 10.6◦ 9 angles
Case 3 NACA 3412—3% 13◦ 4.5◦ 10◦ 7 angles
Case 4 NACA 4412—4% 13◦ 6.25◦ 9◦ 5 angles
Case 5 NACA 5412—5% 13◦ 7.75◦ 9◦ 4 angles
Case 6 NACA 6412—6% 13◦ 9.5◦ 9◦ 3 angles
Case 7 NACA 7412—7% 12◦ 11.75◦ 9◦ 2 angles
Case 8 NACA 8412—8% 12◦ 18.5◦ 8◦ 8 angles
Case 9 NACA 9412—9% 11◦ 21.5◦ 8◦ 9 angles

For the camber morphing, the value of α at maximum L increases as the camber rate
increases until it reaches a peak at α = 13◦ between camber rate of 3% and 6%. However, at
7% and greater (7–9%) rates, the angle starts to decrease, and the maximum CL is obtained
at α < 13◦. This trend of a decreasing stall angle as the camber rate increases is to be
expected since as the camber of the airfoil increases, the geometric change creates a suction
peak on the upper surface near the leading edge that leads to an easier onset of boundary
layer separation. NACA 6412 airfoil stalls at around 13◦ but a 9% cambered airfoil—NACA
9412—stalls at around 11◦. Pressure contours of 6% and 9% morphed airfoils at their
respective stall angles are shown in Figure 9 and the contours for both configurations are
very similar, which is consistent with the trend and the lift values of Figure 7, where the
amount of lift generated by these configurations is around a similar range.
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On the other hand, the conventional airfoils stall early. The stall angle corresponding
to maximum CL shifts to a lower value as the deflection angle increases. The highest
value of stall angle obtained (α = 11◦) is for the airfoil configuration deflected 1.5◦, which
is the same α for which the baseline airfoil stalls. Whereas all of the morphed airfoil
configurations stall at α ≥ 11◦, none of the conventional airfoils stall at α > 11◦. This implies
that camber morphing wings would improve the manoeuvrability, agility, and stability
of the aircraft. In fact, camber morphing wings flight-tested on a drone demonstrated
the achievement of superior manoeuvrability by generating higher roll rates exclusively
through morphing [27,31].

Amongst all cases, the greatest L is generated by NACA 9412 (9% camber rate) at
α = 11◦, which is only slightly greater than the L generated by the NACA 8412 airfoil for
the same α. Due to decreasing stall angles as the camber rate increases, the comparative
enhancement in L with increasing camber rate starts to overlap and curb, starting at 6%
camber rate at α = 13◦. Overall, all configurations of morphed airfoils generate a greater
CL than the unmorphed baseline airfoils; morphing the camber by even 1% generates
more L. Similarly, for the conventional airfoils, configurations deflected to a higher flap
angle generate a greater maximum CL value. There is a substantial leap in the maximum
CL value for two of the configurations shown in Figure 8, but this is due to the sharper
increase of the deflection angle between the two configurations—from 11.75◦ to 18.5◦. In
an effort to match the increasing CL values generated by the morphing airfoils at α = 0◦

by uniformly morphing the camber rate, the conventional airfoils need to deflect more to
generate approximately similar CL values.

For a comparative analysis of morphing and conventional airfoils, Figures 7 and 8 are
plotted together and set forth in Figure 10. It is observed that the L profiles of morphed air-
foils overlap with the L profiles generated by deflecting the flap angles of the conventional
airfoils. Those configurations where the L profile of a morphing airfoil closely matches
with the L profile of a conventional airfoil, or presents an approximately similar trend, was
set as the basis of comparison. This region over which the L profiles match is called the
“overlapping region”. These regions extend over a maximum of 10 angles (observed in
the 1% camber-morphed and 1.5◦ flap-deflected case) to a minimum of 2 angles (observed
in the 7% camber-morphed and 11.5◦ flap-deflected case). More information about the
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matching cases, overlapping region, and corresponding morphing and conventional airfoil
configurations is stated in Table 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 
Figure 10. Overlapping lift plots of various morphing and deflecting airfoil configurations. (Re = 76,630). 

We were able to obtain matching cases for all morphing geometries considered. 
Morphing the camber rate by 1% generates the same amount of L as deflecting the flap 
angle by 1.5°. Similarly, morphing by 2% matches with flap deflection angle of 3°, and 
likewise all morphed configurations were matched with a configuration of conventional 
airfoil deflected to a certain flap angle. It is interesting to note that the overlapping region 
decreases for cases 1 to 7 but expands for case 8 and case 9 as depicted in Table 1. 

Cases 1–9 were carefully identified after matching the L profiles of a camber-mor-
phed airfoil configuration with a conventional airfoil deflected to a certain flap angle and 
results of the analysis of their aerodynamic parameters ܥ௅, ܥ஽ , and L/D, along with their 
geometric configurations are presented in Figure 11, where each column corresponds to 
one of the nine matching lift cases. From Figure 11A–C, the camber rate and the plain flap 
deflection angles are increasing (as shown in the geometric configurations in the first row) 
and the maximum ܥ௅ and ܥ஽ values also increase across each row.  

Figure 10. Overlapping lift plots of various morphing and deflecting airfoil configurations. (Re = 76,630).

We were able to obtain matching cases for all morphing geometries considered. Mor-
phing the camber rate by 1% generates the same amount of L as deflecting the flap angle
by 1.5◦. Similarly, morphing by 2% matches with flap deflection angle of 3◦, and likewise
all morphed configurations were matched with a configuration of conventional airfoil de-
flected to a certain flap angle. It is interesting to note that the overlapping region decreases
for cases 1 to 7 but expands for case 8 and case 9 as depicted in Table 1.

Cases 1–9 were carefully identified after matching the L profiles of a camber-morphed
airfoil configuration with a conventional airfoil deflected to a certain flap angle and results
of the analysis of their aerodynamic parameters CL, CD, and L/D, along with their geomet-
ric configurations are presented in Figure 11, where each column corresponds to one of the
nine matching lift cases. From Figure 11A–C, the camber rate and the plain flap deflection
angles are increasing (as shown in the geometric configurations in the first row) and the
maximum CL and CD values also increase across each row.

In all nine cases, the camber-morphed configurations generate lesser D than deflected
angles in conventional airfoils. Cases 1, 2, 3, 8, and 9 present with the greatest overlapping
regions but since conventional airfoils do not normally deflect to such high angles such as
18◦ or 21◦, data from the first three cases are presented in Table 2 to validate the benefits
of camber morphing. The L/D ratio was used as the comparison parameter because the
aerodynamic efficiency of the aircraft is measured by its maximum L/D value. The ratio is
also seen in calculations regarding the fuel efficiency and endurance of the aircraft [22] and
is often set as the maximization factor in optimization studies.
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Figure 11. (A–C) Down each column, comparison of (a) CL, (b) CD, and (c) L/D of morphing (yellow) and conventional
airfoils (purple).
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Table 2. L/D of the matching cases and the percentage improvement in the L/D due to morphing.

α L/D Percentage
Improvement L/D Percentage

Improvement L/D Percentage
Improvement

NACA
1412 1.5◦ Case 1 NACA

2412 3◦ Case 2 NACA
3412 4.5◦ Case 3

0 5.1 5.0 3.4% 10.0 9.8 1.8% 14.7 14.4 1.7%
1 10.7 10.5 2.2% 15.3 15.0 2.1% 19.7 19.2 2.8%
2 15.9 15.6 1.7% 20.2 19.7 2.5% 24.0 23.3 3.2%
3 20.5 20.1 1.7% 24.3 23.6 2.9% 27.9 26.6 4.9%
4 24.3 23.8 2.2% 27.8 26.9 3.5% 31.0 29.0 7.0%
5 27.4 26.7 2.8% 30.6 29.1 5.1% 33.3 30.5 9.4%
6 29.8 28.7 3.8% 32.6 30.4 7.3% 34.9 31.2 11.8%
7 31.3 29.8 5.1% 33.7 30.8 9.2% 35.5 30.9 14.9%
8 31.7 29.8 6.5% 33.8 30.2 11.8% 35.2 29.6 18.7%

In the overlapping region, on average, at least a 1.7% improvement in the L/D ratio
can be expected for all cases. Outside the overlapping region, where the L generated
is not approximately the same for both cases, cambered configurations generate more L
and less D, thus improving the L/D ratio significantly. In addition, the morphing airfoils
stall at a higher α than the corresponding conventional airfoil which also improves the
L/D tremendously. Though the percentage improvement for α outside of the overlapping
regions could have been ignored, it was included in Figure 12A,B for considering actual
implementation and flight of morphing aircraft with given angles.

As shown in Figure 12A, NACA 7412 or a 7% camber-morphed airfoil shows a higher
L/D improvement rate. However, it is noted from Table 2 that the NACA 7412 airfoil has
the smallest overlapping region, so the improvement rate correlates to the fact that its
corresponding conventional airfoil configuration generated lesser L and more D (as shown
in Figure 11). The L/D improvement rate increases gradually as the camber rate increases
in Figure 12B, and the greatest improvement can be expected when morphing with 7%, 8%
or 9% camber rates. Consequently, the high values for the improvement rate in Figure 12
highlights the benefits of morphing. It is also implacable and meaningful to compare the D
generated by different morphed and deflected configurations to visualize the reduction in
drag due to morphing. Figures 13–15 show the CD plots that were cut off at the stall angle
for better visualization. As seen in Figure 15, it is noteworthy that morphing the camber
until the highest rate of 9%, still generates a lesser D than deflecting the flap 11.75◦ (which
is the deflected configuration from case 7 that matches the L of the profile of the NACA
7412 airfoil).
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An investigation of the behaviour of morphing wings at a low Reynolds number
such as 76,630 is not a common practice, but small UAVs or MAVs—for which morphing
wings are designed for—fly in flight conditions around this range so it is worthwhile to
investigate the benefits of morphing in this flight condition. In the comparative analysis
conducted between morphed and deflected airfoils, all morphed configurations output a
better L/D ratio than the deflected configuration for every matching lift case studied.
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5. Conclusions

This paper validates and highlights the aerodynamic benefits of a variable camber
morphing wing using a computational method. A comparative numerical analysis has been
conducted between 2D airfoils with a varying camber rate and a varying flap deflection
angle—representing morphing wing and conventional wing scenarios. Particularly, the
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authors emphasize that reducing D, while maintaining other aerodynamic parameters such
as L, is directly related to L/D, the sustainability of aircraft operation and mission planning,
and other parameters such as a higher stall angle improve the manoeuvrability and agility.
Whereas all morphed configurations stall at an α higher than the stall angle of the baseline
configuration, none of the conventional airfoils (with any flap angle) generate a stall
angle higher than that of the baseline configuration—implying that morphing the camber
instead of employing a plain flap to change the shape of the baseline airfoil for improved
manoeuvrability is advantageous. Furthermore, it has been found and validated that
variable camber wings equivalent to conventional aircraft wings with varying deflection
angles are improved in their L/D ratio in all nine cases considered, and up to 18.7% in
case 3 at α = 8◦ with a 3% camber morphing rate. Overall, variable camber rate morphing
wing, as one of the breakthrough technologies for next generation aircraft design, has been
known for its innovative concept but not been fully validated for actual flight performance
and mission planning. This paper established foundational works and addressed important
aspects of the aerodynamic benefits of morphing compared to conventional wings in their
L, D, and L/D improvement.
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Nomenclature

L Lift force
D Drag force
α Angle of attack
CL Lift coefficient
CD Drag coefficient
y First layer thickness
Re Reynolds number
Cf Skin-friction coefficient
µ Dynamic viscosity
ρ Air density
v Air velocity
∼
v Spalart–Allmaras working variable

Abbreviations

CFD Computational fluid dynamics
CAD Computer-aided design
L/D Lift-to-drag ratio
RANS Reynolds-averaged Navier–Stokes
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S-A Spalart–Allmaras
UAV Unmanned aerial vehicle
MAV Micro air vehicle
NACA National Advisory Committee for Aeronautics
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