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Abstract: A plasmonic refractive index nanosensor structure consisting of a metal-insulator-metal
(MIM) waveguide with two symmetrical rectangle baffles coupled with a connected-concentric-
double rings resonator (CCDRR) is presented. In this study, its transmission characteristics were
investigated using the finite element method (FEM). The consequences, studied via simulation,
revealed that the transmission spectrum of the system presents a sharp asymmetric Fano profile
due to the destructive interference between the wide-band mode of two rectangle baffles on the bus
waveguide and the narrow-band mode of the CCDRR. The effects of the geometric parameters of
the structure on the transmission characteristics were investigated comprehensively. A sensitivity of
2260 nm/RIU and figure of merit (FOM) of 56.5 were the best levels of performance that the designed
structure could achieve. In addition, the system could act as a sensor for use for temperature sensing,
with a sensitivity that could reach 1.48 nm/◦C. The designed structure advances with technology
with new detection positions and has good application prospects in other high-sensitivity nanosensor
fields, for example, acting as a biosensor to detect the hemoglobin level in the blood.

Keywords: plasmonic refractive-index nanosensor; Fano resonance; metal-insulator-metal waveg-
uide; temperature sensor

1. Introduction

Surface plasmon polaritons (SPPs) is a phenomenon whereby a metal surface charges
when interacting with a light wave electromagnetic field; they oscillate collectively, so
that the electromagnetic field is limited to a small range and is enhanced [1]. SPPs cannot
only break through the diffraction limit of light, but is also highly sensitive to metal
types, the dielectric environment, nano-shape, and size [2]. Hence, photonic devices
designed based on SPPs cannot only realize the integration of the sub-wavelength size [3–5],
but also provide the possibility of studying micro-nanophotonic devices with complex
functions. It is worth mentioning that many optical phenomena have been observed
in the plasmon waveguide coupling system, such as phase-coupled plasmon-induced
transparency [6] and Fano resonance [7–9]. Fano resonance generally comes from the
destructive interference between the wide-band mode (bright mode) and the narrow-band
mode (dark mode) in plasmon resonance, which has a small radiation loss, a narrow full
width at half maximum (FWHM), and an asymmetric spectral line shape [10,11]. Therefore,
it has great application potential in refractive index sensors [12,13], slow light devices [14],
and optical switches [15].

Appl. Sci. 2021, 11, 10629. https://doi.org/10.3390/app112210629 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8600-4218
https://orcid.org/0000-0002-7588-3616
https://doi.org/10.3390/app112210629
https://doi.org/10.3390/app112210629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210629
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210629?type=check_update&version=1


Appl. Sci. 2021, 11, 10629 2 of 12

Nowadays, many waveguide coupling structures based on SPPs have been designed
to fabricate various photonic devices, including metal−insulator−metal (MIM) waveg-
uides [16], insulator−metal−insulator waveguides [17], channel waveguides [18,19], and
nanoparticle chain waveguides [20]. Among them, MIM waveguides are widely considered
and reported by scholars and the media at home and abroad because of their sub-wavelength
size, simple structure, easy integration, and high reliability [16,21]. Yang et al. [22] designed
a coupling structure with a double-gap ring cavity and MIM waveguides with two trian-
gular baffles with a sensitivity of 1500 nm/RIU and figure of merit (FOM) of 65.2. Tang
et al. [23] proposed and studied a plasmonic structure that includes a ring nanocavity,
two bus waveguides, and a rectangular nanocavity, with a sensitivity of 1125 nm/RIU. Su
et al. [24] devised a plasmonic sensor coupled with an elliptical ring cavity and a MIM
waveguide with two rectangle baffles; its sensitivity is 1550 nm/RIU and FOM is 43.05.
As shown in Table 1, although the difference of FOM is not obvious, the sensitivity of the
designed structure is obviously better than that of other structures. In addition, various
photonic devices based on MIM waveguide structure design, such as optical splitters [25,26],
filters [27,28], and Bragg reflectors [29,30], have achieved remarkable results.

Table 1. Performance comparison of various plasmonic sensors.

Reference Sensitivity (nm/RIU) FOM

This work 2260 56.5
Yang et al. [22] 1500 65.2
Tang et al. [23] 1125 75

Su et al. [24] 1550 43.05

Herein, a plasmonic structure consisting of a MIM waveguide with two symmetrical
rectangle baffles coupled with a connected concentric double rings resonator (CCDRR)
is presented and investigated. The transmission characteristics and the normalized mag-
netic field distribution were calculated, introducing the finite element method (FEM). In
addition to the influence of the refractive-index of the dielectric on the transmission char-
acteristics of Fano resonance, the influence of the geometric parameters of the structure
was also studied. These parameters include the external radii of the outer ring and inner
ring of the CCDRR, the separation between the two symmetrical rectangular baffles, the
heights of the two rectangular baffles, and the coupling gap between the CCDRR and
the bus waveguide. Additionally, applications of the designed structure in refractive-
index sensing and temperature sensing were studied in detail. The designed structure
provides new detection positions, which may be helpful for meeting special requirements
for detection wavelengths.

2. Structural Model and Analysis Methods

A schematic diagram of the presented MIM bus waveguide coupled with two rectan-
gular baffles and a CCDRR is displayed in Figure 1. The width w of the MIM waveguide,
two rectangular baffles, and two annulus cavities remained invariable at 50 nm to ensure
that the waveguide only supports the transverse magnetic field (TM0) mode. g represents
the coupling gap between the bus waveguide and the CCDRR. The heights of the two
rectangle baffles and the separation between them are signified as h and H, respectively. R1
and r1, R2 and r2 express the external and internal radii of the outer ring and inner ring,
respectively. d is defined as the width of the baffles connecting two rings in the concentric
ring, which is fixed at 40 nm.
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Figure 1. Two-dimensional schematic diagram of a metal−insulator−metal (MIM) waveguide with
twin symmetrical rectangle baffles coupled with a connected concentric double rings resonator (CCDRR).

The white part and green part in Figure 1 represent air and sliver, respectively. The
relative permittivity εd of air is 1. Based on the Debye−Drude dispersion model [31], the
description of the relative dielectric constant of Ag is as follows:

ε(ω)= ε∞ +
εS − ε∞

1 + iωτ
+

σ

iωε0
(1)

where ε∞ = 3.8344 is the boundless frequency dielectric constant and εs= −9530.5 is the
static dielectric constant. The relaxation time and the conductivity of Ag are regarded as
τ =7.35 × 10−15 s and σ =1.1486 × 107 S/m, respectively.

The formula of the TM0 mode of the MIM waveguide is as follows [32]:

tanh(kω)= − 2kpαc
k2+p2α2

c
(2)

where k = 2π/λ expresses the wave vector in the waveguide, and in free-space, k is taken

as k0= 2π/λ0; αc =
√

k2
0(ε in − εm) + k2 and p = εin/εm; among them, εin and εm are the

permittivity of the insulator and metal, respectively.
By analyzing the shifts of the Fano resonance wavelength, the sensing performance of

the proposed structure in the waveguide coupled system was investigated. The transmis-
sion wavelengths and the effective refractive index’s real part in the MIM waveguide can
be expressed on the foundation of the standing wave theory as follows [33,34]:

λm =
2Re
(

neff

)
L

m − Ψr
π

(m = 1, 2, . . .) (3)

Re
(

neff

)
=

√
εm +

(
k
k0

)2
(4)

where L indicates the circumference of the ring cavity; ψr signifies the phase shift caused by
the reflection of SPPs at the metal−insulator boundary surface; and m is a positive integral
number, i.e., the number of antinodes of SPPs.

The characteristics of the sensor can be evaluated by two important parameters,
namely, sensitivity (S) and FOM, which are expressed by the following equation [35]:

S =
∆λ

∆n
(5)
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FOM =
S

FWHM
(6)

where ∆λ and ∆n are the variation of resonant wavelength and refractive index, respectively.
In the next part of the paper, a simulation was run using COMSOL Multiphysics 5.4a.

With the comparability of the operating principle of the two-dimensional (2D) mode and
three-dimensional (3D) mode, a 2D geometric model with greatly reduced computational
complexity was established, and the finite element method (FEM) was used to analyze the
propagation characteristics. Then, hyperfine meshing was used to guarantee the accuracy
of the emulation. In addition, the absorbing boundary condition was established by the
perfect matched layer, which can absorb the outward reflected waves.

3. Simulations and Results

When comparing the performance of the double-ring cavity and the CCDRR, it was
found that their sensitivity was almost the same in the range of the agreed refractive
index change, but that the CCDRR had a higher FOM, so the CCDRR was chosen for
further study.

To gain a distinct understanding of the propagation characteristics of the proposed
structure, it was necessary to compare the whole system with the single CCDRR struc-
ture and the unitary two rectangular baffle structure. The unitary two rectangular baffle
structure and the unitary CCDRR structure are shown in Figure 2a,b, respectively. The
transmission spectra of the three structures are shown in Figure 2c. The geometric pa-
rameter settings are as follows: R1 = 190 nm, R2 = 130 nm, H = 540 nm, h = 150 nm, and
g = 10 nm. The transmission spectra of the unitary two rectangular baffle structure, the
unitary CCDRR structure, and the whole system are represented by the black, red, and
blue solid lines, respectively. In Figure 2c, the black solid line representing the unitary two
rectangular baffle structure has a positive slope, and it has relatively high transmittance
in the range of 0.35 to 0.6. Hence, it can be regarded as a continuous wide-band mode.
The transmission spectrum of the unitary CCDRR structure approximates the Lorentz line,
which is considered as representing the discrete narrowband mode. It is obvious that the
transmission spectrum of the whole structure (blue line) has an asymmetric shape, which
indicates that Fano resonance is generated by the interaction of the successive wide-band
mode and discrete narrow-band mode.
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Figure 2. (a) Two-dimensional schematic diagram of the unitary two rectangular baffle structure; (b) 2D schematic diagram
of the unitary CCDRR structure; and (c) the transmission spectrum of the unitary two rectangular baffle structure (black
line), the unitary CCDRR structure (red line), and the whole system (blue line).

To better comprehend the inner theory of the black line’s role in the Fano resonance
of the whole structure, the magnetic field distributions and the electric field distribu-
tions of the unitary two rectangular baffles and the whole system at the resonance dip
point (λ = 1459 nm) were demonstrated, which are shown in Figure 3a–d, respectively. In
Figure 3a, there is a distinct resonance in the MIM waveguide, with only one bus waveg-
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uide and two rectangular baffles. As shown in Figure 3b, for the whole structure, the
firm resonance occurs only on the left side, while infirm resonance occurs on the right.
Additionally, the upper and lower parts of the outer ring in the CCDRR are anti-phase.
Figure 3b,c provides insight into the actual energy distribution in the waveguides and the
CCDRR cavity. In Figure 3c, there is an obvious energy distribution in the MIM waveguide.
However, as shown in Figure 3d, the energy of SPPs is intensified at the CCDRR cavity and
decreased at the right side of the waveguide. It was found that SPPs was directly coupled
to the unitary two rectangular baffle structure and stimulated the resonance corresponding
to the successive wide-band state, while the discrete narrow-band state in the CCDRR was
indirectly stimulated by the SPPs in the two symmetrical rectangular baffles. Thus, the
interaction of the two states produced the Fano resonance.
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For further investigation of the influences of the different refractive indexes (n) on the
transmission spectrum of the Fano resonance, six refractive indexes were simulated: 1.00,
1.01, 1.02, 1.03, 1.04, and 1.05 RIU. The structural arguments were as follows: R1 = 240 nm,
R2 = 130 nm, H = 540 nm, h = 150 nm, and g = 10 nm. Figure 4a,b shows the simulation
results. In Figure 4a, with the increase of n, the transmission spectra have an approximately
equidistant red-shift. As shown in Figure 4b, when the refractive index changes, the
change of dip wavelength-shift is linear. Therefore, the sensitivity of the sensor, which
was 2260 nm/RIU with a FOM of 56.5, could be obtained from the slope after linear fitting,
leading us to obtain the best result for the optimal parameter of the structure.

To investigate the influences of different external radii of the outer ring of the CCDRR
on Fano resonance, R1 was set to increase from 200 nm to 240 nm at an interval of 10 nm,
while keeping other arguments fixed at R2 = 110 nm, H = 540 nm, h = 150 nm, and g = 10 nm.
The transmission spectra are displayed in Figure 5a. With the increase of R1, there is an
obvious red shift at the dip point of Fano resonance, and the transmittance of this position
increases slightly. The simulation result shows that R1 determines the dip wavelength of
Fano resonance. This phenomenon can be explained in other words as a scenario where
the dip wavelength depends on the CCDRR corresponding to the narrowband pattern,
with R1 as an important parameter of the CCDRR. As shown in Figure 5b, by linear fitting,
five solid lines representing the sensitivities of the different structures were obtained. As
the external radius R1 of the outer ring increases, the sensitivity becomes higher. The
maximum sensitivity was obtained via calculation, which was 2200 nm/RIU when R1 was
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240 nm, and the maximum FOM was 47.8. Thus, in practical applications, the radius R1
should be appropriately increased to obtain a better sensing performance.
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Figure 5. (a) Transmission spectrum of the outer ring of CCDRR for different external radii R1; (b) shifts of the dip point in
Fano resonance (∆λ) with a changed refractive-index (∆n).

The effects of different external radii R2 of the inner ring of the CCDRR on the
transmission capabilities were investigated as 90, 100, 110, 120, and 130 nm, while setting
the parameter value R1 as 240 nm and keeping the other parameters the same. As shown in
Figure 6a, the dip wavelength of Fano resonance was almost constant. When R2 increases,
the dip point of Fano resonance has a slight red-shift and the transmittance of the dip
marginally decreases, and there is a slight increase in sensitivity, which is described in
Figure 6b. When R2 = 130 nm, the sensitivity of the structure attained the highest value:
2260 nm/RIU with a FOM of 56.5.
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Afterward, the effect of the separation H of the two symmetric rectangular baffles on
the propagation performance was studied. The transmission spectra that are displayed in
Figure 7a were calculated at different separations for H = 540, 560, 580, 600, and 620 nm,
while the other geometric parameters were kept the same. It was found that no matter how
H changed, the dip wavelength of Fano resonance remained almost unchanged, though the
FOM obviously decreased, as represented in Figure 7b. There was an optimal simulation
result: the sensitivity was 2260 nm/RIU and FOM was 56.5. Then, the other geometric
parameters were kept the same, except for increasing the height of the rectangular baffle h
from 130 to 170 nm in steps of 10 nm. The transmission spectra and the change of FOM
of the diverse heights of the rectangle baffles are shown in Figure 7c,d, respectively. As
shown in Figure 7c, with the increase of h, the dip wavelength only demonstrates a slight
blue-shift, while the Fano line shape changes significantly. According to the calculation,
when h = 150 nm, the maximum sensitivity is 2260 nm/RIU with a FOM of 56.5. As h
continues to increase, the sensitivity will decrease as well as the FOM.

The separation of the two symmetrical rectangular baffles H and the heights of the
two baffles h are pivotal to the waveguide with two rectangle baffles. According to the
simulation results, the successive wide-band mode has a significant effect on the line shape
of Fano resonance, but not on the wavelength of the dip point.

To further investigate the effects of the coupling gap between the CCDRR and the
waveguide on the propagation properties, g was increased from 10 nm to 30 nm while
the other geometric arguments were fixed at R1 = 240 nm, R2 = 130 nm, H = 540 nm, and
h = 150 nm. The transmission performances of the structure with different coupling gaps
between the CCDRR and the waveguide for g = 10, 15, 20, 25, and 30 nm can be seen in
Figure 8a. With increasing g, the dip wavelength of the Fano resonance shows a blue-shift,
the FWHM tends to narrow and the transmittance of the dip position of Fano resonance
tends to move higher. The fact that the coupling intensity weakens as the coupling gap
increases can account for this phenomenon. Additionally, the sensitivity of the system
decreased with the increase of g, as shown in Figure 8b. Thus, the optimal performance
parameters can be obtained when the sensitivity is 2260 nm/RIU and the FOM is 56.5.
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4. Application of the Proposed Structure in Temperature Sensing

The presented system can also be used as a nanoscale temperature sensor, which is
realized by using the variation of the refractive indices of the temperature sensing medium
caused by an ambient temperature, with the temperature sensing material viewed as a
liquid. Ethanol was chosen as the temperature sensing medium to fill the CCDRR and the
MIM waveguide with a bus waveguide and two symmetrical rectangular baffles because of
its high refractive-index temperature parameter of 3.94 × 10−4 (◦C−1). The refractive-index
temperature coefficients of Ag and quartz are 9.30 × 10−6 (◦C−1) and 8.60 × 10−6 (◦C−1),
respectively, which are two orders of magnitude smaller than that of ethanol. Thus, the
variation of temperature largely affects ethanol, and the effects of thermal expansion of Ag
and quartz can be ignored. The schematic diagram of three-dimensional (3D) structure is
shown in Figure 9. The blue part represents ethanol, the green part represents silver, and
the black part represents the quartz substrate.
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Commonly, the functional connection between the refractive index, temperature
coefficient, and ambient temperature of a liquid temperature sensing material can be
expressed as follows [36]:

n = n0 +
dn
dT

(T − T 0) (7)

where n0 = 1.36048 is the refractive index of the liquid corresponding to room-temperature,
T0= 20 ◦C; dn/dT =3.94 × 10−4 (◦C−1) is the refractive index temperature coefficient;
and T represents the ambient temperature. Thus, the refractive index formula, with
ethanol as the filling material of the temperature sensor, and the sensitivity formula can be
expressed as follows:

n =1.36048 −3.94 × 10−4 ( T − 20 ) (8)

ST =
∆λT
∆T

(9)

The geometric arguments of the structure were fixed at R1 = 240 nm, R2 = 130 nm,
d = 40 nm, H = 540 nm, h = 150 nm, g = 10 nm, and w = 50 nm. The transmission spectrum
for the disparate temperatures of the sensor is plotted in Figure 10a. As the melting and
boiling points of ethanol are −144.3 ◦C and 78.4 ◦C, respectively, the temperature sensor
has good stability in the working range of −80–60 ◦C. As the temperature drops from
60 ◦C to −80 ◦C with an interval of 20 ◦C, the transmission spectrum displays a red-shift
phenomenon and the sensitivity, which is shown as Figure 10b, has a remarkable linear fit
with the value of 1.48 nm/◦C.
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Although the temperature sensor has some advantages, such as a high sensitivity, a
simple structure, and easy integration, it still has some limitations. Due to the bounds of
the boiling and melting points of ethanol, the sensor is only suitable for low-temperature
sensing, and it cannot solve sensing problems when the temperature is too high. As a
liquid substance, ethanol cannot meet the needs of solid-state sensing equipment under
some special conditions. In some practical applications, thermal materials such as lithium
niobate can be used instead of ethanol to manufacture solid-state equipment. In future
research, we will also consider adding a grapheme strip into the CCDRR cavity to allow
for dynamic adjustment of the sensitivity.

5. Conclusions

In this work, a plasmonic refractive-index nano-sensor consisting of MIM waveguides
with two symmetrical rectangular baffles, coupled with a connected concentric double
rings resonator (CCDRR), has been devised, and its transmission characteristics have been
studied by introducing the finite element method (FEM). The transmission spectrum of the
structure showed an asymmetric and sharp shape, due to Fano resonance caused by the
destructive interference between the successive wide-band mode of the two rectangular
baffles on the bus waveguide and the discontinuous narrow-band mode of the CCDRR.
We then analyzed the effects of the refractive index and geometric arguments on the
transmission performance levels of the structure. With increases of the refractive index
n, external radii of the outer circular ring R1, and the inner circular ring R2, the dip point
of Fano resonance showed a red shift, while with increases of coupling gap g, the dip
wavelength showed a blue shift. Changes to the separation between the two rectangular
baffles H and to the heights of the two baffles h had a significant effect on the line shape of
Fano resonance, but not on the wavelength of the dip. The designed structure achieved
an optimal performance when the structural parameters were as follows: R1 = 240 nm,
R2 = 130 nm, H = 540 nm, h = 150 nm, and g = 10 nm. The sensitivity of the proposed
sensor could reach 2260 nm/RIU with a high FOM of 56.5. Finally, its application in the
temperature sensor field with ethanol instead of air was also studied, and the sensitivity
was finetuned to 1.48 nm/◦C. The designed structure has good application prospects in
temperature sensors and other photonic devices.
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