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Abstract: Performance evaluation using interactive methods and extended ratio-based approaches
can be very important for some organizations. Free disposal hull models can be created if there is
no concern for convexity, and using non-radial DEA models can simultaneously create more logical
and practical situations for finding DMU targets. In this paper, a new hybrid technique based on the
additive slack based method and enhanced Russel measure in variable return to scale technology
has been proposed. The proposed technique can find decision making unit targets in non-radial free
disposal hull models using the step method. Furthermore, the extended ratio-based approach in the
proposed technique has been applied to find DMU targets of related non-radial free disposal hull
models without solving any mathematical programming models. Finally, targets of Fars province
pharmaceutical distributing companies were found by applying the proposed hybrid technique.

Keywords: data envelopment analysis (DEA); additive slack based method; non-radial free disposal
hull (FDH); step method (STEM); ratio-based approach (RBA)

1. Introduction

The accurate estimation of production possibility set (PPS) boundaries is crucial
for performance analysis and efficient estimation. Different papers propose alternative
approaches to handle the issue of estimating PPSs and their respective boundaries. Non-
parametric data envelopment analysis (DEA) is possibly one of the most used linear
programming (LP) approaches to build up piecewise PPS boundaries. DEA is a useful
tool to evaluate decision making units (DMUs). Efficiency criterion can be considered as
a number between 0 and 1 for evaluating a DMU in DEA. If the efficiency criterion for
a DMU is 1, the mentioned DMU is efficient, else, it is inefficient. Evaluating DMUs in
input-oriented, output-oriented, and combined-oriented radial and non-radial models were
developed from a proposal by Farrell (1957) [1], and were then followed by the development
of the CCR model by Charnes et al. (1978) [2]. The CCR model was then developed into
the BCC model by Banker et al. (1984) [3]. Additive models were then suggested to
separate efficient and non-efficient DMUs [4]. Tone (2001) proposed a slack based model
which evaluates DMUs considering the relationship between CCR models [5]. The Russel
Graph Model (RGM) and the relationship between SBM and additive DEA models are very
important subjects that have been studied [6]. These models determine the benchmark
for efficient DMUs, in addition to calculating efficiency and non-efficiency criterion of
DMUs. Over three decades, extensive and useful studies on DEA have been undertaken to
calculate DMU efficiencies [7,8] and to find DMU benchmarks [9,10]. Chen and Zhu (2020)
completed efficient and non-efficient definitions on the basis of slack variables using the
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slack based method, and showed that additive slacks-based models (ASBM) and enhanced
RGM are equal. Moreover, the authors showed that the simultaneous use of ASBM and
network DEA models can create a comparable DEA score. Finding DMU targets in ASBM
by eliminating convexity conditions can be investigated in practical studies [11]. The use
of non-radial FDH models based on ASBM can also be beneficial in practical studies.

Specifically, Free Disposal Hull (FDH) is a subclass of DEA models where DMUs
are not projected on the piecewise convex envelope, but are projected on the actual max-
imal attainable boundary, which results in a staircase shape for the single input–output
case. In other words, FDH, which was first introduced by Deprins et al. (1984), evaluates
DMU efficiency by considering the closest inner approximation of the true non-convex
(disposable) boundary [12]. Many studies have been investigated FDH models. Soleimani-
Damaneh et al. estimated returns-to-scale in FDH models [13]. Soleimani-Damaneh and
Rashidi proposed a polynomial-time algorithm to estimate returns to scale in FDH mod-
els [14]. Mostafaee and Soleimani-Damaneh proposed the definition, characterization and
calculation of global sub-increasing and global sub-decreasing returns to scale in FDH
technologies [15]. Fukuyama et al. measured efficiency with non-convex FDH technol-
ogy [16]. Manzari Tavakoli and Mostafaee studied FDH efficiency scores of units with
network structures [17]. Arfa et al. measured the efficiency of hospital cardiology wards
using the FDH approach [18]. Kerstens and Van De Woestyne reviewed solution methods
for nonconvex FDH models and give some critical comments [19]. Soleimani-Damaneh and
Mostafaee identified the anchor points in FDH models [20]. Mirmozaffari et al. proposed
an improved DEA model based on SBM and FDH models [21]. One issue that is frequently
neglected in FDH models is the identification of DMU targets, which is a cumbersome
task due to boundary non-convexity, especially when the number of inputs and outputs
increase. A possible approach is to define a multiple objective function for measuring the
closeness among the DMU under analysis and its eventual targets [22].

Multiple objective linear programming (MOLP) is a form of multiple objective decision
making (MODM). In MODM problems, more than one objective is considered in regard to
the opinions of the decision maker (DM). Interactive methods (IMs) are a kind of MODM
and MOLP methods. IMs explore the criterion space on the progressive definition of the
DM’s preferences at each iteration [23]. IMs have been used in some reported works [24,25].
Traditional DEA models tend to ignore the DM’s preferences and value judgment in the
computation of the DMU targets, completely. The use of IMs allows the obtainment of
DMU targets which have perfect adaptation for the DM’s preferences [24]. An IM was
applied for the extension of DEA to effectiveness analysis [26]. The step method (STEM)
that was introduced in 1971 [27] is an IMs in MOLP, and has been reported in several
studies [28–31]. To the best of our knowledge, STEM has not yet been used by researchers
to find targets in non-radial FDH models which consider ASBM and enhanced Russel
measures in variable return to scale technology (the first research gap).

Multiple criteria decision making (MCDM) is divided into multiple attribute decision
making (MADM) and MODM. In situations where the data are fuzzy, a combination of
DEA and fuzzy MCDM [32–34] can be used for the development of the proposed technique.
In this study, as the data of the second case study were deterministic, it was not necessary
to use fuzzy methods.

FDH is a well-known subclass of DEA models and is based on two distinctive features
that are reflected in the PPS boundary. First, FDH ensures that efficiency evaluations are af-
fected only by actually observed performances. Secondly, FDH relies on the non-convexity
assumption which satisfies free disposability in PPS. There is inherent computational com-
plexity to solve FDH models. As a matter of fact, FDH models are mixed 0–1 LP, and
solving them is difficult. In this regard, a ratio-based approach (RBA) is proposed to solve
radial FDH models without solving any mathematical programming models [13]. This
approach has been employed by some other studies [15,20]. To the best of our knowledge,
RBA is one of the most suitable suggested methods to find DMU targets of radial FDH
models without solving any mathematical programming models. DMU target finding of
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non-radial FDH models without solving any mathematical programming models can be
considered as another research gap. It can be achieved by extending RBA. As ASBM relates
to enhanced Russel measures, finding non-radial DMU targets has been possible using
extended RBA.

In Fars province pharmaceutical distributing companies (the second case study), there
was a variable return to scale assumption. Moreover, as the combination of pharmaceutical
distributing companies was impossible, using FDH models was beneficial. Non-radial FDH
models based on ASBM in variable return to scale technology can therefore be considered
in the proposal for a technique for finding DMU targets. Therefore, considering mentioned
research gaps, two research questions have considered as follows:

(1) Is it possible to propose a technique to find all DMU targets in non-radial FDH models
based on ASBM using IM?

(2) Is it possible to find DMU targets of non-radial FDH models in the proposed technique
without solving any mathematical models?

A hybrid technique to answer the above two research questions with the following
properties has been proposed as the innovation of this research:

(a) DMU target finding in non-radial FDH models based on ASBM are more realistic
because they are based on a non-convexity assumption,

(b) Proposing a new LP formulation of ASBM,
(c) Applying IMs instead of regular DEA methods to find FDH models targets which

have more adaptation to the DM’s preferences,
(d) Finding the required DMU targets in FDH models using an algorithm that works by

checking some conditions for DMUs without solving of any mathematical models.

To the best of our knowledge, proposing a hybrid technique with the mentioned
properties has not been reported until now. It is notable that, according to the practical view,
the proposed technique will be beneficial if finding DMU targets in a studied organization
is useful. According to the theoretical view, as the proposed technique works based on
mathematical modelling, considering assumptions and determining suitable parameters
to compose related models are important subjects, too. Therefore, to implement and
generalize the results, practical and theoretical views should be simultaneously considered.

There are several outlier detection methods, such as parametric robust regression in
statistics [35] and non-parametric k-means in data mining [36]. Moreover, a predictive
DEA model for outlier detection was proposed, and a comprehensive set of simulation
experiments were conducted to examine the relative performance of the suggested method
with two popular mentioned methods under the influence of five factors. The results
provide users with practical guidelines on how to choose appropriate methods to detect
outliers [37]. Outlier detection and investigation of the sensitivity of the modeling approach
to outliers can be applied for the development of the proposed technique.

The paper is structured in following sections: first, the background on ASBM, MOLP,
STEM, and RBA is provided. After that, a new hybrid technique is introduced to find
DMU targets in non-radial FHD models based on ASBM. Finally, the presented technique
is applied in two real case studies.

2. Background

In this section, ASBM, STEM to solve MOLP, and RBA for finding targets of radial FDH
models are briefly described. The purpose of this section is to introduce the theoretical
basis for finding targets of non-radial FDH models based on ASBM using STEM and
extended RBA.

2.1. Additive Slack Based Model

Suppose DMUj, j = 1, . . . , n by consuming m inputs x1j, . . . , xmj, j = 1, . . . , n can
produce s outputs y1j, . . . , ysj, j = 1, . . . , n. The background of ASBM can be related to the
additive model in Charnes et al. (1985) [4] and Green et al. (1997) [6]. Therefore, efficiency
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for output r of DMUo is defined as yro
yro+tr

≤ 1 and non-efficiency for output r of DMUo is

defined as 1− yro
yro+tr

= tr
yro+tr

≤ 1. Furthermore, efficiency for input i of DMUo is defined

as xio−si
xio
≤ 1 and non-efficiency for output r of DMUo is defined as 1− xio−si

xio
= si

xio
≤ 1.

Therefore, by suggesting model (1), the relationship between non-efficiency calculated by
Greek et al. (1997) [6] and ASBM based on efficiency and non-efficiency definitions have
presented [11].

Min 1
s+m

(
∑s

r=1
yro

yro+tr
+ ∑m

i=1
xio−si

xio

)
,

s.t
n
∑

j=1
µjxij + si = xio, i = 1 . . . m,

n
∑

j=1
µjyrj − tr = yro, r = 1 . . . s,

∑n
j=1 µj = 1,

µj, si, tr ≥ 0, i = 1 . . . m, r = 1 . . . s.

Model (1) is a nonlinear mathematical programming model containing linear con-
straints and linear fractional objective function. In this regard, model (1) by Chen and Zhu
(2020) [11] is equivalent to RGM developed by Fare et al. (1985). Moreover, finding DMU
targets using slack variables are important because focus is given to the summation of slack
variables. In this regard, the projection of DMU with respect to Model (1) is calculated by
∑n

j=1 µ
∗
j xij = xio − s∗i , i = 1 . . . m, and ∑n

j=1 µ
∗
j yrj = yro + t∗r , r = 1 . . . s, which µ∗j , s∗i , and

t∗r are optimal solutions of Model (1).

2.2. MOLP and STEM

A general formulation of the MOLP problem is given in model 2.

Max G(u) = (g1(u), . . . , gk(u)) =
(

CT
1 u, . . . , CT

ku
)

s.t. u ∈W = {u ∈ Rv
+ |Au ≤ b} (2)

where G(u) = (g1(u), . . . , gk(u)) represents the objective function vector. Linear objective
functions are denoted by CT

l u where u = (u1, . . . , uv) is the decision-making vector. The
symbol T is a transposed vector. gl(u), Cl, and cil are the lth objective function, the vector
of decision-making variable coefficients in the lth objective function, and the coefficients of
lth objective function namely Cl, l = 1, . . . , k, per n existing variables, respectively. W is the
feasible region of the MOLP problem and k is the number of the objective function. The
decision-making variable multiples matrix is denoted by A, while b represents the right-
hand side vector of the constraints. Au ≤ b is the constraints of the feasible region and Rv

+,
representing the Euclidean space comprising all nonnegative vectors in a v-dimensional space.
In this MOLP problem, the lth objective function is formulated as CT

l u = c1lu1 + c2lu2 + · · ·+
cvluv, l = 1, . . . , k. The vector u* ∈W is considered as an efficient (non-dominated) solution,
if there does not exist another u ∈W, such that gl(u) ≥ gl(u∗) for all l and gl(u) > gl(u∗) for at
least one l.

STEM is an IM that can be used to solve MOLP problems. It works based on the
obtained information from DM preferences and reduces the feasible region, step by step.
STEM relies on DMs information to identify feasible and efficient solutions during the
procedure. STEM includes following steps [27,30]:

Step 0: building-up the pay-off table

Objective functions should be optimized separately as follows (cf. model 3 and
Table 1):

Max gl(u) = CT
l u

s.t. u ∈W = {u ∈ Rv
+ |Au ≤ b}



Appl. Sci. 2021, 11, 10626 5 of 33

Table 1. The pay-off table.

1 2 . . . l . . . k

1 g∗1 . . . . . . z1k
2 z21 g∗2 . . . z2l . . . z2k
. . . . .
. . . . .
. . . . .
l zl1 zl2 . . . g∗l . . . zlk
. . . . .
. . . . .
. . . . .
k zk1 zk2 . . . zkl . . . g∗k

The diagonal elements, represented by g∗l , are the optimal solutions for the single
gl(u) = CT

l (u), l = 1, . . . , k problem obtained through the solving of model 3. zdl values
are the results for dth objective function, computed upon the optimal solution obtained for
lth objective function, l = 1, . . . , k, d = 1, . . . , k, d 6= l.

Step 1: Calculation Phase

The computation of coefficients βl, l = 1 . . . k, is the cornerstone to compute the
relative importance (Equation (4)) of each distance from the optimal objective function
value. Suppose that πl denotes the relative importance of the distance between objective
functions and their optimal values. Although these coefficients are locally meaningful,
they cannot capture the overall importance, unlike other utility models. It is therefore
necessary to solve model 5, where the solution obtained in the pth iteration is denoted by
Gp = (g1(u

p), g2(u
p), . . . , gk(u

p)).

πl =



(
g∗l −gmin

l
g∗l

)[
1√

∑v
d=1(Cdl)

2

]
if g∗l > 0

(
gmin

l −g∗l
g∗l

)[
1√

∑v
d=1(Cdl)

2

]
if g∗l ≤ 0

(4)

and βl =
πl

∑k
d=1 πd

, l = 1, . . . , k. Model 5 is given as follows:

Min h

s.t h ≥ (g∗l − gl(u)).βl l = 1, . . . , k,

u ∈Wp, h ≥ 0. Where Wp = {u|Au ≤ b, u ≥ 0} ∪Wp−1 (5)

Wp represents the feasible region in the pth iteration. In order to find the vector u ∈Wp,
which provides the minimum of maximum distance between the objective function vector
of G(u) = (g1(u), g2(u), . . . , gk(u)) and its optimal vector, G∗ =

(
g∗1 , . . . , g∗k

)
, h should be

minimized. h indicates the maximum distance of the functions from their optimal values
based on their relative importance for each individual feasible solution in the feasible
region. In other words, h indicates the closest possible distance to the optimal value of the
lth objective function, that is g∗1 . Before proceeding to Step 2, the minimum value in column
l of the pay-off table should be picked up. It is denoted as gmin

l .

Step 2: Decision Phase

In this phase, the DM provides relative importance information with respect to the solu-
tion collected during the first step of the pth iteration, that is Gp = (g1(u

p), g2(u
p), . . . , gk(u

p)),
where up denotes the feasible solution in the pth iteration. If all objective function values are
be satisfied, in light of DM preferences, the best compromise solution is obtained, and the
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STEM algorithm finished. Otherwise, the DM should modify some of the gl(u
p) = gp

l to
confirm that the values of the lth objective function in the pth iteration is satisfied. In other
words, this modification amount, ∆gq, is necessary to collectively improve other remaining
objective functions. Thus, the feasible region should be also adjusted for the next iteration.

Wp+1 = Wp ∪
{

u

∣∣∣∣∣ gq(u) ≥ gq(u
p)− ∆gq

gl(u) ≥ gl(u
p), l = 1, . . . , k, l 6= q

}
(6)

∆gl denotes the number of modifications made to the lth objective function in order to
improve the other objective functions, and Wp+1 denotes the feasible region in iteration
p + 1. When the coefficients in the subsequent iterations are computed, the coefficients
within πl should be zeroed. Therefore, other values for πl and βl, l = 1, . . . , k, l 6= k should
be re-determined using Equation (4), before re-solving model 5 in the p = p + 1 iteration.

2.3. Ratio Based Approach

The ratio based approach is an approach to find DMU targets of radial FDH models
without solving any mathematical programming models. To the best of our knowledge,
Soleimani-Damaneh et al. (2006) [13] were the first researchers to propose RBA to find
targets of radial FDH models. They considered a set of n peer DMUs (DMUj, j = 1, . . . , n),
such that each DMUj produces multiple outputs yrj > 0 (r = 1, . . . , s) by utilizing mul-
tiple inputs xij > 0 (I = 1, . . . , m). Considering DMUo(xo,yo) (o = 1, . . . , n) as the unit
under assessment, the basic input-oriented and output-oriented linear mixed-integer radial
FDH model under variable returns-to-scale technology are shown by models 7 and 8,
respectively [13,20].

θo = Min θ,
s.t
n
∑

j=1
µjxij ≤ θxio, i = 1 . . . m,

n
∑

j=1
µjyrj ≥ yro, r = 1 . . . s,

µj = δωj, ωj ∈ {0, 1}, j = 1, . . . , n,
δ = 1, ∑n

j=1ωj = 1

ϕo = Max ϕ,
s.t
n
∑

j=1
µjxij ≤ xio, i = 1 . . . m,

n
∑

j=1
µjyrj ≥ ϕyro, r = 1 . . . s,

µj = δωj, ωj ∈ {0, 1}, j = 1, . . . , n,
δ = 1, ∑n

j=1ωj = 1.

In model 7, DMUo is called radial input-oriented FDH-efficient if θo = 1. Moreover,
in model 8, DMUo is called radial output-oriented FDH-efficient if ϕo = 1. The targets
of radial models 7 and 8 can be found by computing some simple ratios using RBA.
After considering DMUo (o = 1, . . . , n) as an under assessment DMU, for j = 1, . . . , n,
λjo = maxr

{
yro/yrj

}
and λjo = mini{xio/xij} are defined. The optimized objective function

in radial models 7 and 8 is then calculated as θo = minj=1,...,n,yj≥yo
{maxi{xij/xio}} and

ϕo = maxj=1,...,n,xj≤xo{minr{yrj/yro}}, respectively [13]. The details on RBA validity have
been reported previously [13,14,19]. The targets of radial FDH models 7 and 8 can be found
by RBA.
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3. A New Hybrid Technique for Finding DMU Targets in Non-Radial FHD Models

In this section, a hybrid technique including two main parts is proposed. At first, an
algorithm containing two interactive stages is introduced to find DMU targets in non-radial
FDH models. Applied models are obtained based on ASBM. The first interactive stage
is proposed to determine efficient DMUs and their targets. STEM is used in the second
interactive stage to find targets of other DMUs. Finding DMU targets of three kinds of
non-radial FDH models was required in the first part of hybrid technique. RBA is one of the
suitable suggested methods to find DMU targets of radial FDH models. In the second part
of the hybrid technique, extended RBA is proposed to find DMU targets of non-radial FDH
models without solving any mathematical models. Extended RBA, included two steps,
found alternative DMU targets just by checking some conditions for DMUs in non-radial
FDH models without solving any mathematical models. In the first step, DMUs of feasible
region were found. In the second step, the optimum objective function value was calculated
and DMU targets were found.

3.1. The Interactive Algorithm

In this section, an algorithm is proposed to find DMU targets in non-radial FDH
models. The interactive algorithm (the first part of proposed hybrid technique) contains
two interactive stages. The purpose of the first interactive stage is to determine efficient
DMUs and their targets. The second interactive stage determines the target of other DMUs
using STEM. DMU targets are found through solving three non-radial FDH models in
interactive algorithm. Applied models are obtained based on ASBM.

Classical DEA models have been created based on decreasing inputs and increasing
outputs. Moreover, only one variable has been defined for decreasing all inputs and
only one another variable has been defined for increasing all outputs in classical radial
models. However, in non-radial classical models, different variables have been defined
separately for decreasing each input, and different variables have been defined separately
for increasing different outputs. In addition, all DMUs in the research area should be
considered, and the relationship n ≥ 3(m + s) existes between the number of DMUs (n),
number of inputs (m), and number of outputs (s) parameters. In this regard, the main
improvements that are obtained from solving DEA models relates to non-efficient DMUs.
Therefore, decreasing the number of DMUs may increase the number of efficient DMUs [38].
In DEA models, choosing appropriate inputs and outputs is an important step which
may significantly affect the efficient frontier. In this regard, inputs and outputs should
be relevant to the research area, gathering related data for DMUs should be possible,
and experts should confirm them. It is considerable that using real data is preferred
rather than gathering from experts’ opinions. However, if gathering real data is not
impossible, experts’ judgment is used. In this situation, experts should have enough
information about the problem. As classical DEA models are created based on decreasing
inputs and increasing outputs, this subject should be considered for selecting inputs and
outputs as well. Moreover, all DMUs in the research area should be considered, and
the establishment of the relationship n ≥ 3(m + s) between inputs, outputs, and DMU
numbers is recommended. As a matter of fact, in situations where n < 3(m + s), the
number of efficient DMUs may be increased. Therefore, a set of non-duplicated DMUj,
j = 1, . . . , n, that utilizes m positive inputs, xij, i = 1, . . . , m, to produce s positive outputs,
yrj, r = 1, . . . , s, are considered. Moreover, objective functions el, l = 1, . . . , m + s, and
decision making variables, uv, v = 1, . . . , n + m + s are defined as

(e1(u), . . . , em(u), em+1(u), . . . , em+s(u)) =(
−w1

m

(
x1o−s1

x1o

)
, . . . , −wm

m

(
xmo−sm

xmo

)
,−w′m+1

s

( y(m+1)o
y(m+1)o+tm+1

)
, . . . ,−w′m+s

s

( y(m+s)o
y(m+s)o+tm+s

))
and (u1, . . . , un, un+1, . . . , un+m, un+m+1, . . . , un+m+s) = (λ1, . . . , λn, s1, . . . , sm, t1,
. . . , ts), respectively.
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By modifying objective functions coefficients and turning min into max objective
functions, a multi objective non-linear FDH model based on ASBM is formulated as follows
(model 9):

Max E(e1(u), . . . , em(u), em+1(u), . . . , em+s(u)) =(
−w1

m

(
x1o−s1

x1o

)
, . . . , −wm

m

(
xmo−sm

xmo

)
,−w′m+1

s

( y(m+1)o
y(m+1)o+tm+1

)
, . . . ,−w′m+s

s

( y(m+s)o
y(m+s)o+tm+s

)) (9)

s.t.(λ1, . . . , λn, s1, . . . , sm, t1, . . . , ts) ∈ S =(λ1, . . . , λn) ∈ Rv
+

∣∣∣∣∣∣∣∣∣
∑n

j=1 λjxij + si = xio, i = 1 . . . m,
∑n

j=1 λjyrj − tr = yro, r = 1 . . . s,
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,
si ≥ 0, i = 1 . . . m, tr ≥ 0, r = 1 . . . s.


It is considerable that model 9 is a non-linear mathematical model because em+1(u), . . . ,

em+s(u) are non-linear. By considering Max E(−1/(e1(u)), . . . ,−1/(em(u)),−1/(em+1(u)),
. . . , −1/(em+s(u))) instead of Max E(em+1(u), . . . , em+s(u)), the equivalent multi objective
linear FDH model is composed as model 10.

Max E(e1(u), . . . , em(u), em+1(u), . . . , em+s(u)) =(
−w1

m

(
x1o−s1

x1o

)
, . . . , −wm

m

(
xmo−sm

xmo

)
, w′m+1

s

( y(m+1)o+tm+1
y(m+1)o

)
, . . . , w′m+s

s

( y(m+s)o+tm+s

y(m+s)o

)) (10)

s.t.(λ1, . . . , λn, s1, . . . , sm, t1, . . . , ts) ∈ S =(λ1, . . . , λn) ∈ Rv
+

∣∣∣∣∣∣∣∣∣
∑n

j=1 λjxij + si = xio, i = 1 . . . m,
∑n

j=1 λjyrj − tr = yro, r = 1 . . . s,
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,
si ≥ 0, i = 1 . . . m, tr ≥ 0, r = 1 . . . s.


Now by considering θi = xio−si

xio
, ϕr =

yro+tr
yro

, and considering 1 for w and w′ in
objective functions, model 11 is built as follows:

Max E(e1(u), . . . , em(u), em+1(u), . . . , em+s(u)) =
(
−1
m θ1, . . . , −1

m θm, 1
sϕ1, . . . , 1

sϕs

)
s.t. (λ1, . . . , λn, θ1, . . . , θm,ϕ1, . . . , ϕs) ∈ S =(λ1, . . . , λn, θ1, . . . , θm,ϕ1, . . . , ϕs) ∈ Rv

+

∣∣∣∣∣∣∣∣
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,

∑n
j=1 λjxij ≤ θixio, θi ≤ 1, i = 1 . . . m,

∑n
j=1 λjyrj ≥ ϕryro,ϕr ≥ 1, r = 1 . . . s.


(11)

It is mentionable that in non-radial model 11, DMU targets are obtained by decreasing
inputs (θi ≤ 1, i = 1, . . . , m) and increasing outputs (ϕr ≥ 1, r = 1, . . . , s), simultaneously.
Now, two related interactive stages are described as follows.

3.1.1. The First Interactive Stage

In the first interactive stage, efficient DMUs are determined, and the targets of these
DMUs defined. For DMUo, o = 1, . . . , n, variables xio = xij, i = 1, . . . , m, j = 1, . . . , n, and
yro = yrj, r = 1, . . . , s, j = 1, . . . , n are defined. Non-radial FDH model 12 is then composed
for DMUj, j = 1, . . . , n to distinguish DMUs over efficient frontier as follows.

Zo
j = Max

m+s

∑
l=1

el(u) =
m

∑
i=1

−1
m
θi +

s

∑
r=1

1
s
ϕr,

s.t (12)
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u ∈ s =

u

∣∣∣∣∣∣∣
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,
∑n

j=1 λjxij ≤ θixio, 0 ≤ θi ≤ 1, i = 1 . . . m,
∑n

j=1 λjyrj ≥ ϕryro,ϕr ≥ 1, r = 1 . . . s.

.

After the solving of non-radial model 12 for DMUj, j = 1, . . . , n, M (the members
of M set are DMUs that lay on the efficient frontier) and M′ sets (the process of tar-
gets determination of M′ set members should be carried out through the second in-
teractive stage of the interactive algorithm) are defined as M =

{
DMUj

∣∣∣Zo
j = 0, ∀j

}
and M′ =

{
DMUj

∣∣DMUj /∈ M, ∀j
}

, respectively. It is considerable that DMUj, j = 1, . . . , n
of non-radial model 12 is efficient if Zo

j = 0. The targets of DMUs that are members of M
set are then defined as DMUj Target =

{
DMUj

}
, DMUj ∈ M. If M′ = ∅ (in the situations

where the process of targets determination for all DMUs has been carried out in the first
interactive stage of the interactive algorithm), the interactive algorithm is finished; else (in
situation that M′ 6= ∅), the second interactive stage is run.

3.1.2. The Second Interactive Stage

In the second interactive stage, non-efficient DMUs targets are determined by STEM.
In this regard, a DMUj ∈ M′ is considered as DMUo (a non-proceed DMUj, j = 1, . . . , n)
and xio = xij, i = 1, . . . , m, j = 1, . . . , n, and yro = yrj, r = 1, . . . , s, j = 1, . . . , n, are defined;
then the pay-off table (as described in Section 2.2) is constructed by composing and solving
the non-radial model 13 for fl(u), l = 1, . . . , m + s (step 0 of STEM).

Max
{

f1(u) = −x1oθ1, . . . , fm(u) = −xmoθm, fm+1(u) = y1oϕ1, . . . , fm+s(u) = ysoϕs
}

s.t (13)

u ∈ S =

u

∣∣∣∣∣∣∣
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,
∑n

j=1 λjxij ≤ θixio, 0 ≤ θi ≤ 1, i = 1 . . . m,
∑n

j=1 λjyrj ≥ ϕryro,ϕr ≥ 1, r = 1 . . . s.

.

It is considerable that a DMU in S (in non-radial model 13) is efficient if all θ∗i = 1,
i = 1. . . m, and all ϕ∗r = 1, r = 1 . . . s. The DM is then asked to suggest a new target for
DMUo. If DM does not suggest a new target for DMUo, “There is no target for DMUo
in FDH model”, then M′ = M′ −DMUo (omit DMUo from M′ set), and go to the second
interactive stage (to find targets of another non-proceed DMUj). If DM suggest a new target
for DMUo, extract DM’s opinions about the desired value of fl, l = 1, . . . , m + s from the
suggested DMUo target. This means that the value of fl, l = 1, . . . , m + s should be as good
as the suggested DMUo target by DM. So the proposed target of DM is considered as DM’s
opinions for all m + s objective functions (fl, l = 1, . . . , m + s). Attempt are then made to
find the best compromise solution considering DM’s opinions using the required iterations
of step 1 and 2 of STEM (Section 2.2).

After that, the first iteration of STEM begins (set p = 1). In step 1 of STEM (Section 2.2),
first πl, l = 1, . . . , m + s is calculated by Equation (4) considering the results of the second
interactive stage, then βl =

πl
∑m+s

d=1 πd
, l = 1, . . . , m + s is calculated. If at least one βl, l = 1,

. . . , m + s is not calculable, there is no compromise solution (in this situation, obtaining the
suggested target of DM for DMUo is impossible) and the interactive algorithm continues
from the start of the second interactive stage (to find another suitable target for DMUo). In
the situation that the value of all βl, l = 1, . . . , m + s, are calculable, model 14 is as follows:

Min h

s.t h ≥ (f∗l − fl(u)).βl l = 1, . . . , m + s, (14)
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u ∈ Sp, h ≥ 0. Where Sp =

u

∣∣∣∣∣∣∣
∑n

j=1 λj = 1, λj ∈ {0, 1}, j = 1 . . . n,
∑n

j=1 λjxij ≤ θixio, 0 ≤ θi ≤ 1, i = 1 . . . m,
∑n

j=1 λjyrj ≥ ϕryro,ϕr ≥ 1, r = 1 . . . s.

 ∪ Sp−1

It is considerable that Sp denotes the feasible region in the pth iteration. By solving
model 14, alternative targets of DMUo

(
DMUo Target =

{
DMUj |λ ∗j = 1, ∀j

})
are found.

The required parameters for Step 2 of STEM (Section 2.2) are then calculated. In this
phase, the objective function values of the first step in the pth iteration are considered
as Fp = (f1(up), . . . , fm+s(up)) where up denotes the feasible solution in the pth iteration.
If all objective function values are satisfied considering the DM’s opinion (the situation
that the best compromise solution is found), “consider suggested target as the target of
DMUo”, M′ = M′ −DMUo, go to the second interactive stage. If “DM is not satisfied with
all objective function values”, or “no feasible integer solution is found” (no compromise
solution exists in these two situations), algorithm is continued from the start of the second
interactive stage. Otherwise fl(up) = fp

l considering DM’s opinions, which means the
values of fl in the pth iteration are satisfied. Consequently, in order to improve the other
objective functions, the fl values are modified by the amounts of ∆fq considering DM’s
opinions. In this case, DMUs in the feasible region are distinguished in the next iteration.

As mentioned, finding the best compromise solution in the second interactive stage
is desired through STEM. If the best compromise solution is obtained using required
iterations of step 1 and 2 of STEM, suggested targets are considered as targets of DMUo.
In the situation that no compromise solution is found (in two situations a compromise
solution does not exist: 1- at least one βl, l = 1, . . . , m + s is not calculable, 2- there is only
one similar unsatisfied objective function in two consecutive steps of STEM), the second
interactive stage repeats.

The brief of the interactive algorithm for finding DMU targets is shown in Figure 1. In
the interactive stage 1, efficient DMUs and their targets are determined. It is remarkable
that by applying the first interactive stage of the interactive algorithm, at least one DMUj,
j = 1, . . . , n is efficient (at least, one member belongs to M set). The number of M′ set
members are determined by composing and solving of non-radial model 12 for all DMUs.
The required number of iterations for the interactive algorithm depends on the number
of M′ set members. Non-radial model 12 should be constructed and solved n (number of
DMUs) times. If the ratio of “the number of M′ set members” to “all DMUs” is near to 0,
the interactive algorithm needs lesser iterations. If this ratio is near to 1, the interactive
algorithm needs more iterations. In the interactive stage 2, non-efficient DMUs targets are
determined using STEM.

Figure 1. The interactive algorithm for finding DMU targets in non-radial FDH models.

The required times to construct and find targets of non-radial model 13 (step 0 of
STEM) are equal to the number of M′ set members. The required times to construct and
find targets of non-radial model 14 (steps 1 and 2 of STEM) is dependent on DM’s opinions
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about the suitable target for each considered DMUo. The required iteration number to
apply the second interactive stage is equal to the number of M′ set’s members, which is
defined the first time. As the number of M′ set’s members is less than n (because at least,
one member belongs to M set and M′ set is defined as M′ =

{
DMUj

∣∣DMUj /∈ M, ∀j
}

in the
first interactive stage), the targets of all DMUs are therefore found in less than n iterations
applying the second interactive stage of the interactive algorithm. This means that the
interactive algorithm is completed by applying the second interactive stage in less than
n iterations.

It is considerable that finding DMU targets of three kinds of non-radial FDH models
(models 12–14) is required in the first part of hybrid technique. These targets can be found
by solving related non-radial FDH models. RBA is one of the suitable methods to find
DMU targets of radial FDH models, without solving of any mathematical models. In the
second part of the hybrid technique, extended RBA is proposed to find DMU targets of
non-radial FDH models without solving any mathematical models.

3.2. Extended RBA

In this section, extended RBA (the second part of proposed hybrid technique) to
find DMU targets in non-radial FDH models of the interactive algorithm is described.
As described in Section 3.1, finding DMU targets of three non-radial FDH models of the
interactive algorithm (models 12–14) are required. All mentioned models are mixed 0–1 LP
and finding DMU targets by solving them is difficult. RBA can find DMU targets of radial
FDH models without solving them. Only non-radial model 12 has a lot of similarity to
radial FDH models (models 7 and 8). Therefore, finding DMU targets of non-radial model
12 may be possible using RBA with a little modification. However, RBA cannot apply to
find DMU targets of non-radial FDH models 13 and 14, because these models have some
complicated constraints. In this section, extended RBA is proposed to find DMU targets of
non-radial FDH models without solving any mathematical programming models.

Define xio = xij, i = 1, . . . , m, and yro = yrj, r = 1, . . . , s for DMUo, o = 1, . . . , n, for
j = 1 . . . n. The extended RBA then find DMU targets of non-radial FDH models of the
interactive algorithm (models 12–14) through two target finding stages. In the first target
finding stage, DMUs of feasible region are found. In this regard, DMUs that have one, two
or three conditions are considered as DMUs of feasible region. The number of required
conditions for this stage depends on the constraints of the model. The first condition of
extended RBA is similar to RBA and can be applied for non-radial FDH models 12–14. The
second and third conditions are applied for non-radial model 14. In the second step, the
optimum objective function value is calculated and DMU targets are found. Extended RBA
are described in the following subsections.

3.2.1. Finding DMU Targets of Non-Radial FDH Models 12 and 13

As the constraints of non-radial FDH models 12 and 13 are exactly the same, finding
DMU targets of these models are described simultaneously.

The first target finding stage

First, DMUs of feasible region should be found. Similar to RBA, if the constraints
xij
xio
≤ 1, i = 1, . . . , m and

yrj
yro
≥ 1, r = 1, . . . , s are satisfied for DMUj, j = 1, . . . , n (the first

condition), DMU j, j = 1, . . . , n belongs to S. So, the DMUs of feasible region of non-radial
FDH models 12 and 13 are determined using Equation (15).

Sstep 0 of STEM =
{

DMUj |DMU j satisfies first condition, j = 1, . . . , n
}

. (15)

As mentioned above, the first condition of extended RBA is similar to RBA.

The second target finding stage

The optimum objective function values should be calculated and DMU targets should
be found in the second target finding stage. To achieve this, the objective function value
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of each DMUj, j = 1, . . . , n in Sstep 0 of STEM (in non-radial model 12, Zo
j = 1

s ∑s
r=1

yrj
yro
−

1
m ∑m

i=1
xij
xio

and in non-radial model 13, f1(u) = −x1ox1j, . . . , fm(u) = −xmoxmj, fm+1(u) =
y1jy1o, . . . , fm+s(u) = ysjyso) is calculated. The maximum obtained value for DMUs be-
longing to Sstep 0 of STEM, shows optimum objective function value (the optimum objective
function value of non-radial FDH models 12 and 13 are Zo

j and fl(u), l = 1, . . . , m + s, re-
spectively). Therefore, the optimum objective function values of non-radial FDH models 12
and 13 are calculated by Equations (16) and (17), respectively.

Z∗o = maxDMUj∈Sstep 0 of STEM

{
Zo

j

}
, Zo

j =
1
s

s

∑
r=1

yrj

yro
− 1

m

m

∑
i=1

xij

xio
(16)

f∗l = maxDMUj∈Sstep 0 of STEM

{
flj

}
, flj(u) = −xloxlj, l = 1, . . . , m, flj(u) = y(l−m)jy(l−m)o, l = m + 1, . . . , m + s (17)

Then, the DMUs of Sstep 0 of STEM which have optimum objective function value show
the targets of DMUo in each model. Therefore, DMUo targets in non-radial FDH models 12
and 13 are determined by Equations (18) and (19), respectively.

DMUoTargets in model 12 ={
DMUj |DMU j ∈ Sstep 0 of STEM, j = 1, . . . , n, objective function value = Z∗o

} (18)

DMUoTargets in model 13 ={
DMUj |DMU j ∈ Sstep 0 of STEM, j = 1, . . . , n, objective function value = f∗l , l = 1, . . . , m + s

} (19)

As described in Section 3.1, both steps 1 and 2 of STEM’s model are shown by non-
radial model 14. Finding DMU targets of related non-radial FDH models by extended RBA
are described in Sections 3.2.2 and 3.2.3.

3.2.2. Finding DMU Targets of Step 1 of STEM’s Model

The process of applying extended RBA to find DMU targets of step 1 of STEM’s model
is described in two target finding stages as follows:

The first target finding stage

In the first target finding stage, finding DMUs of feasible region (in step 1 of STEM
model) is desired. In DMUs of feasible region (DMUj, j = 1, . . . , n), two conditions
should be satisfied. Firstly, in these DMUs, similar to non-radial FDH models 12 and
13, constrains

xij
xio
≤ 1, i = 1, . . . , m, and

yrj
yro
≥ 1, r = 1, . . . , s should be satisfied for

DMUj, j = 1, . . . , n. The method of checking this condition for DMUs of feasible re-
gion (DMUj, j = 1, . . . , n) has been described in Section 3.2.1. Secondly, in DMUs of
feasible region, the constraint maxl{(f∗l − fl(u)).βl} ≥ 0, l = 1, . . . , m + s should be
satisfied for DMUj, j = 1, . . . , n. In constraints of the second condition, the values
of f∗l , l = 1, . . . , m + s and βl, l = 1, . . . , m + s are obtained from solving non-radial
model 13 and calculated using Equation (4), respectively. For checking the second condition,(
f∗i + xioxij

)
.βi, i = 1, . . . , m and

(
f∗r − yrjyro

)
.βr, r = 1, . . . , s are calculated for DMUj, j = 1,

. . . , n that were compatible in the first condition. Then constraints maxl{(f∗l − fl(u)).βl} ≥
0, l = 1, . . . , m + s are checked for mentioned DMUs. In DMUs belonging to the fea-
sible region of non-radial model 14 (step 1 of STEM), in addition to the first condition,
constraints maxi=1,...,m,r=1,...,s

{(
f∗i + xioxij

)
.βi,

(
f∗r − yrjyro

)
.βr

}
≥ 0 should be satisfied for

j = 1, . . . , n (the second condition), too. In DMUs of feasible region, the first and second
conditions should be satisfied in DMUj, j = 1, . . . , n, simultaneously. Therefpre, the DMUs
of Sp

step 1 of STEM are determined using Equation (20).

Sp
step 1 of STEM =

{
DMUj |DMU j satisfies first and sec ond conditions, j = 1, . . . , n

}
. (20)
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The second target finding stage

The optimum objective function values of step 1 of the STEM model should be calcu-
lated and DMU targets of the model should be found in the second target finding stage. The
optimum objective function value of step 1 of STEM model is calculated by Equation (21).

h∗ = minDMUj∈Sp
step 1 of STEM

{
maxi=1,...,m,r=1,...,s

{(
f∗i + xioxij

)
.βi,

(
f∗r − yrjyro

)
.βr

}}
(21)

After that, the DMUs of Sp
step 1 of STEM which have optimum objective function value

shows the targets of DMUo in the model. Therefore, the DMUo targets in step 1 of STEM
are determined using Equation (22).

DMUoTargets in step 1 of STEM ={
DMUj |DMU j ∈ Sp

step 1 of STEM, j = 1, . . . , n, objective function value = h∗
}

.
(22)

3.2.3. Finding DMU Targets of Step 2 of STEM’s Model

Finding the optimum solutions of non-radial model 14 (step 2 of STEM), without
solving any mathematical models, is described in two target finding stages below.

The first target finding stage

First, DMUs of feasible region in step 2 of the STEM model should be found. In
DMUs of feasible region, three conditions should be regarded. The first and second con-
ditions should be tested for DMUj, j = 1, . . . , n as described in Section 3.2.2, but in the
second condition, βl, l = 1, . . . , m + s should be determined again. The third condition
relates to fq(u) ≥ fq(up) − ∆fq and fl(u) ≥ fl(up), l = 1, . . . , m + s, l 6= q constraints
that fq(u), ∆fq, and fl(u), l = 1, . . . , m + s, l 6= q are obtained from suggested target of
DM. So in DMUs of feasible region, constraints fq(u) ≥ −xloxlj − ∆fq, and fl(u) ≥ −xloxlj,
l = 1, . . . , m, l 6= q and fq(u) ≥ yljylo−∆fq, and fl(u) ≥ yljylo, l = m+ 1, . . . , m + s, l 6= q

for j = 1, . . . , n should be satisfied, too. So, the selected DMUj of Sp
step 2 of STEM set are

defined as Equation (23).

Sp
step 2 of STEM =

{
DMUj |DMU j satisfies first to third conditions, j = 1, . . . , n

}
. (23)

The second target finding stage

The optimum objective function value of step 2 of the STEM model should be calcu-
lated and DMU targets of mentioned model should be found in the second target finding
stage. The optimum objective function value of step 1 of the STEM model is calculated by
Equation (24).

h∗ = minDMUj∈Sp
step 2 of STEM

{
maxi=1,...,m,r=1,...,s

{(
f∗i + xioxij

)
.βi,

(
f∗r − yrjyro

)
.βr

}}
(24)

After that, the DMUs of feasible region which have optimum objective function values
show the targets of DMUo in the model (Equation (25)).

DMUoTargets in step 2 of STEM ={
DMUj |DMU j ∈ Sp

step 2 of STEM, j = 1, . . . , n, objective function value = h∗
}

.
(25)

It is remarkable that DMUoTarget in step 2 of STEM exists, if the best compromise
solution is found in step 2 of the STEM model (Section 3.1). The brief of applying extended
RBA to find non-radial FDH models targets of the interactive algorithm is shown in
Figure 2.
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Figure 2. Extended RBA for finding non-radial FDH models targets of the interactive algorithm.

4. Two Real Case Studies

The proposed technique was applied in two real case studies. The description is
provided in Sections 4.1 and 4.2.

4.1. The First Case Study: University Departments

The data set of 17 university departments of Islamic Azad University of Mobarakeh
Iran (mobarakeh.iau.ir), denoted by DMU01, . . . , DMU17, were extracted from reported
research [39]. These data were also used by another study [15]. Each DMUj, j = 1, . . . , 17
has two inputs and two outputs.

The names of inputs are “the number of bachelor students” and “the number of (full
time and part time) faculty members”. The names of outputs are “the number of graduates”
and “the number of research papers”. The data of the first case study are shown in Table 2.

As mentioned previously, in DEA models, choosing appropriate inputs, outputs, and
DMUs is an important subject. In this case study, the relationship n ≥ 3(m + s) existed
(17 ≥ 3(2 + 2)).

4.1.1. Applying the Interactive Algorithm for the First Case Study

To find DMU targets, the interactive algorithm (Figure 1), including two interactive
stages, was applied for universities departments.

Applying the first interactive stage

In this stage, efficient DMUs and their targets were determined. For o = 1, . . . , 17,
parameters xio = xij, i = 1, 2, j = 1, . . . , 17, and yro = yrj, r = 1, 2, j = 1, . . . , 17 were
defined. Non-radial model 12 was then composed for DMUj, j = 1, . . . , 17. The results of
solving of model 12 for DMUj, j = · · · . . . , 17 are shown in Table 3.
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Table 2. Data of the first case study.

DMUj I1 I2 O1 O2

DMU01 26 7 12 3

DMU02 29 6 10 7

DMU03 40 8 20 6

DMU04 42 7 12 6

DMU05 45 9 18 6

DMU06 92 12 40 2

DMU07 83 11 58 3

DMU08 87 14 52 7

DMU09 149 16 61 4

DMU10 177 17 54 12

DMU11 191 19 61 11

DMU12 185 14 73 4

DMU13 186 20 85 10

DMU14 74 12 36 5

DMU15 164 22 69 8

DMU16 225 20 80 5

DMU17 108 10 27 3

Table 3. The results of solving model 12 (related to the first interactive stage) in the first case study.

DMUj Zo
j θ∗1 θ∗2 ϕ∗1 ϕ∗2 DMUjTarget

DMU01 0 1 1 1 1 DMU01

DMU02 0 1 1 1 1 DMU02

DMU03 0 1 1 1 1 DMU03

DMU04 0 1 1 1 1 DMU04

DMU05 0.166 0.89 0.89 1.11 1 DMU03

DMU06 0.565 0.9 0.92 1.45 1.5 DMU07

DMU07 0 1 1 1 1 DMU07

DMU08 0 1 1 1 1 DMU08

DMU09 0 1 1 1 1 DMU09

DMU10 0 1 1 1 1 DMU10

DMU11 0 1 1 1 1 DMU11

DMU12 0 1 1 1 1 DMU12

DMU13 0 1 1 1 1 DMU13

DMU14 0 1 1 1 1 DMU14

DMU15 0 1 1 1 1 DMU15

DMU16 0.617 0.83 1 1.06 2 DMU13

DMU17 0 1 1 1 1 DMU17

Considering Table 3, M = {DMU01, DMU02, DMU03, DMU04, DMU07, DMU08,
DMU09, DMU10, DMU11, DMU12, DMU13, DMU14, DMU15, DMU17 and M′ = {DMU05,
DMU06, DMU16} were defined. Then DMUj Target =

{
DMUj

}
, DMUj ∈ M was also de-

fined. So, obtained results from 17 times (number of DMUs) composing and solving non-radial
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model 12 (the first interactive stage) showed that 14 DMUs lay on the efficient frontier, and
3 DMUs did not. By applying the second interactive stage, the DMU targets of these three
DMUs were distinguished.

Applying the second interactive stage

In the second interactive stage, the targets of DMUs belonging to set M′ were found
by STEM. First, the pay-off tables for non-proceed DMUs were constructed. As M′ =
{DMU05, DMU06, DMU16} 6= ∅ (m′ has 3 members), the interactive algorithm (Figure 1)
should be continued to find targets of M′ set considering DMU05, DMU06, and DMU16, one
by one. But here, the process of applying the interactive algorithm for DMU05, DMU06 and
DMU16 are described simultaneously. So, each of these three DMUs (DMUo = DMU05,
DMU06 and DMU16) was considered as a non-proceed DMU that their targets should

be defined.
Firstly, xio = xij, i = 1, 2, j = 1, . . . , 17, and yro = yrj, r = 1, 2, j = 1, . . . , 17 were

defined for DMUo, o = 5,6, and 16. Then the pay-off tables (Table 4) were constructed by
composing and solving of model 13 for fl(u), l = 1, . . . , 4. In model 13, n = 17 and m = s = 2
are considered for each DMUo, o = 5, 6, and 16.

Table 4. The results of solving model 13 for three DMUs (related to the second interactive stage) in
the first case study.

DMUo fl (l=1,. . . ,4) f∗ f1 f2 f3 f4 θ∗1 θ∗2 ϕ∗1 ϕ∗2

DMU05

f1 = −45θ1 −40 −40 −8 18 6 0.889 0.889 1.000 1.000

f2 = −9θ2 −8 −40 −8 18 6 0.889 0.889 1.000 1.000

f3 = 18ϕ1 20 −40 −8 20 6 0.889 0.889 1.111 1.000

f4 = 6ϕ2 6 −40 −8 18 6 0.889 0.889 1.000 1.000

DMU06

f1 = −92θ1 −83 −83 11 40 2 0.902 0.917 1.000 1.000

f2 = −12θ2 −11 −83 11 40 2 0.902 0.917 1.000 1.000

f3 = 40ϕ1 58 −83 11 58 2 0.902 0.917 1.450 1.000

f4 = 2ϕ2 3 −83 11 40 3 0.902 0.917 1.000 1.500

DMU16

f1 = −225θ1 −186 −186 20 80 5 0.827 1.000 1.000 1.000

f2 = −20θ2 −20 −186 20 80 5 0.827 1.000 1.000 1.000

f3 = 80ϕ1 85 −186 20 85 5 0.827 1.000 1.063 1.000

f4 = 5ϕ2 10 −186 20 80 10 0.827 1.000 1.000 2.000

It is mentionable that the required times to construct and solve model 13 in the
interactive algorithm were equal to 3 (the number of M′ set members). In this interactive
stage, finding a suitable DMU in feasible region as the target of DMUo, o = 5, 6, and 16
was desired which the value of fl, l = 1, . . . , 4 was as good as the suggested DMUo target,
o = 5, 6, and 16 by DM. Supposed that the targets of DMU05, DMU06 and DMU16 according
to DM’s opinions were DMU03, DMU07 and DMU13, respectively. So, suggested targets
of DM were considered as DM’s opinions for fl, l = 1, . . . , 4. After that, the first iteration
of STEM (p = 1) was started. In step 1 of STEM (calculation phase), first πl, l = 1, . . . , 4
was calculated by Equation (4) considering Table 4, then βl =

πl
∑4

d=1 πd
, l = 1, . . . , 4 was

calculated as shown in Table 5.
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Table 5. Calculating parameters for three DMUs to compose model 14 of step 1 of STEM (p = 1)
(related to the second interactive stage) in the first case study.

DMUo l = 1 l = 2 l = 3 l = 4

DMU05

fmin
l −40 −8.000 18.000 6.000

f∗l −40 −8.000 20.000 6.000

πl 0 0.000 0.006 0.000

βl 0 0.000 1.000 0.000

DMU06

fmin
l −83 11.000 40.000 2.000

f∗l −83 −11.000 58.000 3.000

πl 0 2.000 0.008 0.167

βl 0 0.920 0.004 0.077

DMU16

fmin
l −186 20.000 80.000 5.000

f∗l −186 −20.000 85.000 10.000

πl 0 1.000 0.001 0.100

βl 0 0.908 0.001 0.091

Then model 14 for DMU05, DMU06 and DMU16 (Step 1 of STEM for p = 1) were
composed. The results of solving these models and DM’s opinions about them are shown
in Table 6. As seen in the last column of Table 6, the targets of DMU05, DMU06 and
DMU16 via solving of model 14 (Step 1 of STEM for p = 1) were DMU03, DMU07 and
DMU13, respectively.

Table 6. The results of solving model 14 (Step 1 of STEM for p = 1) and DM’s opinions about them
for three DMUs (related to the second interactive stage) in the first case study.

DMUo Target1 Target2 Target3 Target4 Target

DMU05

Model 14 40 8 20 6 DMU03

DM’s opinions 40 8 20 6 DMU03

∆fl
0 0 0 0 -

Unsatisfied 0 0 0 0 -

DMU06

Model 14 83 1 58 3 DMU07

DM’s opinions 83 11 58 3 DMU07

∆fl
0 −10 0 0 -

Unsatisfied 0 0 0 0 -

DMU16

Model 14 86 0 85 0 DMU13

DM’s opinions 186 20 85 10 DMU13

∆fl
−100 −20 0 −10 -

Unsatisfied 0 0 0 1 -

As described previously, these targets were acceptable according to DM’s opinion, too.
As the obtained solutions for DMU05 and DMU06 were satisfied via DM’s opinions, the
best compromise solutions were obtained for these DMUs.

Then, DMUo (DMU05 and DMU06) from M′ set removed (M′ = {DMU16} 6= ∅ (M′

has 1 member). As the value of the fourth target of DMU16 was not satisfied via DM’s opin-
ions, the obtained solution was not the best compromise solution. So, composing model 14
related to Step 2 of STEM (p = 1) was required for DMU16. The required parameters were
calculated as shown in Table 7.
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Table 7. Calculated parameters through solving of step 2 of STEM (p = 1) models for DMU16 (the
first case study).

DMUo l i or r θ∗i or ϕ∗r fl
Unsatisfied

fl

Target
(DM) ∆fl

βl

DMU16

1 i = 1 0.827 −186 0 186 0.000 0.000

2 i = 2 1.000 20 0 20 0.000 0.000

3 r = 1 1.063 85 0 85 0.000 0.000

4 r = 2 2.000 0 1 10 1.000 0.000

Non-radial model 14 for DMU16 was then composed for the first iteration of step 2 of
STEM. The results of solving this model showed that there was only one similar unsatisfied
objective function (fourth objective function) in two consecutive steps of STEM. There-
fore, the target of DMU16 could not be considered as DMU13. Therefore, the interactive
algorithm was continued by asking DM to suggest a new target for each DMUo. DM
did not suggest new DMUs target for DMU16 so there were no targets for DMU16 in the
FDH model. Then, DMUo (DMU16) from M′ set was removed (M′ = ∅). As there was
no non-proceed DMUs and the process of targets determination for all DMUs had been
carried out (M′ = ∅), the interactive algorithm was finished. The results of applying the
interactive algorithm for all DMUs are shown in Table 8.

Table 8. The brief of applying the interactive algorithm for finding DMU targets (the first case study).

DMUo
Member of

M Set

Obtained Target by
Solving of Step 1 of

STEM Model

Obtained
Target via

DM’s
Opinions

Obtaining
DM’s Target

Related Interactive Stages of the
Interactive Algorithm Case

DMU01

√
- - -

As DMU was a member of M set,
target was itself 1

DMU02

DMU03

DMU04

DMU07

DMU08

DMU09

DMU10

DMU11

DMU12

DMU13

DMU14

DMU15

DMU17

DMU05 × DMU03 DMU03 √ The best compromise solution via
DM’s opinions was found in first

iteration of step 1 of STEM

2
DMU06 DMU07 DMU07

DMU16 × DMU13 DMU13 ×

The best compromise solution was
not found because there was only
one similar unsatisfied objective
function in the step 1 and first

iteration of step 2 of STEM

3
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As shown in the last column of Table 8, applying the interactive algorithm for univer-
sity departments are considered as three cases. DMU01, DMU02, DMU03, DMU04, DMU07,
DMU08, DMU09, DMU10, DMU11, DMU12, DMU13, DMU14, DMU15, and DMU17 were
members of M set and the targets of these DMUs were themselves (case 1). As best com-
promise solutions were found through step 1 of STEM for DMU05, DMU06, these DMUs
belonged to case 2. As there was only one similar unsatisfied objective function in two
consecutive steps of STEM for DMU16, this DMU belonged to case 3.

It should be mentioned that in the first case study, 14 DMUs from 17 DMUs (about 82%)
lay on the efficient frontier. Moreover, non-radial FDH models 13 and 14 were composed
and solved, three and four times through the second interactive stage, respectively. Here,
the process of target determination for all DMUs was carried out, and the interactive
algorithm finished. In fact, the required repetition times for composing and solving non-
radial model 14 depend on DM’s opinions about suitable targets for each considered DMUo.

4.1.2. Applying Extended RBA for the First Case Study

As described in Section 4.1.1, for applying the interactive algorithm for the first case
study, solving of non-radial FDH models 12, 13, model 14 of step 1 of STEM (p = 1), and
model 14 of step 2 of STEM (p = 1), 17, 3, 3, and 1 times were needed, respectively. So,
solving 24 mixed 0–1 LP models were required to find all DMU targets. The DMU targets
of mentioned non-radial FDH models could be found using extended RBA through two
target finding stages without solving any mathematical programming models. In this
section, applying extended RBA for finding DMU targets of these non-radial FDH models
(models 12–14 for DMU05 of university departments) are described. First xio = xij, i = 1, 2,
and yro = yrj, s = 1, 2 (j = 1, . . . , 17) were defined for DMUo = DMU05 (Figure 2).

Target finding of non-radial FDH models 12 and 13 for DMU05 in the first case study
In this regard, DMUs of feasible region should be found in applying the first target

finding stage. Firstly, DMUs of feasible region (Sstep 0 of STEM) should be found using
Equation (15) (Figure 2). In DMUs of feasible region, constraints

xij
xio
≤ 1, i = 1, 2 and

yrj
yro
≥ 1, r = 1, 2 (j = 1, . . . , 17) should be satisfied. The results of checking constraints of

the first condition are shown in Table 9. As it is observed in the last column of Table 9, only
DMU03 and DMU05 satisfied all four constraints of the first condition. So, Sstep 0 of STEM =
{DMU03, DMU05}.

Table 9. Applying the first target finding stage for DMU05 (the first case study).

DMUj I1 I2 O1 O2
x1j
x1o

x1j
x1o
≤1 x2j

x2o

x2j
x2o
≤1

y1j
y1o

y1j
y1o
≥1

y2j
y2o

y2j
y2o
≥1

Sstep 0 of STEM
(Equation (15))

DMU01 26 7 12 3 0.578 0.578 0.778 0.778 0.667 × 0.500 × ×
DMU02 29 6 10 7 0.644 0.644 0.667 0.667 0.556 × 1.167 1.167 ×
DMU03 40 8 20 6 0.889 0.889 0.889 0.889 1.111 1.111 1.000 1.000

√

DMU04 42 7 12 6 0.933 0.933 0.778 0.778 0.667 × 1.000 1.000 ×
DMU05 45 9 18 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

√

DMU06 92 12 40 2 2.044 × 1.333 × 2.222 2.222 0.333 × ×
DMU07 83 11 58 3 1.844 × 1.222 × 3.222 3.222 0.500 × ×
DMU08 87 14 52 7 1.933 × 1.556 × 2.889 2.889 1.167 1.167 ×
DMU09 149 16 61 4 3.311 × 1.778 × 3.389 3.389 0.667 × ×
DMU10 177 17 54 12 3.933 × 1.889 × 3.000 3.000 2.000 2.000 ×
DMU11 191 19 61 11 4.244 × 2.111 × 3.389 3.389 1.833 1.833 ×
DMU12 185 14 73 4 4.111 × 1.556 × 4.056 4.056 0.667 × ×
DMU13 186 20 85 10 4.133 × 2.222 × 4.722 4.722 1.667 1.667 ×



Appl. Sci. 2021, 11, 10626 20 of 33

Table 9. Cont.

DMUj I1 I2 O1 O2
x1j
x1o

x1j
x1o
≤1 x2j

x2o

x2j
x2o
≤1

y1j
y1o

y1j
y1o
≥1

y2j
y2o

y2j
y2o
≥1

Sstep 0 of STEM
(Equation (15))

DMU14 74 12 36 5 1.644 × 1.333 × 2.000 2.000 0.833 × ×
DMU15 164 22 69 8 3.644 × 2.444 × 3.833 3.833 1.333 1.333 ×
DMU16 225 20 80 5 5.000 × 2.222 × 4.444 4.444 0.833 × ×
DMU17 108 10 27 3 2.400 × 1.111 × 1.500 1.500 0.500 × ×
DMUo =
DMU05

45 9 18 6 - - - - - - - - -

The optimum objective function values and DMU targets should then be found in
applying the second target finding stage. At first, the optimum objective function values of
models should be calculated by Equations (16) and (17) (Figure 2). The objective function
values of DMU03 and DMU05 (in model 12, Zo

j = 1
2 ∑2

r=1
yrj
yro
− 1

2 ∑2
i=1

xij
xio

, j = 1, . . . , 17, and
in model 13, f1(u) = −x1ox1j, f2(u) = −x2ox2j, f3(u) = y1oy1j, f4(u) = y2oy2j) are shown in
Table 10.

Table 10. Applying the second target finding stage for DMU05 (the first case study).

DMUj

Zo
j

(Equation
(16))

Model 12 Targets
(Equation (18))

f1
(Equation

(17))

f1 Targets
(Equation

(19))

f2
(Equation

(17))

f2 Targets
(Equation

(19))

f3
(Equation

(17))

f3 Targets
(Equation

(19))

f4
(Equation

(17))

f4 Targets
(Equation

(19))

DMU03 0 DMU03 −40 DMU03 −8 DMU03 20 DMU03 6 DMU03

DMU05 0 × −45 × −9 × 18 × 6 DMU05

Max 0 - −40 - −8 - 20 - 6 -

The last row of Table 10 shows the maximum values of Zo
j , DMUj ∈ Sstep 0 of STEM and

fl, l = 1, . . . , 4, respectively. These values show the optimum objective function value of
each model (Z∗o, f∗l , l = 1, . . . , 4). The DMUo targets were then found by comparing the
optimum objective function values of each model with the objective function value of each
DMU by Equations (18) and (19) (Figure 2). It is considerable that non-radial model 13
with f4 objective function had alternative solutions.

Target finding of non-radial model 14 for DMU05 in the first case study

First, step 1 of STEM (p = 1) should be considered. DMUs of feasible region (in
step 1 of STEM model) should be found through applying the first target finding stage.
First, DMUs belonging to the feasible region should be found. In DMUs of feasible
region, two conditions should be satisfied. Firstly, constraints

xij
xio
≤ 1, i = 1, 2, and

yrj
yro
≥ 1, r = 1, 2, (j = 1, . . . , 17) should be satisfied (the first condition). As it is seen in

Table 9, only DMU03 and DMU05 satisfied these constraints. Moreover, the constraints
maxl{(f∗l − fl(u)).βl} ≥ 0, l = 1, . . . , 4 should be satisfied for each DMU of feasible region
(the second condition). Checking the second condition for DMU03 and DMU05 are shown
in Table 11.

As seen in Table 11, the constraints of the second condition were also satisfied for
DMU03 and DMU05. So, S1

step 1 of STEM = {DMU03, DMU05}.
The optimum objective function value of step 1 of STEM model was then calculated,

and DMU targets were found through applying the second target finding stage. With
respect to Equation (21), the minimum values of the left-hand side of the second condi-
tion for DMU03 and DMU05 showed the optimum objective function value of non-radial
model 14 (last row of Table 11). As is seen in Equation (22), each DMU with an objec-
tive function value equal to the optimum objective function value, showed the targets
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of DMUo. So, the target of DMU05 was DMU03, as seen in the last column of Table 11
(DMU05Targets in step 1 of STEM = {DMU03}).

Table 11. Applying target finding stages 1–2 to solve step 1 of STEM (p = 1) for DMU05 (the first case study).

DMUj. (f∗1−f1(u)).β1 (f∗2−f2(u)).β2 (f∗3−f3(u)).β3 (f∗4−f4(u)).β4
S1

step 1 of STEM
(Equation (20))

hj
(Equation (21))

Targets
(Equation (22))

DMU03 0 0 0 0
√

0 DMU03

DMU05 0 0 2 0
√

2 ×
h∗ = min max
(f∗l − fl(u)).βl
(l = 1, . . . , 4)

- - - - - 0 -

It is mentionable that the obtained results from target finding of all non-radial FDH
models 12–14 for the first case study for DMU05 using extended RBA are the same as the
results obtained from solving the mentioned mathematical models. Here, target finding of
three non-radial FDH models of 24 mathematical programming models using extended
RBA were described. A similar process should be undertaken to find targets of other
21 non-radial FDH models.

4.2. The Second Case Study: Operations Strategies of Fars Province Pharmaceutical
Distributing Companies

By considering expert opinions, 13 active pharmaceutical distributing companies (Fars
province of Iran) in 2019 were investigated. These companies were Daroo Pakhsh, Pakhshe
Razi, Adora Teb, Mahya Daroo, Alborz, Hejrat, Daroo Gostare Razi, Behestan Pakhsh,
Ghasem Iran, Yasin, Ferdos, Elit Daroo, and Soha Helal. The operations strategies of these
companies denoted as DMU01, . . . , DMU13.

There are five generic performance objectives including cost, delivery speed, quality,
dependability, and flexibility. Joining the market requirements through a beneficial method
for operations is the purpose of these objectives. These objectives are applicable for different
operations. Satisfaction of customers can be obtained through reaching these mentioned ob-
jectives [40]. According to expert opinions, these five generic performance objectives were
very important in the operation strategies of Fars province pharmaceutical distributing
companies. In this regard, cost was defined as the lower cost for producing products and
services, and decreasing the cost of distributing medicinal drugs and increasing customers
are desirable for pharmaceutical distributing companies. Delivery speed was defined as an
elapsed time between the beginning of an operations process and its end, and increasing
trucks, vans, and motorcycles numbers could improve delivery speed. Quality was defined
as fit-for-purpose, and comparing distributed medicinal drugs with orders and checking
the temperature of transportation refrigerators could improve quality. Dependability was
defined as keeping delivery promises and distributing medicinal drugs in the promised
time and increasing transportation vehicles could improve dependability. Flexibility was
defined as treating the operation as a ‘black box’ and considering the types of flexibility
that would contribute to its competitiveness (product or service flexibility, mix flexibility,
volume flexibility, and delivery flexibility) and having up to date information about existing
medical drugs and having a powerful team to prepare them could improve flexibility.

As mentioned previously, in DEA models, choosing appropriate inputs and outputs
is an important subject. As classical DEA models are based on decreasing inputs and
increasing outputs, in operations strategies of Fars province pharmaceutical distributing
companies, cost and delivery speed were considered as inputs that denoted by I1 and I2.
Furthermore, quality, dependability, and flexibility were considered as outputs that were
denoted by O1, O2 and O3. These inputs and outputs were relevant to the research area
and expert(s) confirmed them. All DMUs in the research area were considered as DMUs.
So, each DMUj, j = 1, . . . , 13 had two inputs (I1 and I2), and three outputs (O1, O2 and
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O3). As mentioned previously, establishing a relationship n ≥ 3(m + s) between inputs,
outputs, and DMU numbers is recommended. Here, all DMUs in the research area were
considered and increasing DMUs to reach exact relationship n ≥ 3(m + s) was impossible
in a practical view (this relationship almost existed (13 ∼= 3(2 + 3)). As we will see later,
only two DMUs were efficient in the second case study. So, in this case study, decreasing
the number of DMUs did not also create difficulty in the theoretical view.

As only experts accessed real data related to inputs and outputs of each DMU, expert
judgement was used. With respect to each input and output, the performance of each
DMU was scaled by 1 to 9 considering expert opinions (Table 12). The data of inputs and
outputs of operations strategies of Fars province pharmaceutical distributing companies
(the second case study) are shown in Table 13.

Table 12. Performance scales for inputs and outputs.

Performance
Scale Very Low Low Moderate High Very High

Outputs 1 3 5 7 9

Inputs 9 7 5 3 1

Table 13. Data of the second case study.

DMUj I1 I2 O1 O2 O3

DMU01 1 1 8 7 8

DMU02 1 2 8 6 6

DMU03 3 4 8 7 4

DMU04 2 5 5 6 5

DMU05 1 1 5 5 6

DMU06 2 3 6 8 7

DMU07 3 4 4 3 6

DMU08 3 3 5 5 3

DMU09 2 2 3 6 4

DMU10 6 4 7 7 2

DMU11 5 4 4 7 4

DMU12 5 5 4 7 6

DMU13 5 3 6 4 7

As the process of applying the hybrid technique for the second case study had a lot of
similarity with the first case study, its main results are described in Sections 4.2.1 and 4.2.2.
The details of applying the method for the second case study are shown in Appendix A.

4.2.1. The Main Results of Applying the Interactive Algorithm for the Second Case Study

To find DMU targets for the second case study, the interactive algorithm, including
two interactive stages (Figure 1), was applied. In applying the first interactive stage
(Appendix A, Appendix A.1), non-radial model 12 was composed and solved 13 times.
The results show that only 2 DMUs (about 15%) lay on the efficient frontier, and 11 DMUs
did not (Appendix A, Table A1). By applying the second interactive stage (Appendix A,
Tables A2–A6), DMU07 target was obtained, but DMU04 and DMU10 target were not
obtained. The brief results of applying the interactive algorithm (Figure 1) for all DMUs
are shown in Table 14.
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Table 14. The brief of applying the interactive algorithm for finding DMU targets (the second case study).

DMUo
Member of

M set

Obtained
Target by

Solving of
Step 1 of

STEM Model

Obtained
Target via

DM’s
Opinions

Obtaining
DM’s Target

Related Interactive Stages of the
Interactive Algorithm Case

DMU01 √
- - - As DMU was a member of M set,

target was itself 1
DMU06

DMU02

× DMU01 DMU01
√ The best compromise solution via

DM’s opinions was found in step 1
or 2 of STEM

2

DMU03

DMU05

DMU07

DMU09

DMU11

DMU12

DMU04

× DMU01 DMU06 ×

The best compromise solution was
not found because there was only
one similar unsatisfied objective
function in the step 1 and first

iteration of step 2 of STEM

3DMU08

DMU13

DMU10 × DMU01 DMU06 ×

Compromise solution was not
found because calculating value of

beta l (l = 1, . . . ,5) were not
possible for the first cycle of step 2

of STEM

4

As seen in the last column of Table 14, applying the interactive algorithm for the
second case study can be categorized into four cases. As shown in Table 14, DMU01 and
DMU06 are members of M set and the target of these DMUs are themselves (case 1). The
obtained targets by solving step 1 of the STEM model and via DM’s opinions of DMU02,
DMU03, DMU05, DMU07, DMU09, and DMU11 are DMU01. By applying step 1 or 2 of STEM,
the best compromise solutions for these DMUs are found (DMU01) via DM’s opinions
(case 2). By solving step 1 of the STEM model, DMU01 is obtained as the target of the rest
DMUs. But the target of these DMUs via DM’s opinions are DMU06 (case 3 and 4). For
DMU04, DMU08, and DMU13, a compromise solution is not found because there is only
one similar unsatisfied objective function in step 1 and the first iteration of step 2 of STEM
(case 3). The best compromise solution is not obtained for DMU10 because βl, l = 1, . . . , 5
is not calculable for the first iteration of step 2 of STEM (case 4). The required repetition
times of composing and solving non-radial model 14, depends on DM’s opinions about
suitable target for each considered DMUo. In Appendix A, finding the target of a DMU in
each case are described.

4.2.2. The Main Results of Applying Extended RBA for the Second Case Study

As described in Appendix A.2 (Appendix A), through applying the interactive algo-
rithm for the second case study, non-radial FDH models 12, 13, non-radial FDH model 14 of
step 1 of STEM (p = 1), and non-radial model 14 of step 2 of STEM (p = 1) should be solved
13, 11, 11, and 5 times, respectively. So, finding targets of 40 mixed 0–1 LP models were
required. The target of these non-radial FDH models could be obtained using extended
RBA through two target finding stages (Figure 2). In Appendix A.2, applying extended
RBA for solving three of these non-radial FDH models (models 12–14 for DMU05 of the
second case study) are described.
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The detail results of applying extended RBA (Figure 2) to solve non-radial FDH
models 12–14 for DMU07 of the second case study (related non-radial FDH models in the
interactive algorithm) are described in Appendix A.2 (Appendix A). Each target of model
was found using two target finding stages for DMU07 of the second case study considering
related conditions. xio = xij, i = 1, . . . , 3, and yro = yrj, s = 1, 2 (j = 1, . . . , 13) were firstly
defined for DMUo = DMU07.

Applying extended RBA for non-radial FDH models 12 and 13 (Appendix A,
Appendix A.2), showed that Sstep 0 of STEM = {DMU01, DMU02, DMU05, DMU06, DMU07}
and some non-radial FDH models had alternative targets. Applying extended RBA for
non-radial FDH model 14 (Appendix A, Appendix A.2), showed that Sstep 1 of STEM =
{DMU01, DMU02, DMU05, DMU06, DMU07} and DMU01 was the only target (Table A9).

By solving step 1 of the STEM model (non-radial FDH model 14), DMU01 was obtained
as the DMU07 target (Appendix A, Table A10). However, the obtained target via DM’s
opinions was DMU06. A compromise solution was not found because no feasible integer
solution could be found in the first iteration of step 2 of STEM.

It is mentionable that the results obtained from solving of all non-radial FDH mod-
els 12–14 for the second case study DMU07 using extended RBA were the same as the
results obtained from solving of mentioned models using regular approaches. As described
in Appendix A.2 (Appendix A), solving three models of 40 non-radial FDH models were
described. A similar process should be undertaken to solve other 37 mathematical models.

As mentioned previously, the suggested hybrid technique contains the interactive
algorithm (the first part) and extended RBA (the second part). The interactive algorithm
contains two stages. In the interactive stage 1, inputs, outputs, DMUs, and then efficient
DMUs and their targets are determined. According to the proposed technique, using real
data is preferred rather than gathering them from experts’ opinions. In the first case study,
inputs, outputs, and DMUs information were real and extracted from a published paper.
In the second case study, only experts accessing the real data related to inputs and outputs
of each DMU. So, experts’ judgements, in situations where experts accessed real data, were
used. The number of M′ set members are determined by composing and solving non-radial
model 12 for all DMUs. The required number of iterations for the interactive algorithm
depends on the number of M′ set members. Non-radial model 12 should be constructed
and solved n (number of DMUs) times. It is considerable that the number of DMUs in the
first and second case studies are 17 and 13, respectively. If the ratio of “the number of M′

set members” to “all DMUs” is near to 0, the interactive algorithm needs fewer iterations.
If this ratio is near to 1, the interactive algorithm needs more iterations. As it is found for
applying the first interactive stage in the first case study, if the number of DMUs that lie on
the efficient frontier is considerable (14 DMUs from 17 DMUs, about 82%), the interactive
requires fewer iterations. However, as it is found for the second case study, if the number
of DMUs that lie on the efficient frontier of model 12 is not considerable (2 DMUs from
13 DMUs, about 15%), the interactive algorithm requires more iterations.

In the interactive stage 2, non-efficient DMUs targets are determined using STEM. The
required times to construct and find targets of model 13 (step 0 of STEM) are equal to the
number of M′ set members. The number of M′ set members in the first and second case
studies were 3 and 11, respectively. The required time for constructing and finding targets
of model 14 (steps 1 and 2 of STEM) is dependent on DM’s opinions about a suitable target
for each considered DMUo. These numbers in the first and second case studies were 3 and
11, respectively. Therefore, by applying 3 and 11 times of interactive stage 2, the process
of targets determination for non-efficient DMUs of the first and second case studies was
carried out, respectively, and the interactive algorithm finished. Moreover, solving 24 and
40 non-radial FDH models were required in the first and second case study, respectively.

5. Conclusions

Finding DMU targets or DMU projections is useful for strategic planning in some
organizations. In these organizations, a convexity assumption does not exist, and decisions
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are made on the basis of pareto solutions. Therefore, these properties should be considered
in practical models. Moreover, by eliminating the convexity assumption, FDH models can
be applied. As suggesting a technique with mentioned properties has been neglected in
previous research, the main novelty of this paper is in its suggestion of this technique. In
this regard, the answers to the two research questions are as follow:

(a) Is it possible to propose a technique to find all DMU targets in non-radial FDH models
based on ASBM using IM? Using IMs such as STEM to find DMU targets in non-radial
FDH models on the basis of slack variables can be an important subject and it is
applied in the proposed technique.

(b) Is it possible to find DMU targets of non-radial FDH models in the proposed technique
without solving any mathematical models? In this research, in addition to using STEM
for finding DMU targets in non-radial FDH models, DMU targets of non-radial FDH
models were found by extended RBA without solving any mathematical models.

As has been explained previously, after determining inputs, outputs and DMUs in the
first and second case studies, four DMUs from 17 DMUs (76% of DMUs) and two DMUs
from 13 DMUs (15% of them) lay on the efficient frontier, respectively. So, in applying
the second interactive stage for the first and second case studies, 76% and 20% of DMUs
could be selected as targets, respectively. Moreover, the targets of all non-radial FDH
models were found using extended RBA without solving any mathematical programming
model. In fact, the obtained results can be extended to other cases considering practical
and theoretical views.

As mentioned previously, using real data related to inputs, outputs, and DMUs is
preferred rather than gathering them from experts’ opinions according to the proposed
technique. However, if gathering real data was impossible, experts’ judgement would be
used. In this situation, experts should access real data or have enough information about
the problem. The existence of, and access to, such experts can be considered as the first
limitation of this study. We assumed that there are no outliers, and this assumption can be
considered as the second limitation of this research. Furthermore, all required data existing
in deterministic form can be considered as the third limitation of this study.

Detecting outliers and investigating the sensitivity of the modeling approach to out-
liers in the proposed technique, finding DMU targets using other IMs, using impressive
data in supply chain management, and adopting the proposed technique in situations
where data are fuzzy can be considered as future studies.
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Appendix A

The application of the main results of the interactive algorithm for the second case
study are described in Section 4.2. The detailed results of the application of the interactive
algorithm (Figure 1) for the second case study are described here.

Appendix A.1. The Detailed Results of Applying the Interactive Algorithm for the Second
Case Study

For determination of DMU targets, the interactive algorithm, including two interactive
stages (Figure 1), was applied for the second case study. For the determination of efficient
DMUs and their targets, the interactive stage was applied. For o = 1, . . . , 13, parameters
xio = xij, i = 1, 2, j = 1, . . . , 13, and yro = yrj, r = 1, 2, 3, j = 1, . . . , 13 were defined. Then
non-radial FDH model 12 was made for DMUj, j = 1, I, 13. These non-radial FDH models
were solved, and the obtained results shown in Table A1.

Table A1. The results of solving model 12 (related to the first interactive stage) in the second
case study.

DMUj Zo
j θ∗1 θ∗2 ϕ∗1 ϕ∗2 ϕ∗3

DMUjTarget
(Model 12)

DMU01 0.000 1.000 1.000 1.000 1.000 1.000 DMU01

DMU02 0.416 1.000 0.500 1.000 1.170 1.330 DMU01

DMU03 1.041 0.330 0.250 1.000 1.000 2.000 DMU01

DMU04 1.105 0.500 0.200 1.600 1.170 1.600 DMU01

DMU05 0.444 1.000 1.000 1.600 1.400 1.330 DMU01

DMU06 0.000 1.000 1.000 1.000 1.000 1.000 DMU06

DMU07 1.597 0.330 0.250 2.000 2.330 1.330 DMU01

DMU08 1.555 0.330 0.330 1.600 1.400 2.670 DMU01

DMU09 1.444 0.500 0.500 2.670 1.170 2.000 DMU01

DMU10 1.839 0.170 0.250 1.140 1.000 4.000 DMU01

DMU11 1.441 0.200 0.250 2.000 1.000 2.000 DMU01

DMU12 1.244 0.200 0.200 2.000 1.000 1.330 DMU01

DMU13 1.142 0.200 0.330 1.330 1.750 1.140 DMU01

M = {DMU01, DMU06} and m′ = {{DMU02, DMU03, DMU04, DMU05, DMU07, DMU08,
DMU09, DMU10, DMU11, DMU12, DMU13} are defined with consideration to Table A1. Then
DMUj Target =

{
DMUj

}
, was also defined. To apply the second interactive stage, the pay-off

table for non-proceed DMUs was constructed. As M′ 6= ∅ (M′ has 11 members), the algorithm
should be continued (to find targets of M′ set). Targets of all members of M′ should be deter-
mined individually. Suppose that only DMU04, DMU7, and DMU10 were non-proceed DMUs
that defined their targets as desired. Therefore, suppose M′ = {DMU04, DMU07, DMU10}
(a sample DMU in cases 2–4 in Table 14). Also suppose that the finding process of DMUs
targets were carried out simultaneously, and (DMUo = DMU04, DMU7, and DMU10).

At first, xio = xij, i = 1, 2, j = 1, . . . , 13, and yro = yrj, r = 1, 2, 3, j = 1, . . . , 13 were
defined for DMUo, o = 4, 7, and 10. Then the pay-off tables (Table A2) were created by
composing and solving non-radial model 13 for fl(u), l = 1, . . . , 5. N = 13, m = 2 and
s = 3 were considered for each DMUo in model 13. The calculation and decision phases
of STEM were then applied. Finding the suitable DMUs in feasible region were suitable
targets of DMUo in which the valuse of fl, l = 1, . . . , 5 were as good as the suggested
DMUo target by DM. Suppose that DM suggests DMU06 as the target of DMU04, DMU07,
and DMU10. So, suggested targets of DM were considered as DM’s opinions for fl, l =
1, . . . , 5 for each DMUo. After that, the first iteration of STEM (p = 1) began. With
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respect to step 1 of STEM, πl, l = 1, . . . , 5 was calculated by Equation (3), and then
βl =

πl
∑5

d=1 πd
, l = 1, . . . , 5 was obtained as seen in Table A3. Then model 14 (Step 1 of

STEM for p = 1) was composed for DMU04, DMU07, and DMU10. The results of this model
solving and DM’s opinions about them are shown in Table A4. As seen in the last column
of Table A4, the obtained target through solving of non-radial model 14 (step 1 of STEM
(p = 1)) for all DMU04, DMU07, and DMU10 was DMU01. As described previously, DM
suggested DMU06 as the target of DMU04, DMU07, and DMU10. Therefore, the interactive
algorithm should be continued for these DMUs one by one. Here, these three DMUs were
considered as DMUo, simultaneously.

Table A2. The results of solving model 13 for three DMUs (related to the second interactive stage) in the second case study.

DMUo fl (l = 1, . . . , 5) f∗ f1 f2 f3 f4 f5 θ∗1 θ∗2 ϕ∗1 ϕ∗2 ϕ∗3 Target

f1 = −1θ1 −1 −1 −1 5 6 5 0.500 0.200 1.000 1.000 1.000 DMU01

f2 = −2θ2 −1 −1 −1 5 6 5 0.500 0.200 1.000 1.000 1.000 DMU01

DMU04 f3 = 8ϕ1 8 −1 −1 8 6 5 0.500 0.200 1.600 1.000 1.000 DMU01

f4 = 6ϕ2 8 −2 −3 5 8 5 1.000 0.600 1.000 1.333 1.000 DMU06

f5 = 6ϕ3 8 −1 −1 5 6 8 0.500 0.200 1.000 1.000 1.600 DMU01

f1 = −3θ1 −1 −1 −1 4 3 6 0.333 0.250 1.000 1.000 1.000 DMU01

f2 = −4θ2 −1 −1 −1 4 3 6 0.333 0.250 1.000 1.000 1.000 DMU01

DMU07 f3 = 4ϕ1 8 −1 −1 8 3 6 0.333 0.250 2.000 1.000 1.000 DMU01

f4 = 3ϕ2 8 −2 −3 4 8 6 0.667 0.750 1.000 2.667 1.000 DMU06

f5 = 6ϕ3 8 −1 −1 4 3 8 0.333 0.250 1.000 1.000 1.333 DMU01

f1 = −6θ1 −1 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU01

f2 = −4θ2 −1 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU01

DMU10 f3 = 7ϕ1 8 −1 −1 8 7 2 0.167 0.250 1.143 1.000 1.000 DMU01

f4 = 7ϕ2 7 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU01

f5 = 2ϕ3 8 −1 −1 7 7 8 0.167 0.250 1.000 1.000 4.000 DMU01

As shown in Table A4, the value of f4 for DMU04, DMU07 and DMU10 was not satisfied
via DM’s opinions. Therefore, the obtained solutions for considered DMUs were not the
best compromise solutions and composing model 14 (the first iteration of step 2 of STEM)
for these three DMUs were required.

The required parameters for step 2 of STEM (p = 1) considering DMU07 and DMU10
were calculated as shown in Table A5.

Table A3. Calculating parameters for three DMUs to compose model 14 of step 1 of STEM (p = 1) in
the second case study.

DMUo l = 1 l = 2 l = 3 l = 4 l = 5

DMU04

fmin
l −2.000 −3.000 5.000 6.000 5.000

f∗l −1.000 −1.000 8.000 8.000 8.000

πl 0.250 0.133 0.075 0.042 0.075

βl 0.435 0.232 0.130 0.072 0.130

DMU07

fmin
l −2.000 −3.000 4.000 3.000 6.000

f∗l −1.000 −1.000 8.000 8.000 8.000

πl 0.167 0.167 0.125 0.208 0.042

βl 0.235 0.235 0.176 0.294 0.059
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Table A3. Cont.

DMUo l = 1 l = 2 l = 3 l = 4 l = 5

DMU10

fmin
l −1.000 −1.000 7.000 7.000 2.000

f∗l −1.000 −1.000 8.000 7.000 8.000

πl 0.000 0.000 0.018 0.000 0.375

βl 0.000 0.000 0.045 0.000 0.955

Table A4. The results of solving model 14 (Step 1 of STEM for p = 1) and DM’s opinions about them
for three DMUs in the second case study.

DMUo Target1 Target2 Target3 Target4 Target5 Target

DMU04

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01

DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06

∆fl
−1.000 −2.000 2.000 −1.000 1.000 -

Unsatisfied 0 0 0 1 0 -

DMU07

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01

DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06

∆fl
−1.000 −2.000 2.000 −1.000 1.000 -

Unsatisfied 0 0 0 1 0 -

DMU10

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01

DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06

∆fl
−1.000 −2.000 2.000 −1.000 1.000 -

Unsatisfied 0 0 0 1 0 -

As can be seen in the last column of Table A5, all βl, l = 1, . . . , 5 were not calculable
(n.c.) for DMU10 (because 0

0 occurs in calculating βl, l = 1, . . . , 5). So, composing non-
radial FDH model 14 for the second iteration of step 2 of STEM for DMU10 was not
possible. This means that the best compromise solution for DMU10 could not be obtained.
As DM suggested no new target for DMU10 in restarting the second interactive stage, no
target existed in FDH model for DMU10 according to DM’s opinion, M′ = M′ −DMU10
(M′ = {DMU04, DMU07}).

Table A5. Calculated parameters through solving step 2 of the STEM model (p = 1) considering two
DMUs (the second case study).

DMUo l i or r θ∗i or ϕ∗r fl Unsatisfied fl
Target
(DM) ∆fl

βl

1 i = 1 0.500 −1.000 0 2.000 −1.000 0.000

2 i = 2 0.200 −1.000 0 3.000 −2.000 0.000

DMU04 3 r = 1 1.600 8.000 0 6.000 2.000 0.000

4 r = 2 1.167 7.000 1 8.000 −1.000 1.000

5 r = 3 1.600 8.000 0 7.000 1.000 0.000

1 i = 1 0.333 −1.000 0 2.000 −1.000 0.000

2 i = 2 0.250 −1.000 0 3.000 −2.000 0.000

DMU07 3 r = 1 2.000 8.000 0 6.000 2.000 0.000

4 r = 2 2.333 7.000 1 8.000 −1.000 1.000

5 r = 3 1.333 8.000 0 7.000 1.000 0.000



Appl. Sci. 2021, 11, 10626 29 of 33

Table A5. Cont.

DMUo l i or r θ∗i or ϕ∗r fl Unsatisfied fl
Target
(DM) ∆fl

βl

1 i = 1 0.167 −1.000 0 2.000 −1.000 n.c.

2 i = 2 0.250 −1.000 0 3.000 −2.000 n.c.

DMU10 3 r = 1 1.143 8.000 0 6.000 2.000 n.c.

4 r = 2 1.000 7.000 1 8.000 −1.000 n.c.

5 r = 3 4.000 8.000 0 7.000 1.000 n.c.

Then, non-radial FDH model 14 for DMU04 and DMU07 was composed for the first
iteration of step 2 of STEM. The results of solving model 14 (Step 2 of STEM for p = 2)
and DM’s opinions about them for DMU04 and DMU07 are shown in Table A6. As all
objective functions for DMU07 were satisfied via DM’s opinions (the value of all targets of
unsatisfied row for DMU07, that are underlined, were zero), the best compromise solution
was obtained, M′ = M′ − DMU07 (M′ = {DMU10}). As there was only one similar
unsatisfied objective function (fourth objective function) in two consecutive steps of STEM
for DMU04, the target of this DMU could not be considered as DMU06. So, the interactive
algorithm was continued by asking DM to suggest a new target for each DMUo. Suppose
that DM did not suggest new DMUs target for DMU04. So, there was no target for DMU04
in the non-radial FDH model. This DMU was then removed from M′ set (M′ = ∅). As
there was no non-proceed DMUs and the process of targets determination for all DMUs
had been carried out (M′ = ∅), the interactive algorithm was finished.

As shown in the last row of Table A7, the proposed target of DM for DMU07 was ob-
tained (DMU06), but the proposed targets of DM for DMU04 and DMU10 were not obtained.

Appendix A.2. The Detail Results of Applying Extended RBA for the Second Case Study

Applying extended RBA (Section 3.2) is described to find targets of the non-radial
FDH model 12–14 for DMU07 of the second case study (related non-radial FDH models
in the interactive algorithm). Each target of the non-radial FDH model is found using
two target finding stages. A similar process should be carried out to find the target of
the mentioned non-radial FDH models for other DMUs. First xio = xij, i = 1, 2, and
yro = yrj, r = 1, 2, 3 (j = 1, . . . , 13) for DMUo = DMU07 should be defined.

Table A6. The results of solving model 14 (Step 2 of STEM for p = 2) and DM’s opinions about them
for two DMUs in the second case study.

DMUo Target1 Target2 Target3 Target4 Target5 Target

DMU04

Model 14 1 1 8 7 8 DMU01

DM’s opinions 2 3 6 8 7 DMU06

∆fl
−1 −2 2 −1 1 -

Unsatisfied 0 0 0 1 0 -

DMU07

Model 14 1 1 8 7 8 DMU06

DM’s opinions 2 3 6 8 7 DMU06

∆fl
−1 −2 2 −1 1 -

Unsatisfied 0 0 0 0 0 -
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Table A7. Applying the second interactive stage for three considered DMUs (the second case study).

STEM Phases DMU04 DMU07 DMU10 Table

Construct pay-off table
√ √ √

Table A2

Calculating βl (l = 1, . . . , 5) for proposing
step 1 of STEM (p = 1) model

√ √ √
Table A3

Solving of step 1 of STEM (p = 1) model
√ √ √

Table A4

Calculating βl (l = 1, . . . , 5) for proposing
step 2 of STEM (p = 1) model

√ √
n.a. Table A5

Solving of step 2 of STEM (p = 1) model
√ √

× Table A6

Obtaining target regards DM’s opinions ×
√

× Table A6

Target finding of non-radial FDH models 12 and 13 for DMU07 in the second case study
By applying the first target finding stage, DMUs of feasible region were found. As

described in Section 3.2.1, firstly, DMUs of feasible region (Sstep 0 of STEM) should be found
using Equation (15) (Table A8).

As is observed in the last column of Table A8, only five DMUs (DMU01, DMU02,
DMU05, DMU06 and DMU07) satisfied all five constraints. So, these DMUs belonged to the
feasible region (Sstep 0 of STEM = {DMU01, DMU02, DMU05, DMU06, DMU07}).

By applying the second target finding stage, the optimum objective function values
were then calculated, and DMU targets were found. In this regard, firstly, the optimum
objective function values of models should be calculated by Equations (16) and (17). The
objective function value of DMU01, DMU02, DMU05, DMU06, and DMU07 (in non-radial
FDH model 12, Zo

j = 1
3 ∑3

r=1
yrj
yro
− 1

2 ∑2
i=1

xij
xio

, j = 1, . . . , 13, and in non-radial FHD model 13,
f1(u) = −x1ox1j, f2(u) = −x2ox2j, f3(u) = y1oy1j, f4(u) = y2oy2j, f5(u) = y3oy3j) are shown
in Table A9.

The last row of Table A9 shows the maximum value of Zo
j and fl, l = 1 . . . 5, respectively.

These values show the optimum objective function value (optimum value of Zo
j and fl, l =

1, . . . , 5) of each non-radial FDH model.
DMUo targets are found by comparing the optimum objective function value (op-

timum value of Z∗o and f∗l , l = 1, . . . , 5) with the objective function value of each DMU
(Zo

j and fl, l = 1, . . . , 5) by Equations (15) and (16) (Table A9). It is considerable that the
objective functions f1, f2, and f3 of model 14 had alternative optimum solutions.

Table A8. Applying the first target finding stage for DMU07 (the second case study).

DMUj
x1j
x1o

x1j
x1o
≤1 x2j

x2o

x2j
x2o
≤1

y1j
y1o

y1j
y1o
≥1

y2j
y2o

y2j
y2o
≥1

y3j
y3o

y3j
y3o
≥1

Sstep 0 of STEM
(Equation (15))

DMU01 0.33 0.33 0.25 0.25 2.00 2.00 2.33 2.33 1.33 1.33
√

DMU02 0.33 0.33 0.50 0.50 2.00 2.00 2.00 2.00 1.00 1.00
√

DMU03 1.00 1.00 1.00 1.00 2.00 2.00 2.33 2.33 0.67 × ×
DMU04 0.67 0.67 1.25 × 1.25 1.25 2.00 2.00 0.83 × ×
DMU05 0.33 0.33 0.25 0.25 1.25 1.25 1.67 1.67 1.00 1.00

√

DMU06 0.67 0.67 0.75 0.75 1.50 1.50 2.67 2.67 1.17 1.17
√

DMU07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
√

DMU08 1.00 1.00 0.75 0.75 1.25 1.25 1.67 1.67 0.50 × ×
DMU09 0.67 0.67 0.50 0.50 0.75 × 2.00 2.00 0.67 × ×
DMU10 2.00 × 1.00 1.00 1.75 1.75 2.33 2.33 0.33 × ×
DMU11 1.67 × 1.00 1.00 1.00 1.00 2.33 2.33 0.67 × ×
DMU12 1.67 × 1.25 1.00 1.00 2.33 2.33 1.00 1.00 ×
DMU13 1.67 × 0.75 0.75 1.50 1.50 1.33 1.33 1.17 1.17 ×
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Table A9. Applying the second target finding stage for DMU07 (the second case study).

DMUj

Zo
j

(Equation
(16))

Model 12
Targets

(Equation
(18))

f1
(Equation

(17))

f1
Targets
(Equation

(19))

f2
(Equation

(17))

f2
Targets
(Equation

(19))

f3
(Equation

(17))

f3
Targets
(Equation

(19))

f4
(Equation

(17))

f4
Targets
(Equation

(19))

f5
(Equation

(17))

f5
Targets
(Equation

(19))

DMU01 2 DMU01 −1 DMU01 −1 DMU01 8 DMU01 7 × 8 DMU01

DMU02 1 × −1 DMU02 −2 × 8 DMU02 6 × 6 ×

DMU05 1 × −1 DMU05 −1 DMU05 5 × 5 × 6 ×

DMU06 1 × −2 × −3 × 6 × 8 DMU06 7 ×

DMU07 0 × −3 × −4 × 4 × 3 × 6 ×

Max 2 - −1 - −1 - 8 - 8 - 8 -

Target finding of non-radial FDH model 14 for DMU07 in the second case study
First, step 1 of STEM (p = 1) should be considered. By applying the first target finding

stage, DMUs of feasible region (in step 1 of STEM model) were found. As described in
Section 3.2.2, DMUs belonging to the feasible region should be found. In DMUs of feasible
regions, two conditions should be satisfied. At first, constraints

xij
xio
≤ 1, i = 1, 2, and

yrj
yro
≥ 1, r = 1, 2, 3 (j = 1, . . . , 13) should be satisfied (the first condition). As is observable

in Table A8, only DMU01, DMU02, DMU05, DMU06 and DMU07 satisfied these constraints.
Moreover, the constraints maxl{(f∗l − fl(u)).βl} ≥ 0, l = 1, . . . , 5 should be satisfied

for each DMU of feasible region (the second condition). Checking the second condition for
DMU01, DMU02, DMU05, DMU06 and DMU07 are shown in Table A10. As shown in Table A10,
the constraints of the second condition were also satisfied for DMU01, DMU02, DMU05, DMU06
and DMU07. So, S1

step 1 of STEM = {DMU01, DMU02, DMU05, DMU06, DMU07}.

Table A10. Applying the first and second target finding stages to find targets of step 1 of STEM (p = 1) for DMU07 (the
second case study).

DMUj (f∗1−f1(u)).β1 (f∗2−f2(u)).β2 (f∗3−f3(u)).β3 (f∗4−f4(u)).β4 (f∗5−f5(u)).β5
S1

step 1 of STEM
(Equation (20))

hj(Equation (21)) Targets
(Equation (22))

DMU01 0.000 0.000 0.000 0.294 0.000
√

0.294 DMU01

DMU02 0.000 0.235 0.000 0.588 0.118
√

0.588 ×

DMU05 0.000 0.000 0.529 0.882 0.118
√

0.882 ×

DMU06 0.235 0.471 0.353 0.000 0.059
√

0.471 ×

DMU07 0.471 0.706 0.706 1.471 0.118
√

1.471 ×

h∗ =
min max

(f∗l − fl(u)).βl
(l = 1, . . . , 5)

- - - - - - 0.294 -

By applying the second target finding stage, the optimum objective function value
(in step 1 of STEM model) was calculated and DMU targets were found. By considering
Equation (21), the minimum value of the left-hand side of the second condition for DMU01,
DMU02, DMU05, DMU06 and DMU07 showed the optimum objective function value of
non-radial model 14 (last row of Table A10). By considering Equation (22), each DMU that
the objective function value was equal to optimum objective function value, showed the
targets of DMUo. So, the target of DMU07 was DMU01 (the last column of Table A10).

For target finding in step 2 of the STEM model (p = 1), first, DMUs belonging to feasible
region should be found. By considering Equation (22), DMUs of S1

step 2 of STEM should sat-
isfy three conditions. In this regard, DMU01, DMU02, DMU05, DMU06 and DMU07 satisfied
the first and second conditions. Moreover, the constraints maxl{(f∗l − fl(u)).βl} ≥ 0, l =
1, . . . , 5 (the third condition) should be checked for DMUs of feasible regions. As DMU01
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and DMU06 satisfied the third condition, these DMUs belong to S1
step 2 of STEM and two

optimum benchmarks existed.
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