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Abstract: Performance evaluation using interactive methods and extended ratio-based approaches 
can be very important for some organizations. Free disposal hull models can be created if there is 
no concern for convexity, and using non-radial DEA models can simultaneously create more logical 
and practical situations for finding DMU targets. In this paper, a new hybrid technique based on 
the additive slack based method and enhanced Russel measure in variable return to scale technol-
ogy has been proposed. The proposed technique can find decision making unit targets in non-radial 
free disposal hull models using the step method. Furthermore, the extended ratio-based approach 
in the proposed technique has been applied to find DMU targets of related non-radial free disposal 
hull models without solving any mathematical programming models. Finally, targets of Fars prov-
ince pharmaceutical distributing companies were found by applying the proposed hybrid tech-
nique. 

Keywords: data envelopment analysis (DEA); additive slack based method; non-radial free disposal 
hull (FDH); step method (STEM); ratio-based approach (RBA) 
 

1. Introduction 
The accurate estimation of production possibility set (PPS) boundaries is crucial for 

performance analysis and efficient estimation. Different papers propose alternative ap-
proaches to handle the issue of estimating PPSs and their respective boundaries. Non-
parametric data envelopment analysis (DEA) is possibly one of the most used linear pro-
gramming (LP) approaches to build up piecewise PPS boundaries. DEA is a useful tool to 
evaluate decision making units (DMUs). Efficiency criterion can be considered as a num-
ber between 0 and 1 for evaluating a DMU in DEA. If the efficiency criterion for a DMU 
is 1, the mentioned DMU is efficient, else, it is inefficient. Evaluating DMUs in input-ori-
ented, output-oriented, and combined-oriented radial and non-radial models were devel-
oped from a proposal by Farrell (1957) [1], and were then followed by the development 
of the CCR model by Charnes et al. (1978) [2]. The CCR model was then developed into 
the BCC model by Banker et al. (1984) [3]. Additive models were then suggested to sepa-
rate efficient and non-efficient DMUs [4]. Tone (2001) proposed a slack based model 
which evaluates DMUs considering the relationship between CCR models [5]. The Russel 
Graph Model (RGM) and the relationship between SBM and additive DEA models are 
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very important subjects that have been studied [6]. These models determine the bench-
mark for efficient DMUs, in addition to calculating efficiency and non-efficiency criterion 
of DMUs. Over three decades, extensive and useful studies on DEA have been undertaken 
to calculate DMU efficiencies [7,8] and to find DMU benchmarks [9,10]. Chen and Zhu 
(2020) completed efficient and non-efficient definitions on the basis of slack variables us-
ing the slack based method, and showed that additive slacks-based models (ASBM) and 
enhanced RGM are equal. Moreover, the authors showed that the simultaneous use of 
ASBM and network DEA models can create a comparable DEA score. Finding DMU tar-
gets in ASBM by eliminating convexity conditions can be investigated in practical studies 
[11]. The use of non-radial FDH models based on ASBM can also be beneficial in practical 
studies. 

Specifically, Free Disposal Hull (FDH) is a subclass of DEA models where DMUs are 
not projected on the piecewise convex envelope, but are projected on the actual maximal 
attainable boundary, which results in a staircase shape for the single input–output case. 
In other words, FDH, which was first introduced by Deprins et al. (1984), evaluates DMU 
efficiency by considering the closest inner approximation of the true non-convex (dispos-
able) boundary [12]. Many studies have been investigated FDH models. Soleimani-
Damaneh et al. estimated returns-to-scale in FDH models [13]. Soleimani-Damaneh and 
Rashidi proposed a polynomial-time algorithm to estimate returns to scale in FDH models 
[14]. Mostafaee and Soleimani-Damaneh proposed the definition, characterization and 
calculation of global sub-increasing and global sub-decreasing returns to scale in FDH 
technologies [15]. Fukuyama et al. measured efficiency with non-convex FDH technology 
[16]. Manzari Tavakoli and Mostafaee studied FDH efficiency scores of units with network 
structures [17]. Arfa et al. measured the efficiency of hospital cardiology wards using the 
FDH approach [18]. Kerstens and Van De Woestyne reviewed solution methods for non-
convex FDH models and give some critical comments [19]. Soleimani-Damaneh and Mo-
stafaee identified the anchor points in FDH models [20]. Mirmozaffari et al. proposed an 
improved DEA model based on SBM and FDH models [21]. One issue that is frequently 
neglected in FDH models is the identification of DMU targets, which is a cumbersome 
task due to boundary non-convexity, especially when the number of inputs and outputs 
increase. A possible approach is to define a multiple objective function for measuring the 
closeness among the DMU under analysis and its eventual targets [22]. 

Multiple objective linear programming (MOLP) is a form of multiple objective deci-
sion making (MODM). In MODM problems, more than one objective is considered in re-
gard to the opinions of the decision maker (DM). Interactive methods (IMs) are a kind of 
MODM and MOLP methods. IMs explore the criterion space on the progressive definition 
of the DM’s preferences at each iteration [23]. IMs have been used in some reported works 
[24,25]. Traditional DEA models tend to ignore the DM’s preferences and value judgment 
in the computation of the DMU targets, completely. The use of IMs allows the obtainment 
of DMU targets which have perfect adaptation for the DM’s preferences [24]. An IM was 
applied for the extension of DEA to effectiveness analysis [26]. The step method (STEM) 
that was introduced in 1971 [27] is an IMs in MOLP, and has been reported in several 
studies [28–31]. To the best of our knowledge, STEM has not yet been used by researchers 
to find targets in non-radial FDH models which consider ASBM and enhanced Russel 
measures in variable return to scale technology (the first research gap). 

Multiple criteria decision making (MCDM) is divided into multiple attribute decision 
making (MADM) and MODM. In situations where the data are fuzzy, a combination of 
DEA and fuzzy MCDM [32–34] can be used for the development of the proposed tech-
nique. In this study, as the data of the second case study were deterministic, it was not 
necessary to use fuzzy methods. 

FDH is a well-known subclass of DEA models and is based on two distinctive fea-
tures that are reflected in the PPS boundary. First, FDH ensures that efficiency evaluations 
are affected only by actually observed performances. Secondly, FDH relies on the non-
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convexity assumption which satisfies free disposability in PPS. There is inherent compu-
tational complexity to solve FDH models. As a matter of fact, FDH models are mixed 0–1 
LP, and solving them is difficult. In this regard, a ratio-based approach (RBA) is proposed 
to solve radial FDH models without solving any mathematical programming models [13]. 
This approach has been employed by some other studies [15,20]. To the best of our 
knowledge, RBA is one of the most suitable suggested methods to find DMU targets of 
radial FDH models without solving any mathematical programming models. DMU target 
finding of non-radial FDH models without solving any mathematical programming mod-
els can be considered as another research gap. It can be achieved by extending RBA. As 
ASBM relates to enhanced Russel measures, finding non-radial DMU targets has been 
possible using extended RBA. 

In Fars province pharmaceutical distributing companies (the second case study), 
there was a variable return to scale assumption. Moreover, as the combination of pharma-
ceutical distributing companies was impossible, using FDH models was beneficial. Non-
radial FDH models based on ASBM in variable return to scale technology can therefore 
be considered in the proposal for a technique for finding DMU targets. Therefore, consid-
ering mentioned research gaps, two research questions have considered as follows: 
(1) Is it possible to propose a technique to find all DMU targets in non-radial FDH mod-

els based on ASBM using IM? 
(2) Is it possible to find DMU targets of non-radial FDH models in the proposed tech-

nique without solving any mathematical models? 
A hybrid technique to answer the above two research questions with the following 

properties has been proposed as the innovation of this research: 
(a) DMU target finding in non-radial FDH models based on ASBM are more realistic 

because they are based on a non-convexity assumption, 
(b) Proposing a new LP formulation of ASBM, 
(c) Applying IMs instead of regular DEA methods to find FDH models targets which 

have more adaptation to the DM’s preferences, 
(d) Finding the required DMU targets in FDH models using an algorithm that works by 

checking some conditions for DMUs without solving of any mathematical models. 
To the best of our knowledge, proposing a hybrid technique with the mentioned 

properties has not been reported until now. It is notable that, according to the practical 
view, the proposed technique will be beneficial if finding DMU targets in a studied organ-
ization is useful. According to the theoretical view, as the proposed technique works 
based on mathematical modelling, considering assumptions and determining suitable pa-
rameters to compose related models are important subjects, too. Therefore, to implement 
and generalize the results, practical and theoretical views should be simultaneously con-
sidered. 

There are several outlier detection methods, such as parametric robust regression in 
statistics [35] and non-parametric k-means in data mining [36]. Moreover, a predictive 
DEA model for outlier detection was proposed, and a comprehensive set of simulation 
experiments were conducted to examine the relative performance of the suggested 
method with two popular mentioned methods under the influence of five factors. The 
results provide users with practical guidelines on how to choose appropriate methods to 
detect outliers [37]. Outlier detection and investigation of the sensitivity of the modeling 
approach to outliers can be applied for the development of the proposed technique. 

The paper is structured in following sections: first, the background on ASBM, MOLP, 
STEM, and RBA is provided. After that, a new hybrid technique is introduced to find 
DMU targets in non-radial FHD models based on ASBM. Finally, the presented technique 
is applied in two real case studies. 
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2. Background 
In this section, ASBM, STEM to solve MOLP, and RBA for finding targets of radial 

FDH models are briefly described. The purpose of this section is to introduce the theoret-
ical basis for finding targets of non-radial FDH models based on ASBM using STEM and 
extended RBA. 

2.1. Additive Slack Based Model 
Suppose DMU , j = 1, …, n by consuming m inputs x , . . . , x , j = 1, … , n can pro-

duce s outputs y , . . . , y , j = 1, … , n. The background of ASBM can be related to the ad-
ditive model in Charnes et al. (1985) [4] and Green et al. (1997) [6]. Therefore, efficiency 
for output r of DMUo is defined as ≤ 1 and non-efficiency for output r of DMUo is 

defined as 1 − = ≤ 1. Furthermore, efficiency for input i of DMUo is defined 
as ≤ 1 and non-efficiency for output r of DMUo is defined as 1 − = ≤ 1. 
Therefore, by suggesting model (1), the relationship between non-efficiency calculated by 
Greek et al. (1997) [6] and ASBM based on efficiency and non-efficiency definitions have 
presented [11]. Min ∑ + ∑ , s. t   (1)

μ x + s = x , i = 1 … m, 
μ y − t = y , r = 1 … s, ∑ μ  =1, μ , s , t ≥ 0, i = 1 … m, r = 1 … s. 

Model (1) is a nonlinear mathematical programming model containing linear con-
straints and linear fractional objective function. In this regard, model (1) by Chen and Zhu 
(2020) [11] is equivalent to RGM developed by Fare et al. (1985). Moreover, finding DMU 
targets using slack variables are important because focus is given to the summation of 
slack variables. In this regard, the projection of DMU with respect to Model (1) is calcu-
lated by ∑ μ∗x = x − s∗, i = 1 … m,  and ∑ μ∗y = y + t∗ , r = 1 … s,  which μ∗, s∗, 
and t∗  are optimal solutions of Model (1). 

2.2. MOLP and STEM 
A general formulation of the MOLP problem is given in model 2. Max  G(u) = (g (u), … , g (u)) = C u, … , C u  s. t.  u ∈ W = {u ∈ R |Au ≤ b}       (2)

where G(u) = (g (u), … , g (u)) represents the objective function vector. Linear objective 
functions are denoted by C u where u = (u1, …, uv) is the decision-making vector. The 
symbol T is a transposed vector. gl(u), Cl, and cil are the lth objective function, the vector of 
decision-making variable coefficients in the lth objective function, and the coefficients of lth 
objective function namely Cl, l = 1, …, k, per n existing variables, respectively. W is the 
feasible region of the MOLP problem and k is the number of the objective function. The 
decision-making variable multiples matrix is denoted by A, while b represents the right-
hand side vector of the constraints. Au ≤ b is the constraints of the feasible region and R , representing the Euclidean space comprising all nonnegative vectors in a v-dimen-
sional space. In this MOLP problem, the lth objective function is formulated as C u =
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c u + c u + ⋯ + c u , l = 1, … , k. The vector u∗∈W is considered as an efficient (non-
dominated) solution, if there does not exist another u ∈ W, such that gl(u) ≥ gl(u∗) for all l 
and gl(u) > gl(u∗) for at least one l. 

STEM is an IM that can be used to solve MOLP problems. It works based on the 
obtained information from DM preferences and reduces the feasible region, step by step. 
STEM relies on DMs information to identify feasible and efficient solutions during the 
procedure. STEM includes following steps [27,30]: 

Step 0: building-up the pay-off table 

Objective functions should be optimized separately as follows (cf. model 3 and Table 
1): Max  g (u) = C u s. t.  u ∈ W = {u ∈ R |Au ≤ b}        (3)

Table 1. The pay-off table. 

 1 2 … l … k 
1 g∗   …  … z  
2 z  g∗  … z  … z  
. . .  .  . 
. . .  .  . 
. . .  .  . 
l z  z  … g∗ … z  
. . .  .  . 
. . .  .  . 
. . .  .  . 
k z  z  … z  … g∗  

The diagonal elements, represented by g∗, are the optimal solutions for the single g (u) = C (u), l = 1, …, k problem obtained through the solving of model 3. zdl values are 
the results for dth objective function, computed upon the optimal solution obtained for lth 
objective function, l = 1, …, k, d = 1, …, k, d ≠ l. 
Step 1: Calculation Phase 

The computation of coefficients βl, l = 1… k, is the cornerstone to compute the relative 
importance (Equation (4)) of each distance from the optimal objective function value. Sup-
pose that πl denotes the relative importance of the distance between objective functions 
and their optimal values. Although these coefficients are locally meaningful, they cannot 
capture the overall importance, unlike other utility models. It is therefore necessary to 
solve model 5, where the solution obtained in the pth iteration is denoted by G =g (u ), g (u ), … , g (u ) . 

π = ⎩⎪⎨
⎪⎧ g∗ − gg∗ 1∑ (C )  if g∗ > 0g − g∗g∗ 1∑ (C )  if g∗ ≤ 0        (4)

and β = ∑ , l = 1, … , k. Model 5 is given as follows: Min h s. t      h ≥ g∗ − g (u) . β   l = 1, … , k, 
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u ∈ W , h ≥ 0. Where W = {u|Au ≤ b, u ≥ 0} ∪ W    (5)

Wp represents the feasible region in the pth iteration. In order to find the vector u∈Wp, 
which provides the minimum of maximum distance between the objective function vector 
of G(u) = g (u), g (u), … , g (u)  and its optimal vector, G∗ = (g∗, … , g∗ ), h should be 
minimized. h indicates the maximum distance of the functions from their optimal values 
based on their relative importance for each individual feasible solution in the feasible re-
gion. In other words, h indicates the closest possible distance to the optimal value of the 
lth objective function, that is g∗ . Before proceeding to Step 2, the minimum value in col-
umn l of the pay-off table should be picked up. It is denoted as g . 

Step 2: Decision Phase 

In this phase, the DM provides relative importance information with respect to the 
solution collected during the first step of the pth iteration, that is G =g (u ), g (u ), … , g (u ) , where up denotes the feasible solution in the pth iteration. If all 
objective function values are be satisfied, in light of DM preferences, the best compromise 
solution is obtained, and the STEM algorithm finished. Otherwise, the DM should modify 
some of the 𝑔 (𝑢 ) = 𝑔  to confirm that the values of the lth objective function in the pth 
iteration is satisfied. In other words, this modification amount, ∆𝑔 , is necessary to col-
lectively improve other remaining objective functions. Thus, the feasible region should be 
also adjusted for the next iteration.    W = W ∪ u g (u) ≥ g (u ) − ∆gg (u) ≥ g (u ), l = 1, … , k, l ≠ q          (6)∆𝑔  denotes the number of modifications made to the lth objective function in order 
to improve the other objective functions, and Wp+1 denotes the feasible region in iteration 
p + 1. When the coefficients in the subsequent iterations are computed, the coefficients 
within πl should be zeroed. Therefore, other values for πl and β , l = 1, … , k, l ≠ k should 
be re-determined using Equation (4), before re-solving model 5 in the p = p + 1 iteration. 

2.3. Ratio Based Approach 
The ratio based approach is an approach to find DMU targets of radial FDH models 

without solving any mathematical programming models. To the best of our knowledge, 
Soleimani-Damaneh et al. (2006) [13] were the first researchers to propose RBA to find 
targets of radial FDH models. They considered a set of n peer DMUs (DMUj, j = 1, ..., n), 
such that each DMUj produces multiple outputs yrj > 0 (r = 1, ..., s) by utilizing multiple 
inputs xij > 0 (I = 1, ..., m). Considering DMUo(xo,yo) (o = 1, …, n) as the unit under assess-
ment, the basic input-oriented and output-oriented linear mixed-integer radial FDH 
model under variable returns-to-scale technology are shown by models 7 and 8, respec-
tively [13,20]. θ = Min θ, s. t     (7)

μ x ≤ θx , i = 1 … m, 
μ y ≥ y , r = 1 … s, μ =  δω ,  ω ∈ {0,1},  j = 1, … , n , δ = 1, ∑ ω  =1. φ = Max φ, 
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s. t     (8)

μ x ≤ x , i = 1 … m, 
μ y ≥ φy , r = 1 … s, μ =  δω ,  ω ∈ {0,1},  j = 1, … , n , δ = 1, ∑ ω  =1. 

In model 7, DMUo is called radial input-oriented FDH-efficient if θo = 1. Moreover, in 
model 8, DMUo is called radial output-oriented FDH-efficient if φ = 1. The targets of 
radial models 7 and 8 can be found by computing some simple ratios using RBA. After 
considering DMUo (o = 1, …, n) as an under assessment DMU, for j = 1, …, n, λ =max y y  and λ = min x x  are defined. The optimized objective function in ra-

dial models 7 and 8 is then calculated as θ = min ,…, , max x x  and φ =max ,…, , min y y , respectively [13]. The details on RBA validity have been 
reported previously [13,14,19]. The targets of radial FDH models 7 and 8 can be found by 
RBA. 

3. A New Hybrid Technique for Finding DMU Targets in Non-Radial FHD Models 
In this section, a hybrid technique including two main parts is proposed. At first, an 

algorithm containing two interactive stages is introduced to find DMU targets in non-
radial FDH models. Applied models are obtained based on ASBM. The first interactive 
stage is proposed to determine efficient DMUs and their targets. STEM is used in the sec-
ond interactive stage to find targets of other DMUs. Finding DMU targets of three kinds 
of non-radial FDH models was required in the first part of hybrid technique. RBA is one 
of the suitable suggested methods to find DMU targets of radial FDH models. In the sec-
ond part of the hybrid technique, extended RBA is proposed to find DMU targets of non-
radial FDH models without solving any mathematical models. Extended RBA, included 
two steps, found alternative DMU targets just by checking some conditions for DMUs in 
non-radial FDH models without solving any mathematical models. In the first step, DMUs 
of feasible region were found. In the second step, the optimum objective function value 
was calculated and DMU targets were found. 

3.1. The Interactive Algorithm 
In this section, an algorithm is proposed to find DMU targets in non-radial FDH mod-

els. The interactive algorithm (the first part of proposed hybrid technique) contains two 
interactive stages. The purpose of the first interactive stage is to determine efficient DMUs 
and their targets. The second interactive stage determines the target of other DMUs using 
STEM. DMU targets are found through solving three non-radial FDH models in interac-
tive algorithm. Applied models are obtained based on ASBM. 

Classical DEA models have been created based on decreasing inputs and increasing 
outputs. Moreover, only one variable has been defined for decreasing all inputs and only 
one another variable has been defined for increasing all outputs in classical radial models. 
However, in non-radial classical models, different variables have been defined separately 
for decreasing each input, and different variables have been defined separately for in-
creasing different outputs. In addition, all DMUs in the research area should be consid-
ered, and the relationship n ≥ 3(m + s) existes between the number of DMUs (n), num-
ber of inputs (m), and number of outputs (s) parameters. In this regard, the main improve-
ments that are obtained from solving DEA models relates to non-efficient DMUs. There-
fore, decreasing the number of DMUs may increase the number of efficient DMUs [38]. In 
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DEA models, choosing appropriate inputs and outputs is an important step which may 
significantly affect the efficient frontier. In this regard, inputs and outputs should be rele-
vant to the research area, gathering related data for DMUs should be possible, and experts 
should confirm them. It is considerable that using real data is preferred rather than gath-
ering from experts’ opinions. However, if gathering real data is not impossible, experts’ 
judgment is used. In this situation, experts should have enough information about the 
problem. As classical DEA models are created based on decreasing inputs and increasing 
outputs, this subject should be considered for selecting inputs and outputs as well. More-
over, all DMUs in the research area should be considered, and the establishment of the 
relationship n ≥ 3(m + s) between inputs, outputs, and DMU numbers is recommended. 
As a matter of fact, in situations where n < 3(m + s), the number of efficient DMUs may 
be increased. Therefore, a set of non-duplicated DMUj, j = 1, ..., n, that utilizes m positive 
inputs, xij, i = 1, ..., m, to produce s positive outputs, yrj, r = 1, ..., s, are considered. Moreo-
ver, objective functions el, l = 1, …, m + s, and decision making variables, uv, v = 1, …, n + 
m + s are defined as 

(e (u), … , e (u), e (u), … , e (u)) =( , … , , − ( )( ) , … , − ( )( ) ) 

and (𝑢 , … , 𝑢 , 𝑢 , … , 𝑢 , 𝑢 , … , 𝑢 ) = (𝜆 , … , 𝜆 , 𝑠 , … , 𝑠 , 𝑡 , … , 𝑡 ), respec-
tively. 

By modifying objective functions coefficients and turning min into max objective 
functions, a multi objective non-linear FDH model based on ASBM is formulated as fol-
lows (model 9): Max  E e (u), … , e (u), e (u), … , e (u) =, … , , − ( )( ) , … , − ( )( )       (9)

s. t.  (λ , … , λ , s , … , s , t , … , t ) ∈ S = 

⎩⎪⎨
⎪⎧(λ , … , λ ) ∈ R ∑ λ x + s = x ,   i = 1 … m,∑ λ y − t = y , r = 1 … s,∑ λ =  1, λ ∈ {0,1}, j = 1 …  n,s ≥ 0,   i = 1 … m,     t ≥ 0,   r = 1 … s.⎭⎪⎬

⎪⎫
      

It is considerable that model 9 is a non-linear mathematical model because e (u), … , e (u)  are non-linear. By considering Max E(−1/(e (u)), … , −1/(e (u)), −1/(e (u)), … , −1/(e (u)))  instead of Max E e (u), … , e (u) , the 
equivalent multi objective linear FDH model is composed as model 10. 𝑀𝑎𝑥  𝐸 𝑒 (𝑢), … , 𝑒 (𝑢), 𝑒 (𝑢), … , 𝑒 (𝑢) =, … , , ( )( ) , … , ( )( )   (10)

s. t.  (λ , … , λ , s , … , s , t , … , t ) ∈ S = 

⎩⎪⎨
⎪⎧(λ , … , λ ) ∈ R ∑ λ x + s = x ,   i = 1 … m,∑ λ y − t = y , r = 1 … s,∑ λ =  1, λ ∈ {0,1}, j = 1 …  n,s ≥ 0,   i = 1 … m,     t ≥ 0,   r = 1 … s.⎭⎪⎬

⎪⎫
      

Now by considering θ = , φ = , and considering 1 for w and w′ in objec-
tive functions, model 11 is built as follows: Max  E 𝑒 (u), … , e (u), e (u), … , e (u) = θ , … , θ , φ , … , φ          (11)
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s. t.  (λ , … , λ , θ , … , θ , φ , … , φ ) ∈ S =(λ , … , λ , θ , … , θ , φ , … , φ ) ∈ R ∑ λ =  1, λ ∈ {0,1}, j = 1 …  n,∑ λ x ≤ θ x , θ ≤ 1, i = 1 … m,∑ λ y ≥ φ y , φ ≥ 1, r = 1 … s.       

It is mentionable that in non-radial model 11, DMU targets are obtained by decreas-
ing inputs (𝜃 ≤ 1, 𝑖 = 1, … , 𝑚 ) and increasing outputs (𝜑 ≥ 1, 𝑟 = 1, … , 𝑠 ), simultane-
ously. Now, two related interactive stages are described as follows. 

3.1.1. The First Interactive Stage 
In the first interactive stage, efficient DMUs are determined, and the targets of these 

DMUs defined. For DMUo, o = 1, …, n, variables x = x , i = 1, … , m, j = 1, …, n, and y =y , r = 1, … , s, j = 1, … , n are defined. Non-radial FDH model 12 is then composed for DMU  , j = 1, . . . , n to distinguish DMUs over efficient frontier as follows. 𝑍 = Max ∑ e (u) = ∑ θ + ∑ φ , s. t   (12)

𝑢 ∈ 𝑆 = 𝑢 ∑ λ =  1, λ ∈ {0,1}, j = 1 …  n,∑ λ x ≤ θ x , 0 ≤ θ ≤ 1, i = 1 … m,∑ λ y ≥ φ y , φ ≥ 1, r = 1 … s. . 

After the solving of non-radial model 12 for DMU , j = 1, . . . , n, M (the members of M 
set are DMUs that lay on the efficient frontier) and 𝑀  sets (the process of targets deter-
mination of 𝑀  set members should be carried out through the second interactive stage 
of the interactive algorithm) are defined as M = DMU Z = 0, ∀j  and M =DMU DMU ∉ M, ∀j , respectively. It is considerable that DMU , j = 1, . . . , n of non-radial 
model 12 is efficient if Z = 0. The targets of DMUs that are members of M set are then 
defined as DMU  Target = DMU , DMU ∈ M. If M = ∅ (in the situations where the pro-
cess of targets determination for all DMUs has been carried out in the first interactive stage 
of the interactive algorithm), the interactive algorithm is finished; else (in situation that M ≠ ∅), the second interactive stage is run. 

3.1.2. The Second Interactive Stage 
In the second interactive stage, non-efficient DMUs targets are determined by STEM. 

In this regard, a DMU ∈ M′ is considered as DMUo (a non-proceed DMUj, j = 1, …, n) and x = x , i = 1, … , m, j=1, …, n, and y = y , r = 1, … , s, j = 1, … , n, are defined; then the 
pay-off table (as described in Section 2.2) is constructed by composing and solving the 
non-radial model 13 for f (u), l=1, …, m + s (step 0 of STEM). Max  {f (u) = −x θ , … , f (u) = −x θ , f (u) = y φ , … , f (u) = y φ } s. t   (13)

𝑢 ∈ 𝑆 = 𝑢 ∑ λ =  1, λ ∈ {0,1}, j = 1 …  n,∑ λ x ≤ θ x , 0 ≤ θ ≤ 1, i = 1 … m,∑ λ y ≥ φ y , φ ≥ 1, r = 1 … s. . 

It is considerable that a DMU in S (in non-radial model 13) is efficient if all θ∗ = 1, i =1 … m, and all φ∗ = 1, r = 1 … s. The DM is then asked to suggest a new target for DMUo. 
If DM does not suggest a new target for DMUo, “There is no target for DMUo in FDH 
model”, then M = M − DMU  (omit 𝐷𝑀𝑈  from 𝑀  set), and go to the second interac-
tive stage (to find targets of another non-proceed DMUj). If DM suggest a new target for 
DMUo, extract DM’s opinions about the desired value of fl, l = 1, …, m + s from the sug-
gested DMUo target. This means that the value of fl, l = 1, …, m + s should be as good as 
the suggested DMUo target by DM. So the proposed target of DM is considered as DM’s 
opinions for all m + s objective functions (fl, l = 1, …, m + s). Attempt are then made to find 
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the best compromise solution considering DM’s opinions using the required iterations of 
step 1 and 2 of STEM (Section 2.2). 

After that, the first iteration of STEM begins (set p = 1). In step 1 of STEM (Section 
2.2), first π  , l = 1, … , m + s is calculated by Equation (4) considering the results of the sec-
ond interactive stage, then β = ∑ , l = 1, … , m + s is calculated. If at least one 𝛽 , l = 

1, …, m + s is not calculable, there is no compromise solution (in this situation, obtaining 
the suggested target of DM for DMU  is impossible) and the interactive algorithm contin-
ues from the start of the second interactive stage (to find another suitable target for DMU ). In the situation that the value of all β , l = 1, …, m + s, are calculable, model 14 is 
as follows: Min h s. t      h ≥ f ∗ − f (u) . β   l = 1, … , m + s,       (14)

u ∈ S , h ≥ 0. Where S = u ∑ λ = 1, λ ∈ {0,1}, j = 1 …  n,∑ λ x ≤ θ x , 0 ≤ θ ≤ 1, i = 1 … m,∑ λ y ≥ φ y , φ ≥ 1, r = 1 … s. ∪ S  

It is considerable that 𝑆  denotes the feasible region in the pth iteration. By solving 
model 14, alternative targets of DMU  (DMU  Target = DMU λ∗ = 1, ∀j ) are found. The 
required parameters for Step 2 of STEM (Section 2.2) are then calculated. In this phase, the 
objective function values of the first step in the pth iteration are considered as F =f (u ), … , f (u )  where up denotes the feasible solution in the pth iteration. If all objec-
tive function values are satisfied considering the DM’s opinion (the situation that the best 
compromise solution is found), “consider suggested target as the target of DMUo”, M =M − DMU , go to the second interactive stage. If “DM is not satisfied with all objective 
function values”, or “no feasible integer solution is found” (no compromise solution exists 
in these two situations), algorithm is continued from the start of the second interactive 
stage. Otherwise f (u ) = f  considering DM’s opinions, which means the values of fl in 
the pth iteration are satisfied. Consequently, in order to improve the other objective func-
tions, the fl values are modified by the amounts of ∆𝑓  considering DM’s opinions. In this 
case, DMUs in the feasible region are distinguished in the next iteration. 

As mentioned, finding the best compromise solution in the second interactive stage 
is desired through STEM. If the best compromise solution is obtained using required iter-
ations of step 1 and 2 of STEM, suggested targets are considered as targets of DMUo. In 
the situation that no compromise solution is found (in two situations a compromise solu-
tion does not exist: 1- at least one 𝛽 , l = 1, …, m + s is not calculable, 2- there is only one 
similar unsatisfied objective function in two consecutive steps of STEM), the second inter-
active stage repeats. 

The brief of the interactive algorithm for finding DMU targets is shown in Figure 1. 
In the interactive stage 1, efficient DMUs and their targets are determined. It is remarkable 
that by applying the first interactive stage of the interactive algorithm, at least one DMUj, 
j = 1, …, n is efficient (at least, one member belongs to M set). The number of M  set mem-
bers are determined by composing and solving of non-radial model 12 for all DMUs. The 
required number of iterations for the interactive algorithm depends on the number of M  
set members. Non-radial model 12 should be constructed and solved n (number of DMUs) 
times. If the ratio of “the number of M  set members” to “all DMUs” is near to 0, the 
interactive algorithm needs lesser iterations. If this ratio is near to 1, the interactive algo-
rithm needs more iterations. In the interactive stage 2, non-efficient DMUs targets are de-
termined using STEM. 
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Figure 1. The interactive algorithm for finding DMU targets in non-radial FDH models. 

The required times to construct and find targets of non-radial model 13 (step 0 of 
STEM) are equal to the number of M  set members. The required times to construct and 
find targets of non-radial model 14 (steps 1 and 2 of STEM) is dependent on DM’s opinions 
about the suitable target for each considered DMUo. The required iteration number to ap-
ply the second interactive stage is equal to the number of M′ set’s members, which is de-
fined the first time. As the number of M′ set’s members is less than n (because at least, 
one member belongs to M set and M  set is defined as M = DMU DMU ∉ M, ∀j  in the 
first interactive stage), the targets of all DMUs are therefore found in less than n iterations 
applying the second interactive stage of the interactive algorithm. This means that the 
interactive algorithm is completed by applying the second interactive stage in less than n 
iterations. 

It is considerable that finding DMU targets of three kinds of non-radial FDH models 
(models 12–14) is required in the first part of hybrid technique. These targets can be found 
by solving related non-radial FDH models. RBA is one of the suitable methods to find 
DMU targets of radial FDH models, without solving of any mathematical models. In the 
second part of the hybrid technique, extended RBA is proposed to find DMU targets of 
non-radial FDH models without solving any mathematical models. 

3.2. Extended RBA 
In this section, extended RBA (the second part of proposed hybrid technique) to find 

DMU targets in non-radial FDH models of the interactive algorithm is described. As de-
scribed in Section 3.1, finding DMU targets of three non-radial FDH models of the inter-
active algorithm (models 12–14) are required. All mentioned models are mixed 0–1 LP 
and finding DMU targets by solving them is difficult. RBA can find DMU targets of radial 
FDH models without solving them. Only non-radial model 12 has a lot of similarity to 
radial FDH models (models 7 and 8). Therefore, finding DMU targets of non-radial model 
12 may be possible using RBA with a little modification. However, RBA cannot apply to 
find DMU targets of non-radial FDH models 13 and 14, because these models have some 
complicated constraints. In this section, extended RBA is proposed to find DMU targets 
of non-radial FDH models without solving any mathematical programming models. 

Define x = x , i = 1, … , m, and y = y , r = 1, … , s for DMU , o = 1, …, n, for j = 1, 
…, n. The extended RBA then find DMU targets of non-radial FDH models of the interac-
tive algorithm (models 12–14) through two target finding stages. In the first target finding 
stage, DMUs of feasible region are found. In this regard, DMUs that have one, two or three 
conditions are considered as DMUs of feasible region. The number of required conditions 
for this stage depends on the constraints of the model. The first condition of extended RBA 
is similar to RBA and can be applied for non-radial FDH models 12–14. The second and 
third conditions are applied for non-radial model 14. In the second step, the optimum 
objective function value is calculated and DMU targets are found. Extended RBA are de-
scribed in the following subsections. 
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3.2.1. Finding DMU Targets of Non-Radial FDH Models 12 and 13 
As the constraints of non-radial FDH models 12 and 13 are exactly the same, finding 

DMU targets of these models are described simultaneously. 
The first target finding stage 

First, DMUs of feasible region should be found. Similar to RBA, if the constraints  ≤ 1, i = 1, … , m and  ≥ 1, r = 1, … , s are satisfied for DMUj, j = 1, …, n (the first con-
dition), DMU j, j = 1, …, n belongs to 𝑆. So, the DMUs of feasible region of non-radial FDH 
models 12 and 13 are determined using Equation (15). S    = DMU DMU  satisfies first condition, j = 1, … , n .   (15)

As mentioned above, the first condition of extended RBA is similar to RBA. 
The second target finding stage 

The optimum objective function values should be calculated and DMU targets 
should be found in the second target finding stage. To achieve this, the objective function 
value of each DMUj, j = 1, …, n in S     (in non-radial model 12, Z = ∑ −∑  and in non-radial model 13, f (u) = −x x , … , f (u) = −x x , f (u) =y y , … , f (u) = y y ) is calculated. The maximum obtained value for DMUs belong-
ing to S    , shows optimum objective function value (the optimum objective 
function value of non-radial FDH models 12 and 13 are Z  and f (u), l = 1, … , m + s, re-
spectively). Therefore, the optimum objective function values of non-radial FDH models 
12 and 13 are calculated by Equations (16) and (17), respectively. Z∗ = max ∈    Z , Z = ∑ − ∑       (16)f ∗ = max ∈    f , f (u) = −x x , l = 1, … , m, f (u) = y( ) y( ) , l = m + 1, … , m + s  (17)

Then, the DMUs of 𝑆    which have optimum objective function value show 
the targets of DMU  in each model. Therefore, DMUo targets in non-radial FDH models 
12 and 13 are determined by Equations (18) and (19), respectively. DMU Targets in model 12 =DMU DMU ∈ S    , j = 1, … , n, objective function value = Z∗    (18)

DMU Targets in model 13= DMU DMU ∈ S    , j = 1, … , n, objective function value = f ∗, l = 1, … , m + s  (19)

As described in Section 3.1, both steps 1 and 2 of STEM’s model are shown by non-
radial model 14. Finding DMU targets of related non-radial FDH models by extended 
RBA are described in Sections 3.2.2 and 3.2.3. 

3.2.2. Finding DMU Targets of Step 1 of STEM’s Model 
The process of applying extended RBA to find DMU targets of step 1 of STEM’s 

model is described in two target finding stages as follows: 
The first target finding stage 

In the first target finding stage, finding DMUs of feasible region (in step 1 of STEM 
model) is desired. In DMUs of feasible region (DMUj, j = 1, …, n), two conditions should 
be satisfied. Firstly, in these DMUs, similar to non-radial FDH models 12 and 13, con-
strains  ≤ 1, i = 1, …, m, and  ≥ 1,r = 1, …, s should be satisfied for DMUj, j = 1, …, 
n. The method of checking this condition for DMUs of feasible region (DMUj, j = 1, …, n) 
has been described in Section 3.2.1. Secondly, in DMUs of feasible region, the constraint max f ∗ − f (u) . β ≥ 0, l = 1, … , m + s should be satisfied for DMUj, j = 1, …, n. In con-
straints of the second condition, the values of f ∗, l = 1, … , m + s and β , l = 1, … , m + s 
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are obtained from solving non-radial model 13 and calculated using Equation (4), respec-
tively. For checking the second condition, f ∗ + x x . β , i = 1, … , m  and f ∗ −y y . β , r = 1, … , s are calculated for DMUj, j = 1, …, n that were compatible in the first 
condition. Then constraints max f ∗ − f (u) . β ≥ 0, l = 1, … , m + s are checked for men-
tioned DMUs. In DMUs belonging to the feasible region of non-radial model 14 (step 1 of 
STEM), in addition to the first condition, constraints max ,…, , ,…, f ∗ + x x . β , f ∗ −y y . β  ≥ 0 should be satisfied for j = 1, …, n (the second condition), too. In DMUs of 
feasible region, the first and second conditions should be satisfied in DMUj, j = 1, …, n, 
simultaneously. Therefpre, the DMUs of S     are determined using Equation 
(20).                                    S    = DMU DMU  satisfies first and second conditions, j = 1, … , n .      (20)

The second target finding stage 
The optimum objective function values of step 1 of the STEM model should be calcu-

lated and DMU targets of the model should be found in the second target finding stage. 
The optimum objective function value of step 1 of STEM model is calculated by Equation 
(21). h∗ = min ∈    max ,…, , ,…, f ∗ + x x . β , f ∗ − y y . β       (21)

After that, the DMUs of 𝑆     which have optimum objective function value 
shows the targets of DMU  in the model. Therefore, the DMUo targets in step 1 of STEM 
are determined using Equation (22). DMU Targets in step 1 of STEM =DMU DMU ∈ S    , j = 1, … , n, objective function value = h∗ .   (22)

3.2.3. Finding DMU Targets of Step 2 of STEM’s Model 
Finding the optimum solutions of non-radial model 14 (step 2 of STEM), without 

solving any mathematical models, is described in two target finding stages below. 
The first target finding stage 

First, DMUs of feasible region in step 2 of the STEM model should be found. In DMUs 
of feasible region, three conditions should be regarded. The first and second conditions 
should be tested for DMUj, j = 1, …, n as described in Section 3.2.2, but in the second con-
dition, β , l = 1, … , m + s  should be determined again. The third condition relates to f (u) ≥ f (u ) − ∆f  and f (u) ≥ f (u ), l = 1, … , m + s , l ≠ q  constraints that f (u), ∆f , and f (u), l = 1, … , m + s, l ≠ q are obtained from suggested target of DM. So in 
DMUs of feasible region, constraints f (u) ≥ −x x − ∆f , and f (u) ≥ −x x , l =1, … , m , l ≠ q and f (u) ≥ y y − ∆f , and f (u) ≥ y y , l = m + 1, … , m + s , l ≠ q for j = 
1, …, n should be satisfied, too. So, the selected DMUj of S     set are defined as 
Equation (23). S    = DMU DMU  satisfies first to  third conditions, j = 1, … , n .  (23)

The second target finding stage 
The optimum objective function value of step 2 of the STEM model should be calcu-

lated and DMU targets of mentioned model should be found in the second target finding 
stage. The optimum objective function value of step 1 of the STEM model is calculated by 
Equation (24). h∗ = min ∈    max ,…, , ,…, f ∗ + x x . β , f ∗ − y y . β        (24)
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After that, the DMUs of feasible region which have optimum objective function val-
ues show the targets of DMU  in the model (Equation (25)). DMU Targets in step 2 of STEM =DMU DMU ∈ S    , j = 1, … , n, objective function value = h∗ .   (25)

It is remarkable that DMU Target in step 2 of STEM exists, if the best compromise so-
lution is found in step 2 of the STEM model (Section 3.1). The brief of applying extended 
RBA to find non-radial FDH models targets of the interactive algorithm is shown in Figure 
2. 

 
Figure 2. Extended RBA for finding non-radial FDH models targets of the interactive algorithm. 

4. Two Real Case Studies 
The proposed technique was applied in two real case studies. The description is pro-

vided in Sections 4.1 and 4.2. 

4.1. The First Case Study: University Departments 
The data set of 17 university departments of Islamic Azad University of Mobarakeh 

Iran (mobarakeh.iau.ir), denoted by DMU01, …, DMU17, were extracted from reported re-
search [39]. These data were also used by another study [15]. Each DMUj, j = 1, …, 17 has 
two inputs and two outputs. 

The names of inputs are “the number of bachelor students” and “the number of (full 
time and part time) faculty members”. The names of outputs are “the number of gradu-
ates” and “the number of research papers”. The data of the first case study are shown in 
Table 2. 
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Table 2. Data of the first case study. 𝐃𝐌𝐔𝐣 I1 I2 O1 O2 
DMU01 26 7 12 3 
DMU02 29 6 10 7 
DMU03 40 8 20 6 
DMU04 42 7 12 6 
DMU05 45 9 18 6 
DMU06 92 12 40 2 
DMU07 83 11 58 3 
DMU08 87 14 52 7 
DMU09 149 16 61 4 
DMU10 177 17 54 12 
DMU11 191 19 61 11 
DMU12 185 14 73 4 
DMU13 186 20 85 10 
DMU14 74 12 36 5 
DMU15 164 22 69 8 
DMU16 225 20 80 5 
DMU17 108 10 27 3 

As mentioned previously, in DEA models, choosing appropriate inputs, outputs, and 
DMUs is an important subject. In this case study, the relationship n ≥ 3(m + s) existed 
(17 ≥ 3(2 + 2)). 

4.1.1. Applying the Interactive Algorithm for the First Case Study 
To find DMU targets, the interactive algorithm (Figure 1), including two interactive 

stages, was applied for universities departments. 
Applying the first interactive stage 

In this stage, efficient DMUs and their targets were determined. For o = 1, …, 17, 
parameters x = x , i = 1, 2, j = 1, …, 17, and y = y , r = 1, 2, j = 1, … , 17 were de-
fined. Non-radial model 12 was then composed for DMU , j = 1, … , 17. The results of solv-
ing of model 12 for DMU , j = ⋯ … , 17 are shown in Table 3. 

Considering Table 3, M = {DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU15, DMU  and M = {DMU , DMU , DMU } 
were defined. Then DMU  Target = DMU , DMU ∈ M was also defined. So, obtained re-
sults from 17 times (number of DMUs) composing and solving non-radial model 12 (the 
first interactive stage) showed that 14 DMUs lay on the efficient frontier, and 3 DMUs did 
not. By applying the second interactive stage, the DMU targets of these three DMUs were 
distinguished. 
Applying the second interactive stage 

In the second interactive stage, the targets of DMUs belonging to set M  were found 
by STEM. First, the pay-off tables for non-proceed DMUs were constructed. As M ={DMU , DMU , DMU } ≠ ∅  (M  has 3 members), the interactive algorithm (Figure 1) 
should be continued to find targets of M  set considering DMU , DMU , and DMU , one 
by one. But here, the process of applying the interactive algorithm for DMU , DMU  and DMU  are described simultaneously. So, each of these three DMUs (DMU =DMU , DMU  and DMU )  was considered as a non-proceed DMU that their targets 
should be defined. 

  



Appl. Sci. 2021, 11, 10626 16 of 33 
 

Table 3. The results of solving model 12 (related to the first interactive stage) in the first case study. 𝐃𝐌𝐔𝐣 𝐙𝐣𝐨 𝛉𝟏∗  𝛉𝟐∗  𝛗𝟏∗  𝛗𝟐∗  𝐃𝐌𝐔𝐣𝐓𝐚𝐫𝐠𝐞t 
DMU01 0 1 1 1 1 DMU01 
DMU02 0 1 1 1 1 DMU02 
DMU03 0 1 1 1 1 DMU03 
DMU04 0 1 1 1 1 DMU04 
DMU05 0.166 0.89 0.89 1.11 1 DMU03 
DMU06 0.565 0.9 0.92 1.45 1.5 DMU07 
DMU07 0 1 1 1 1 DMU07 
DMU08 0 1 1 1 1 DMU08 
DMU09 0 1 1 1 1 DMU09 
DMU10 0 1 1 1 1 DMU10 
DMU11 0 1 1 1 1 DMU11 
DMU12 0 1 1 1 1 DMU12 
DMU13 0 1 1 1 1 DMU13 
DMU14 0 1 1 1 1 DMU14 
DMU15 0 1 1 1 1 DMU15 
DMU16 0.617 0.83 1 1.06 2 DMU13 
DMU17 0 1 1 1 1 DMU17 

Firstly, x = x , i = 1, 2, j=1, …, 17, and y = y , r = 1, 2, j = 1, … , 17 were defined 
for DMUo, o = 5, 6, and 16. Then the pay-off tables (Table 4) were constructed by compos-
ing and solving of model 13 for f (u), l = 1, …, 4. In model 13, n = 17 and m = s = 2 are 
considered for each DMUo, o = 5, 6, and 16. 

It is mentionable that the required times to construct and solve model 13 in the inter-
active algorithm were equal to 3 (the number of M  set members). In this interactive stage, 
finding a suitable DMU in feasible region as the target of DMU , o = 5, 6, and 16 was de-
sired which the value of fl, l = 1, …, 4 was as good as the suggested DMU  target, o = 5,6, 
and 16 by DM. Supposed that the targets of DMU , DMU  and DMU  according to 
DM’s opinions were DMU , DMU  and DMU , respectively. So, suggested targets of 
DM were considered as DM’s opinions for fl, l = 1, …, 4. After that, the first iteration of 
STEM (p = 1) was started. In step 1 of STEM (calculation phase), first 𝜋  , 𝑙 = 1, … , 4 was 
calculated by Equation (4) considering Table 4, then β = ∑  , 𝑙 = 1, … , 4 was calcu-

lated as shown in Table 5. 
Then model 14 for DMU , DMU  and DMU  (Step 1 of STEM for p = 1) were com-

posed. The results of solving these models and DM’s opinions about them are shown in 
Table 6. As seen in the last column of Table 6, the targets of DMU , DMU  and DMU  
via solving of model 14 (Step 1 of STEM for p = 1) were DMU , DMU  and DMU , re-
spectively. 

Table 4. The results of solving model 13 for three DMUs (related to the second interactive stage) in 
the first case study. 𝐃𝐌𝐔𝐨 𝐟𝐥 (l = 1, …, 4) 𝐟∗ 𝐟𝟏 𝐟𝟐 𝐟𝟑 𝐟𝟒 𝛉𝟏∗  𝛉𝟐∗  𝛗𝟏∗  𝛗𝟐∗  

DMU  

f = −45θ  −40 −40 −8 18 6 0.889 0.889 1.000 1.000 f = −9θ  −8 −40 −8 18 6 0.889 0.889 1.000 1.000 f = 18φ  20 −40 −8 20 6 0.889 0.889 1.111 1.000 f = 6φ  6 −40 −8 18 6 0.889 0.889 1.000 1.000 DMU  
f = −92θ  −83 −83 11 40 2 0.902 0.917 1.000 1.000 f = −12θ  −11 −83 11 40 2 0.902 0.917 1.000 1.000 f = 40φ  58 −83 11 58 2 0.902 0.917 1.450 1.000 
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f = 2φ  3 −83 11 40 3 0.902 0.917 1.000 1.500 

DMU  

f = −225θ  −186 −186 20 80 5 0.827 1.000 1.000 1.000 f = −20θ  −20 −186 20 80 5 0.827 1.000 1.000 1.000 f = 80φ  85 −186 20 85 5 0.827 1.000 1.063 1.000 f = 5φ  10 −186 20 80 10 0.827 1.000 1.000 2.000 

Table 5. Calculating parameters for three DMUs to compose model 14 of step 1 of STEM (p = 1) 
(related to the second interactive stage) in the first case study. 𝐃𝐌𝐔𝐨   l = 1 l = 2 l = 3 l = 4 

DMU  

f  −40 −8.000 18.000 6.000 f ∗ −40 −8.000 20.000 6.000 π  0 0.000 0.006 0.000 β  0 0.000 1.000 0.000 

DMU  

f  −83 11.000 40.000 2.000 f ∗ −83 −11.000 58.000 3.000 π  0 2.000 0.008 0.167 β  0 0.920 0.004 0.077 

DMU  

f  −186 20.000 80.000 5.000 f ∗ −186 −20.000 85.000 10.000 π  0 1.000 0.001 0.100 β  0 0.908 0.001 0.091 

As described previously, these targets were acceptable according to DM’s opinion, 
too. As the obtained solutions for DMU  and DMU  were satisfied via DM’s opinions, 
the best compromise solutions were obtained for these DMUs. 

Then, DMU  (DMU  and DMU ) from M  set removed (M = {DMU } ≠ ∅ (M  has 
1 member). As the value of the fourth target of DMU  was not satisfied via DM’s opin-
ions, the obtained solution was not the best compromise solution. So, composing model 
14 related to Step 2 of STEM (p = 1) was required for DMU . The required parameters 
were calculated as shown in Table 7. 

Table 6. The results of solving model 14 (Step 1 of STEM for p = 1) and DM’s opinions about them 
for three DMUs (related to the second interactive stage) in the first case study. 𝐃𝐌𝐔𝐨  𝐓𝐚𝐫𝐠𝐞𝐭𝟏 𝐓𝐚𝐫𝐠𝐞𝐭𝟐 𝐓𝐚𝐫𝐠𝐞𝐭𝟑 𝐓𝐚𝐫𝐠𝐞𝐭𝟒 Target 

DMU  

Model 14 40 8 20 6 DMU  
DM’s opinions 40 8 20 6 DMU  ∆  0 0 0 0 - 

Unsatisfied 0 0 0 0 -  

DMU  

Model 14 83 1 58 3 DMU  
DM’s opinions 83 11 58 3 DMU  ∆  0 −10 0 0 - 

Unsatisfied 0 0 0 0 - 

DMU  

Model 14 86 0 85 0 DMU  
DM’s opinions 186 20 85 10 DMU  ∆  −100 −20 0 −10 - 

Unsatisfied 0 0 0 1  - 
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Table 7. Calculated parameters through solving of step 2 of STEM (p = 1) models for DMU  (the 
first case study). 𝐃𝐌𝐔𝐨  l  i or r 𝛉𝐢∗ 𝐨𝐫 𝛗𝐫∗  𝐟𝐥 Unsatisfied  𝒇𝒍 Target 

(DM) 
∆𝐟𝐥 𝛃𝐥 

DMU  

1  i = 1 0.827 -186 0 186 0.000 0.000 
2  i = 2 1.000 20 0 20 0.000 0.000 
3  r = 1 1.063 85 0 85 0.000 0.000 
4  r = 2 2.000 0 1 10 1.000 0.000 

Non-radial model 14 for DMU  was then composed for the first iteration of step 2 
of STEM. The results of solving this model showed that there was only one similar unsat-
isfied objective function (fourth objective function) in two consecutive steps of STEM. 
Therefore, the target of DMU  could not be considered as DMU . Therefore, the interac-
tive algorithm was continued by asking DM to suggest a new target for each DMUo. DM 
did not suggest new DMUs target for DMU  so there were no targets for DMU  in the 
FDH model. Then, DMU  (DMU ) from M  set was removed (M = ∅). As there was no 
non-proceed DMUs and the process of targets determination for all DMUs had been car-
ried out (M = ∅), the interactive algorithm was finished. The results of applying the in-
teractive algorithm for all DMUs are shown in Table 8. 

As shown in the last column of Table 8, applying the interactive algorithm for uni-
versity departments are considered as three cases. DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU ,DMU , and DMU  were members of M set and the targets of these DMUs were them-
selves (case 1). As best compromise solutions were found through step 1 of STEM for DMU , DMU , these DMUs belonged to case 2. As there was only one similar unsatisfied 
objective function in two consecutive steps of STEM for DMU , this DMU belonged to 
case 3. 

Table 8. The brief of applying the interactive algorithm for finding DMU targets (the first case study). 

DMUo 
Member of 

M Set 

Obtained Target 
by Solving of 

Step 1 of STEM 
Model 

Obtained 
Target via 

DM’s 
Opinions 

Obtaining 
DM’s 
Target  

Related Interactive Stages of the 
Interactive Algorithm Case 

DMU01 

√ - - - As DMU was a member of M set, target 
was itself 

1 

DMU02 
DMU03 
DMU04 
DMU07 
DMU08 
DMU09 
DMU10 
DMU11 
DMU12 
DMU13 
DMU14 
DMU15 
DMU17 
DMU05 

× 
DMU03 DMU03 

√ 
The best compromise solution via DM’s 
opinions was found in first iteration of 

step 1 of STEM 
2 

DMU06 DMU07 DMU07 
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DMU16 × DMU13 DMU13 × 

The best compromise solution was not 
found because there was only one 

similar unsatisfied objective function in 
the step 1 and first iteration of step 2 of 

STEM 

3 

It should be mentioned that in the first case study, 14 DMUs from 17 DMUs (about 
82%) lay on the efficient frontier. Moreover, non-radial FDH models 13 and 14 were com-
posed and solved, three and four times through the second interactive stage, respectively. 
Here, the process of target determination for all DMUs was carried out, and the interactive 
algorithm finished. In fact, the required repetition times for composing and solving non-
radial model 14 depend on DM’s opinions about suitable targets for each considered 
DMUo. 

4.1.2. Applying Extended RBA for the First Case Study 
As described in Section 4.1.1, for applying the interactive algorithm for the first case 

study, solving of non-radial FDH models 12, 13, model 14 of step 1 of STEM (p = 1), and 
model 14 of step 2 of STEM (p = 1), 17, 3, 3, and 1 times were needed, respectively. So, 
solving 24 mixed 0–1 LP models were required to find all DMU targets. The DMU targets 
of mentioned non-radial FDH models could be found using extended RBA through two 
target finding stages without solving any mathematical programming models. In this sec-
tion, applying extended RBA for finding DMU targets of these non-radial FDH models 
(models 12–14 for DMU05 of university departments) are described. First x = x , i =1, 2, and y = y , s = 1, 2 (j = 1, …, 17) were defined for DMU  = DMU05 (Figure 2). 
Target finding of non-radial FDH models 12 and 13 for DMU05 in the first case study 

In this regard, DMUs of feasible region should be found in applying the first target 
finding stage. Firstly, DMUs of feasible region (S    ) should be found using Equa-
tion (15) (Figure 2). In DMUs of feasible region, constraints  ≤ 1, i = 1, 2 and  ≥ 1,r = 1,2 (j = 1, …, 17) should be satisfied. The results of checking constraints of the first 
condition are shown in Table 9. As it is observed in the last column of Table 9, only DMU03 
and DMU05 satisfied all four constraints of the first condition. So, S    ={DMU , DMU }. 

Table 9. Applying the first target finding stage for DMU05 (the first case study). 

𝐃𝐌𝐔𝐣 I1 I2 O1 O2 
𝐱𝟏𝐣𝐱𝟏𝐨 

𝐱𝟏𝐣𝐱𝟏𝐨 ≤ 𝟏 
𝐱𝟐𝐣𝐱𝟐𝐨 

𝐱𝟐𝐣𝐱𝟐𝐨 ≤ 𝟏 
𝐲𝟏𝐣𝐲𝟏𝐨 

𝐲𝟏𝐣𝐲𝟏𝐨 ≥ 𝟏 
𝐲𝟐𝐣𝐲𝟐𝐨 

𝐲𝟐𝐣𝐲𝟐𝐨 ≥ 𝟏 

Sstep 0 of 

STEM 
(Equatio

n (15)) 
DMU01 26 7 12 3 0.578 0.578 0.778 0.778 0.667 × 0.500 × × 
DMU02 29 6 10 7 0.644 0.644 0.667 0.667 0.556 × 1.167 1.167 × 
DMU03 40 8 20 6 0.889 0.889 0.889 0.889 1.111 1.111 1.000 1.000 √ 
DMU04 42 7 12 6 0.933 0.933 0.778 0.778 0.667 × 1.000 1.000 × 
DMU05 45 9 18 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 √ 
DMU06 92 12 40 2 2.044 × 1.333 × 2.222 2.222 0.333 × × 
DMU07 83 11 58 3 1.844 × 1.222 × 3.222 3.222 0.500 × × 
DMU08 87 14 52 7 1.933 × 1.556 × 2.889 2.889 1.167 1.167 × 
DMU09 149 16 61 4 3.311 × 1.778 × 3.389 3.389 0.667 × × 
DMU10 177 17 54 12 3.933 × 1.889 × 3.000 3.000 2.000 2.000 × 
DMU11 191 19 61 11 4.244 × 2.111 × 3.389 3.389 1.833 1.833 × 
DMU12 185 14 73 4 4.111 × 1.556 × 4.056 4.056 0.667 × × 
DMU13 186 20 85 10 4.133 × 2.222 × 4.722 4.722 1.667 1.667 × 
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DMU14 74 12 36 5 1.644 × 1.333 × 2.000 2.000 0.833 × × 
DMU15 164 22 69 8 3.644 × 2.444 × 3.833 3.833 1.333 1.333 × 
DMU16 225 20 80 5 5.000 × 2.222 × 4.444 4.444 0.833 × × 
DMU17 108 10 27 3 2.400 × 1.111 × 1.500 1.500 0.500 × × 

DMUo=DM
U05 

45 9 18 6 - - - - - - - - - 

The optimum objective function values and DMU targets should then be found in 
applying the second target finding stage. At first, the optimum objective function values 
of models should be calculated by Equations (16) and (17) (Figure 2). The objective func-
tion values of DMU03 and DMU05 (in model 12, Z = ∑ − ∑ , j = 1, … , 17, and 
in model 13, f (u) = −x x , f (u) = −x x , f (u) = y y , f (u) = y y ) are shown in 
Table 10. 

The last row of Table 10 shows the maximum values of Z , DMU ∈ S     and f , l = 1, … , 4, respectively. These values show the optimum objective function value of 
each model (Z∗ , f ∗, l = 1, … ,4). The DMU  targets were then found by comparing the op-
timum objective function values of each model with the objective function value of each 
DMU by Equations (18) and (19) (Figure 2). It is considerable that non-radial model 13 
with f  objective function had alternative solutions. 

Table 10. Applying the second target finding stage for DMU05 (the first case study). 

DMUj 
𝐙𝐣𝐨 

(Equati
on (16)) 

𝐌𝐨𝐝𝐞𝐥 𝟏𝟐 
Targets 

(Equation 
(18)) 

𝐟𝟏 
(Equati
on (17)) 

𝐟𝟏 Targets 
(Equation 

(19)) 

𝐟𝟐 
(Equati
on (17)) 

𝐟𝟐 Targets 
(Equation 

(19)) 

𝐟𝟑 
(Equation 

(17)) 

𝐟𝟑 Targets 
(Equation 

(19)) 

𝐟𝟒 
(Equati
on (17)) 

𝐟𝟒 Targets 
(Equation 

(19)) 

DMU03 0 DMU03 -40 DMU03 -8 DMU03 20 DMU03 6 DMU03 
DMU05 0 × -45 × -9 × 18 × 6 DMU05 

Max  0 - -40 - -8 - 20 - 6 - 

Target finding of non-radial model 14 for DMU05 in the first case study 
First, step 1 of STEM (p = 1) should be considered. DMUs of feasible region (in step 1 

of STEM model) should be found through applying the first target finding stage. First, 
DMUs belonging to the feasible region should be found. In DMUs of feasible region, two 
conditions should be satisfied. Firstly, constraints  ≤ 1, i = 1, 2, and  ≥ 1, r = 1, 2, 
(j = 1, …, 17) should be satisfied (the first condition). As it is seen in Table 9, only DMU03 
and DMU05 satisfied these constraints. Moreover, the constraints max f ∗ − f (u) . β ≥0, l = 1, … , 4 should be satisfied for each DMU of feasible region (the second condition). 
Checking the second condition for DMU03 and DMU05 are shown in Table 11. 

Table 11. Applying target finding stages 1–2 to solve step 1 of STEM (p = 1) for DMU05 (the first case study). 

𝐃𝐌𝐔𝐣. 𝐟𝟏∗ − 𝐟𝟏(𝐮)  . 𝛃𝟏 
𝐟𝟐∗ − 𝐟𝟐(𝐮)  . 𝛃𝟐 

𝐟𝟑∗ − 𝐟𝟑(𝐮)  . 𝛃𝟑 
𝐟𝟒∗ − 𝐟𝟒(𝐮)  . 𝛃𝟒 

𝐒𝐬𝐭𝐞𝐩 𝟏 𝐨𝐟 𝐒𝐓𝐄𝐌𝟏  
(Equation 

(20)) 

𝐡𝐣 
(Equation 

(21)) 

Targets 
(Equation 

(22)) 
DMU03 0 0 0 0 √ 0 DMU03 
DMU05 0 0 2 0 √ 2 × ℎ∗ = min 𝑚𝑎𝑥 𝑓∗ − 𝑓 (𝑢) . 𝛽  

(l = 1,…,4) 
- - - - - 0 - 
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As seen in Table 11, the constraints of the second condition were also satisfied for 
DMU03 and DMU05. So, S    = {DMU , DMU }. 

The optimum objective function value of step 1 of STEM model was then calculated, 
and DMU targets were found through applying the second target finding stage. With re-
spect to Equation (21), the minimum values of the left-hand side of the second condition 
for DMU03 and DMU05 showed the optimum objective function value of non-radial model 
14 (last row of Table 11). As is seen in Equation (22), each DMU with an objective function 
value equal to the optimum objective function value, showed the targets of DMU . So, the 
target of DMU05 was DMU03, as seen in the last column of Table 11 
(DMU Targets in step 1 of STEM = {DMU }). 

It is mentionable that the obtained results from target finding of all non-radial FDH 
models 12–14 for the first case study for DMU05 using extended RBA are the same as the 
results obtained from solving the mentioned mathematical models. Here, target finding 
of three non-radial FDH models of 24 mathematical programming models using extended 
RBA were described. A similar process should be undertaken to find targets of other 21 
non-radial FDH models. 

4.2. The Second Case Study: Operations Strategies of Fars Province Pharmaceutical Distributing 
Companies 

By considering expert opinions, 13 active pharmaceutical distributing companies 
(Fars province of Iran) in 2019 were investigated. These companies were Daroo Pakhsh, 
Pakhshe Razi, Adora Teb, Mahya Daroo, Alborz, Hejrat, Daroo Gostare Razi, Behestan 
Pakhsh, Ghasem Iran, Yasin, Ferdos, Elit Daroo, and Soha Helal. The operations strategies 
of these companies denoted as DMU01, …, DMU13. 

There are five generic performance objectives including cost, delivery speed, quality, 
dependability, and flexibility. Joining the market requirements through a beneficial 
method for operations is the purpose of these objectives. These objectives are applicable 
for different operations. Satisfaction of customers can be obtained through reaching these 
mentioned objectives [40]. According to expert opinions, these five generic performance 
objectives were very important in the operation strategies of Fars province pharmaceutical 
distributing companies. In this regard, cost was defined as the lower cost for producing 
products and services, and decreasing the cost of distributing medicinal drugs and in-
creasing customers are desirable for pharmaceutical distributing companies. Delivery 
speed was defined as an elapsed time between the beginning of an operations process and 
its end, and increasing trucks, vans, and motorcycles numbers could improve delivery 
speed. Quality was defined as fit-for-purpose, and comparing distributed medicinal 
drugs with orders and checking the temperature of transportation refrigerators could im-
prove quality. Dependability was defined as keeping delivery promises and distributing 
medicinal drugs in the promised tim,e and increasing transportation vehicles could im-
prove dependability. Flexibility was defined as treating the operation as a ‘black box’ and 
considering the types of flexibility that would contribute to its competitiveness (product 
or service flexibility, mix flexibility, volume flexibility, and delivery flexibility) and having 
up to date information about existing medical drugs and having a powerful team to pre-
pare them could improve flexibility. 

As mentioned previously, in DEA models, choosing appropriate inputs and outputs 
is an important subject. As classical DEA models are based on decreasing inputs and in-
creasing outputs, in operations strategies of Fars province pharmaceutical distributing 
companies, cost and delivery speed were considered as inputs that denoted by I1 and I2. 
Furthermore, quality, dependability, and flexibility were considered as outputs that were 
denoted by O1, O2 and O3. These inputs and outputs were relevant to the research area 
and expert(s) confirmed them. All DMUs in the research area were considered as DMUs. 
So, each DMUj, j = 1, …, 13 had two inputs (I1 and I2), and three outputs (O1, O2 and O3). 
As mentioned previously, establishing a relationship n ≥ 3(m + s) between inputs, out-
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puts, and DMU numbers is recommended. Here, all DMUs in the research area were con-
sidered and increasing DMUs to reach exact relationship n ≥ 3(m + s) was impossible in 
a practical view (this relationship almost existed (13 ≅ 3(2 + 3)). As we will see later, only 
two DMUs were efficient in the second case study. So, in this case study, decreasing the 
number of DMUs did not also create difficulty in the theoretical view. 

As only experts accessed real data related to inputs and outputs of each DMU, expert 
judgement was used. With respect to each input and output, the performance of each 
DMU was scaled by 1 to 9 considering expert opinions (Table 12). The data of inputs and 
outputs of operations strategies of Fars province pharmaceutical distributing companies 
(the second case study) are shown in Table 13. 

Table 12. Performance scales for inputs and outputs. 

Performance 
Scale Very Low Low Moderate High Very High 

Outputs 1 3 5 7 9 
Inputs 9 7 5 3 1 

Table 13. Data of the second case study. 𝐃𝐌𝐔𝐣 I1 I2 O1 O2 O3 
DMU01 1 1 8 7 8 
DMU02 1 2 8 6 6 
DMU03 3 4 8 7 4 
DMU04 2 5 5 6 5 
DMU05 1 1 5 5 6 
DMU06 2 3 6 8 7 
DMU07 3 4 4 3 6 
DMU08 3 3 5 5 3 
DMU09 2 2 3 6 4 
DMU10 6 4 7 7 2 
DMU11 5 4 4 7 4 
DMU12 5 5 4 7 6 
DMU13 5 3 6 4 7 

As the process of applying the hybrid technique for the second case study had a lot 
of similarity with the first case study, its main results are described in Sections 4.2.1 and 
4.2.2. The details of applying the method for the second case study are shown in Appendix 
A. 

4.2.1. The Main Results of Applying the Interactive Algorithm for the Second Case Study 
To find DMU targets for the second case study, the interactive algorithm, including 

two interactive stages (Figure 1), was applied. In applying the first interactive stage (Ap-
pendix A, Appendix A.1), non-radial model 12 was composed and solved 13 times. The 
results show that only 2 DMUs (about 15%) lay on the efficient frontier, and 11 DMUs did 
not (Appendix A, Table A1). By applying the second interactive stage (Appendix A, Tables 
A2–A6), DMU07 target was obtained, but DMU04 and DMU10 target were not obtained. The 
brief results of applying the interactive algorithm (Figure 1) for all DMUs are shown in 
Table 14. 

As seen in the last column of Table 14, applying the interactive algorithm for the sec-
ond case study can be categorized into four cases. As shown in Table 14, DMU01 and 
DMU06 are members of M set and the target of these DMUs are themselves (case 1). The 
obtained targets by solving step 1 of the STEM model and via DM’s opinions of DMU02, 
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DMU03, DMU05, DMU07, DMU09, and DMU11 are DMU01. By applying step 1 or 2 of STEM, 
the best compromise solutions for these DMUs are found (DMU01) via DM’s opinions (case 
2). By solving step 1 of the STEM model, DMU01 is obtained as the target of the rest DMUs. 
But the target of these DMUs via DM’s opinions are DMU06 (case 3 and 4). For DMU04, 
DMU08, and DMU13, a compromise solution is not found because there is only one similar 
unsatisfied objective function in step 1 and the first iteration of step 2 of STEM (case 3). 
The best compromise solution is not obtained for DMU10 because 𝛽 , l = 1, …, 5 is not 
calculable for the first iteration of step 2 of STEM (case 4). The required repetition times 
of composing and solving non-radial model 14, depends on DM’s opinions about suitable 
target for each considered DMUo. In Appendix A, finding the target of a DMU in each 
case are described. 

Table 14. The brief of applying the interactive algorithm for finding DMU targets (the second case study). 

DMUo Member of 
M set 

Obtained 
Target by 
Solving of 
Step 1 of 

STEM 
Model 

Obtained 
Target via 

DM’s 
Opinions 

Obtaining 
DM’s Target 

Related Interactive Stages of the 
Interactive Algorithm 

Case 

DMU01 
√ - - - As DMU was a member of M set, target 

was itself 
1 

DMU06 
DMU02 

× DMU01 DMU01 √ The best compromise solution via DM’s 
opinions was found in step 1 or 2 of STEM 

2 

DMU03 
DMU05 
DMU07 
DMU09 
DMU11 
DMU12 
DMU04 

× DMU01 DMU06 × 

The best compromise solution was not 
found because there was only one similar 
unsatisfied objective function in the step 1 

and first iteration of step 2 of STEM 

3 DMU08 

DMU13 

DMU10 × DMU01 DMU06 × 

Compromise solution was not found 
because calculating value of beta l (l = 

1, …,5) were not possible for the first cycle 
of step 2 of STEM 

4 

4.2.2. The Main Results of Applying Extended RBA for the Second Case Study 
As described in Appendix A.2 (Appendix A), through applying the interactive algo-

rithm for the second case study, non-radial FDH models 12, 13, non-radial FDH model 14 
of step 1 of STEM (p = 1), and non-radial model 14 of step 2 of STEM (p = 1) should be 
solved 13, 11, 11, and 5 times, respectively. So, finding targets of 40 mixed 0–1 LP models 
were required. The target of these non-radial FDH models could be obtained using ex-
tended RBA through two target finding stages (Figure 2). In Appendix A.2, applying ex-
tended RBA for solving three of these non-radial FDH models (models 12–14 for DMU05 
of the second case study) are described. 

The detail results of applying extended RBA (Figure 2) to solve non-radial FDH mod-
els 12–14 for DMU07 of the second case study (related non-radial FDH models in the inter-
active algorithm) are described in Appendix A.2 (Appendix A). Each target of model was 
found using two target finding stages for DMU07 of the second case study considering 
related conditions. x = x , i = 1, … ,3 , and y = y , s = 1, 2 (j = 1, …, 13) were firstly 
defined for DMU  = DMU07. 
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Applying extended RBA for non-radial FDH models 12 and 13 (Appendix A, Ap-
penidx A.2), showed that S    = {DMU , DMU , DMU , DMU , DMU }  and 
some non-radial FDH models had alternative targets. Applying extended RBA for non-
radial FDH model 14 (Appendix A, Appendix A.2), showed that 𝑆    ={DMU , DMU , DMU , DMU , DMU } and DMU01 was the only target (Table A9). 

By solving step 1 of the STEM model (non-radial FDH model 14), DMU01 was ob-
tained as the DMU07 target (Appendix A, Table A10). However, the obtained target via 
DM’s opinions was DMU06. A compromise solution was not found because no feasible 
integer solution could be found in the first iteration of step 2 of STEM. 

It is mentionable that the results obtained from solving of all non-radial FDH models 
12–14 for the second case study DMU07 using extended RBA were the same as the results 
obtained from solving of mentioned models using regular approaches. As described in 
Appendix A.2 (Appendix A), solving three models of 40 non-radial FDH models were 
described. A similar process should be undertaken to solve other 37 mathematical models. 

As mentioned previously, the suggested hybrid technique contains the interactive 
algorithm (the first part) and extended RBA (the second part). The interactive algorithm 
contains two stages. In the interactive stage 1, inputs, outputs, DMUs, and then efficient 
DMUs and their targets are determined. According to the proposed technique, using real 
data is preferred rather than gathering them from experts’ opinions. In the first case study, 
inputs, outputs, and DMUs information were real and extracted from a published paper. 
In the second case study, only experts accessing the real data related to inputs and outputs 
of each DMU. So, experts’ judgements, in situations where experts accessed real data, 
were used. The number of M  set members are determined by composing and solving 
non-radial model 12 for all DMUs. The required number of iterations for the interactive 
algorithm depends on the number of M  set members. Non-radial model 12 should be 
constructed and solved n (number of DMUs) times. It is considerable that the number of 
DMUs in the first and second case studies are 17 and 13, respectively. If the ratio of “the 
number of 𝑀  set members” to “all DMUs” is near to 0, the interactive algorithm needs 
fewer iterations. If this ratio is near to 1, the interactive algorithm needs more iterations. 
As it is found for applying the first interactive stage in the first case study, if the number 
of DMUs that lie on the efficient frontier is considerable (14 DMUs from 17 DMUs, about 
82%), the interactive requires fewer iterations. However, as it is found for the second case 
study, if the number of DMUs that lie on the efficient frontier of model 12 is not consider-
able (2 DMUs from 13 DMUs, about 15%), the interactive algorithm requires more itera-
tions. 

In the interactive stage 2, non-efficient DMUs targets are determined using STEM. 
The required times to construct and find targets of model 13 (step 0 of STEM) are equal to 
the number of M  set members. The number of M  set members in the first and second 
case studies were 3 and 11, respectively. The required time for constructing and finding 
targets of model 14 (steps 1 and 2 of STEM) is dependent on DM’s opinions about a suit-
able target for each considered DMUo. These numbers in the first and second case studies 
were 3 and 11, respectively. Therefore, by applying 3 and 11 times of interactive stage 2, 
the process of targets determination for non-efficient DMUs of the first and second case 
studies was carried out, respectively, and the interactive algorithm finished. Moreover, 
solving 24 and 40 non-radial FDH models were required in the first and second case study, 
respectively. 

5. Conclusions 
Finding DMU targets or DMU projections is useful for strategic planning in some 

organizations. In these organizations, a convexity assumption does not exist, and deci-
sions are made on the basis of pareto solutions. Therefore, these properties should be con-
sidered in practical models. Moreover, by eliminating the convexity assumption, FDH 
models can be applied. As suggesting a technique with mentioned properties has been 
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neglected in previous research, the main novelty of this paper is in its suggestion of this 
technique. In this regard, the answers to the two research questions are as follow: 
(a) Is it possible to propose a technique to find all DMU targets in non-radial FDH mod-

els based on ASBM using IM? Using IMs such as STEM to find DMU targets in non-
radial FDH models on the basis of slack variables can be an important subject and it 
is applied in the proposed technique. 

(b) Is it possible to find DMU targets of non-radial FDH models in the proposed tech-
nique without solving any mathematical models? In this research, in addition to us-
ing STEM for finding DMU targets in non-radial FDH models, DMU targets of non-
radial FDH models were found by extended RBA without solving any mathematical 
models. 
As has been explained previously, after determining inputs, outputs and DMUs in 

the first and second case studies, four DMUs from 17 DMUs (76% of DMUs) and two 
DMUs from 13 DMUs (15% of them) lay on the efficient frontier, respectively. So, in ap-
plying the second interactive stage for the first and second case studies, 76% and 20% of 
DMUs could be selected as targets, respectively. Moreover, the targets of all non-radial 
FDH models were found using extended RBA without solving any mathematical pro-
gramming model. In fact, the obtained results can be extended to other cases considering 
practical and theoretical views. 

As mentioned previously, using real data related to inputs, outputs, and DMUs is 
preferred rather than gathering them from experts’ opinions according to the proposed 
technique. However, if gathering real data was impossible, experts’ judgement would be 
used. In this situation, experts should access real data or have enough information about 
the problem. The existence of, and access to, such experts can be considered as the first 
limitation of this study. We assumed that there are no outliers, and this assumption can 
be considered as the second limitation of this research. Furthermore, all required data ex-
isting in deterministic form can be considered as the third limitation of this study. 

Detecting outliers and investigating the sensitivity of the modeling approach to out-
liers in the proposed technique, finding DMU targets using other IMs, using impressive 
data in supply chain management, and adopting the proposed technique in situations 
where data are fuzzy can be considered as future studies. 
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Appendix A 
The application of the main results of the interactive algorithm for the second case 

study are described in Section 4.2. The detailed results of the application of the interactive 
algorithm (Figure 1) for the second case study are described here. 

Appendix A.1. The Detailed Results of Applying the Interactive Algorithm for the Second Case 
Study 

For determination of DMU targets, the interactive algorithm, including two interac-
tive stages (Figure 1), was applied for the second case study. For the determination of 
efficient DMUs and their targets, the interactive stage was applied. For o = 1, …, 13, pa-
rameters x = x , i = 1, 2, j = 1, …, 13, and y = y , r = 1, 2, 3, j = 1, … ,13 were defined. 
Then non-radial FDH model 12 was made for DMU , j = 1, I, 13. These non-radial FDH 
models were solved, and the obtained results shown in Table A1. 

Table A1. The results of solving model 12 (related to the first interactive stage) in the second case 
study. 𝐃𝐌𝐔𝐣 𝐙𝐣𝐨 𝛉𝟏∗  𝛉𝟐∗  𝛗𝟏∗  𝛗𝟐∗  𝛗𝟑∗  

𝐃𝐌𝐔𝐣𝐓𝐚𝐫𝐠𝐞𝐭 
(Model 12) 

DMU01 0.000 1.000 1.000 1.000 1.000 1.000 DMU01 
DMU02 0.416 1.000 0.500 1.000 1.170 1.330 DMU01 
DMU03 1.041 0.330 0.250 1.000 1.000 2.000 DMU01 
DMU04 1.105 0.500 0.200 1.600 1.170 1.600 DMU01 
DMU05 0.444 1.000 1.000 1.600 1.400 1.330 DMU01 
DMU06 0.000 1.000 1.000 1.000 1.000 1.000 DMU06 
DMU07 1.597 0.330 0.250 2.000 2.330 1.330 DMU01 
DMU08 1.555 0.330 0.330 1.600 1.400 2.670 DMU01 
DMU09 1.444 0.500 0.500 2.670 1.170 2.000 DMU01 
DMU10 1.839 0.170 0.250 1.140 1.000 4.000 DMU01 
DMU11 1.441 0.200 0.250 2.000 1.000 2.000 DMU01 
DMU12 1.244 0.200 0.200 2.000 1.000 1.330 DMU01 
DMU13 1.142 0.200 0.330 1.330 1.750 1.140 DMU01 

M = { DMU , DMU } and M = {DMU , DMU , DMU ,DMU , DMU , DMU , DMU , DMU , DMU , DMU , DMU } are defined with consideration to Table A1. Then DMU  Target = DMU , DMU ∈ M  was also defined. To apply the second interactive 
stage, the pay-off table for non-proceed DMUs was constructed. As M ≠ ∅ (M  has 11 
members), the algorithm should be continued (to find targets of M  set). Targets of all 
members of M  should be determined individually. Suppose that only DMU , DMU , and DMU  were non-proceed DMUs that defined their targets as desired. Therefore, suppose M = {DMU , DMU , DMU } (a sample DMU in cases 2–4 in Table 14). Also suppose that 
the finding process of DMUs targets were carried out simultaneously  (DMU =DMU , DMU , and DMU ). 

At first, x = x , i = 1, 2, j = 1, …, 13, and y = y , r = 1, 2, 3, j = 1, … , 13 were de-
fined for DMUo, o = 4, 7, and 10. Then the pay-off tables (Table A2) were created by com-
posing and solving non-radial model 13 for f (u), l = 1, …, 5. N = 13, m = 2 and s = 3 were 
considered for each DMUo in model 13. The calculation and decision phases of STEM were 
then applied. Finding the suitable DMUs in feasible region were suitable targets of DMU  
in which the valuse of fl, l = 1, …, 5 were as good as the suggested DMU  target by DM. 
Suppose that DM suggests DMU  as the target of DMU , DMU , and DMU . So, sug-
gested targets of DM were considered as DM’s opinions for fl, l = 1, …, 5 for each DMUo. 
After that, the first iteration of STEM (p = 1) began. With respect to step 1 of STEM, 𝜋  , 𝑙 =
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1, … , 5 was calculated by Equation (3), and then β = ∑ , l = 1, … , 5 was obtained as 

seen in Table A3. Then model 14 (Step 1 of STEM for p = 1) was composed for DMU , DMU , and DMU . The results of this model solving and DM’s opinions about 
them are shown in Table A4. As seen in the last column of Table A4, the obtained target 
through solving of non-radial model 14 (step 1 of STEM (p = 1)) for all DMU , DMU , and DMU  was DMU . As described previously, DM suggested DMU  as the target of DMU , DMU , and DMU . Therefore, the interactive algorithm should be continued for 
these DMUs one by one. Here, these three DMUs were considered as DMU , simultane-
ously. 

Table A2. The results of solving model 13 for three DMUs (related to the second interactive stage) in the second case study. 𝐃𝐌𝐔𝐨 𝐟𝐥 (l = 1, …, 5) 𝐟∗ 𝐟𝟏 𝐟𝟐 𝐟𝟑 𝐟𝟒 𝐟𝟓 𝛉𝟏∗  𝛉𝟐∗  𝛗𝟏∗  𝛗𝟐∗  𝛗𝟑∗  Target 
 f = −1θ  −1 −1 −1 5 6 5 0.500 0.200 1.000 1.000 1.000 DMU  
 f = −2θ  −1 −1 −1 5 6 5 0.500 0.200 1.000 1.000 1.000 DMU  DMU  f = 8φ  8 −1 −1 8 6 5 0.500 0.200 1.600 1.000 1.000 DMU  
 f = 6φ  8 −2 −3 5 8 5 1.000 0.600 1.000 1.333 1.000 DMU  
 f = 6φ  8 −1 −1 5 6 8 0.500 0.200 1.000 1.000 1.600 DMU  
 f = −3θ  −1 −1 −1 4 3 6 0.333 0.250 1.000 1.000 1.000 DMU  
 f = −4θ  −1 −1 −1 4 3 6 0.333 0.250 1.000 1.000 1.000 DMU  DMU  f = 4φ  8 −1 −1 8 3 6 0.333 0.250 2.000 1.000 1.000 DMU  
 f = 3φ  8 −2 −3 4 8 6 0.667 0.750 1.000 2.667 1.000 DMU  
 f = 6φ  8 −1 −1 4 3 8 0.333 0.250 1.000 1.000 1.333 DMU  
 f = −6θ  −1 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU  
 f = −4θ  −1 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU  DMU  f = 7φ  8 −1 −1 8 7 2 0.167 0.250 1.143 1.000 1.000 DMU  
 f = 7φ  7 −1 −1 7 7 2 0.167 0.250 1.000 1.000 1.000 DMU  
 f = 2φ  8 −1 −1 7 7 8 0.167 0.250 1.000 1.000 4.000 DMU  

As shown in Table A4, the value of f4 for DMU , DMU  and DMU  was not satis-
fied via DM’s opinions. Therefore, the obtained solutions for considered DMUs were not 
the best compromise solutions and composing model 14 (the first iteration of step 2 of 
STEM) for these three DMUs were required. 

The required parameters for step 2 of STEM (p = 1) considering DMU  and DMU  
were calculated as shown in Table A5. 

Table A3. Calculating parameters for three DMUs to compose model 14 of step 1 of STEM (p = 1) in 
the second case study. 𝐃𝐌𝐔𝐨   l = 1 l = 2 l = 3 l = 4 l = 5 

DMU  

f  −2.000 −3.000 5.000 6.000 5.000 f ∗ −1.000 −1.000 8.000 8.000 8.000 π  0.250 0.133 0.075 0.042 0.075 β  0.435 0.232 0.130 0.072 0.130 

DMU  

f  −2.000 −3.000 4.000 3.000 6.000 f ∗ −1.000 −1.000 8.000 8.000 8.000 π  0.167 0.167 0.125 0.208 0.042 β  0.235 0.235 0.176 0.294 0.059 

DMU  

f  −1.000 −1.000 7.000 7.000 2.000 f ∗ −1.000 −1.000 8.000 7.000 8.000 π  0.000 0.000 0.018 0.000 0.375 β  0.000 0.000 0.045 0.000 0.955 
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Table A4. The results of solving model 14 (Step 1 of STEM for p = 1) and DM’s opinions about them 
for three DMUs in the second case study. 𝐃𝐌𝐔𝐨   𝐓𝐚𝐫𝐠𝐞𝐭𝟏 𝐓𝐚𝐫𝐠𝐞𝐭𝟐 𝐓𝐚𝐫𝐠𝐞𝐭𝟑 𝐓𝐚𝐫𝐠𝐞𝐭𝟒 𝐓𝐚𝐫𝐠𝐞𝐭𝟓 Target 

DMU  

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01 
DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06 ∆  −1.000 −2.000 2.000 −1.000 1.000 - 

Unsatisfied 0 0 0 1 0 - 

DMU  

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01 
DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06 ∆  −1.000 −2.000 2.000 −1.000 1.000 - 

Unsatisfied 0 0 0 1 0 - 

DMU  

Model 14 1.000 1.000 8.000 7.000 8.000 DMU01 
DM’s opinions 2.000 3.000 6.000 8.000 7.000 DMU06 ∆  −1.000 −2.000 2.000 −1.000 1.000 - 

Unsatisfied 0 0 0 1 0 - 

As can be seen in the last column of Table A5, all β , l = 1, … , 5 were not calculable 
(n.c.) for DMU  (because  occurs in calculating β , l = 1, … , 5). So, composing non-ra-
dial FDH model 14 for the second iteration of step 2 of STEM for DMU  was not possible. 
This means that the best compromise solution for DMU  could not be obtained. As DM 
suggested no new target for DMU  in restarting the second interactive stage, no target 
existed in FDH model for DMU  according to DM’s opinion, M = M − DMU  (M ={ DMU , DMU }). 

Table A5. Calculated parameters through solving step 2 of the STEM model (p = 1) considering two 
DMUs (the second case study). 𝐃𝐌𝐔𝐨.  l  i or r 𝛉𝐢∗ 𝐨𝐫 𝛗𝐫∗  𝐟𝐥 Unsatisfied   𝐟𝐥 Target 

(DM) 
∆𝐟𝐥 𝛃𝐥 

 1  i = 1 0.500 −1.000 0 2.000 −1.000 0.000 
 2  i = 2 0.200 −1.000 0 3.000 −2.000 0.000 DMU  3  r = 1 1.600 8.000 0 6.000 2.000 0.000 
 4  r = 2 1.167 7.000 1 8.000 −1.000 1.000 
 5  r = 3 1.600 8.000 0 7.000 1.000 0.000 
 1  i = 1 0.333 −1.000 0 2.000 −1.000 0.000 
 2  i = 2 0.250 −1.000 0 3.000 −2.000 0.000 DMU  3  r = 1 2.000 8.000 0 6.000 2.000 0.000 
 4  r = 2 2.333 7.000 1 8.000 −1.000 1.000 
 5  r = 3 1.333 8.000 0 7.000 1.000 0.000 
 1  i = 1 0.167 −1.000 0 2.000 −1.000 n.c. 
 2  i = 2 0.250 −1.000 0 3.000 −2.000 n.c. DMU  3  r = 1 1.143 8.000 0 6.000 2.000 n.c. 
 4  r = 2 1.000 7.000 1 8.000 −1.000 n.c. 
 5  r = 3 4.000 8.000 0 7.000 1.000 n.c. 

Then, non-radial FDH model 14 for DMU  and DMU  was composed for the first 
iteration of step 2 of STEM. The results of solving model 14 (Step 2 of STEM for p = 2) and 
DM’s opinions about them for DMU  and DMU  are shown in Table A6. As all objective 
functions for DMU  were satisfied via DM’s opinions (the value of all targets of unsatis-
fied row for DMU , that are underlined, were zero), the best compromise solution was 
obtained, M = M − DMU  (M = { DMU }). As there was only one similar unsatisfied 
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objective function (fourth objective function) in two consecutive steps of STEM for DMU , the target of this DMU could not be considered as DMU . So, the interactive algo-
rithm was continued by asking DM to suggest a new target for each DMUo. Suppose that 
DM did not suggest new DMUs target for DMU . So, there was no target for DMU  in 
the non-radial FDH model. This DMU was then removed from 𝑀  set (M = ∅). As there 
was no non-proceed DMUs and the process of targets determination for all DMUs had 
been carried out (M = ∅), the interactive algorithm was finished. 

As shown in the last row of Table A7, the proposed target of DM for DMU07 was 
obtained (DMU06), but the proposed targets of DM for DMU04 and DMU10 were not ob-
tained. 

Appendix A.2. The Detail Results of Applying Extended RBA for the Second Case Study 
Applying extended RBA (Section 3.2) is described to find targets of the non-radial 

FDH model 12–14 for DMU07 of the second case study (related non-radial FDH models in 
the interactive algorithm). Each target of the non-radial FDH model is found using two 
target finding stages. A similar process should be carried out to find the target of the men-
tioned non-radial FDH models for other DMUs. First x = x , i = 1, 2, and y = y , r =1, 2, 3 (j = 1, …, 13) for DMU  = DMU07 should be defined. 

Table A6. The results of solving model 14 (Step 2 of STEM for p = 2) and DM’s opinions about them 
for two DMUs in the second case study. 𝐃𝐌𝐔𝐨  𝐓𝐚𝐫𝐠𝐞𝐭𝟏 𝐓𝐚𝐫𝐠𝐞𝐭𝟐 𝐓𝐚𝐫𝐠𝐞𝐭𝟑 𝐓𝐚𝐫𝐠𝐞𝐭𝟒 𝐓𝐚𝐫𝐠𝐞𝐭𝟓 Target 

DMU  

Model 14 1 1 8 7 8 DMU01 
DM’s 

opinions 2 3 6 8 7 DMU06 ∆  −1 −2 2 −1 1 - 
Unsatisfied 0 0 0 1 0 - 

DMU  

Model 14 1 1 8 7 8 DMU06 
DM’s 

opinions 2 3 6 8 7 DMU06 ∆  −1 −2 2 −1 1 - 
Unsatisfied 0 0 0 0 0 - 

Table A7. Applying the second interactive stage for three considered DMUs (the second case study). 

STEM Phases DMU04 DMU07 DMU10 Table 
Construct pay-off table √ √ √ A.2 

Calculating β  (l = 1, … , 5) for proposing step 1 of STEM (p = 1) model √ √ √ A.3 
Solving of step 1 of STEM (p = 1) model √ √ √ A.4 

Calculating β  (l = 1, … , 5) for proposing step 2 of STEM (p = 1) model √ √ n.a. A.5 
Solving of step 2 of STEM (p = 1) model √ √ × A.6 
Obtaining target regards DM’s opinions × √ × A.6 

Target finding of non-radial FDH models 12 and 13 for DMU07 in the second case study 

By applying the first target finding stage, DMUs of feasible region were found. As 
described in Section 3.2.1, firstly, DMUs of feasible region (S    ) should be found 
using Equation (15) (Table A8). 

As is observed in the last column of Table A8, only five DMUs (DMU01, DMU02, 
DMU05, DMU06 and DMU07) satisfied all five constraints. So, these DMUs belonged to the 
feasible region (S    = {DMU , DMU , DMU , DMU , DMU }). 

By applying the second target finding stage, the optimum objective function values 
were then calculated, and DMU targets were found. In this regard, firstly, the optimum 
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objective function values of models should be calculated by Equations (16) and (17). The 
objective function value of DMU01, DMU02, DMU05, DMU06, and DMU07 (in non-radial 
FDH model 12, Z = ∑ − ∑ , j = 1, … ,13, and in non-radial FHD model 13, f (u) = −x x , f (u) = −x x ,  f (u) = y y , f (u) = y y , f (u) = y y ) are shown 
in Table A9. 

The last row of Table A9 shows the maximum value of Z  and f , l = 1 … 5, respec-
tively. These values show the optimum objective function value 
(optimum value of Z  and f , l = 1, … , 5) of each non-radial FDH model. DMU  targets are found by comparing the optimum objective function value 
(optimum value of Z∗  and f ∗, l = 1, … , 5) with the objective function value of each DMU 
(Z  and f , l = 1, … , 5) by Equations (15) and (16) (Table A9). It is considerable that the ob-
jective functions f , f , and f  of model 14 had alternative optimum solutions. 

Table A8. Applying the first target finding stage for DMU07 (the second case study). 

𝐃𝐌𝐔𝐣 𝐱𝟏𝐣𝐱𝟏𝐨 
𝐱𝟏𝐣𝐱𝟏𝐨 ≤ 𝟏 

𝐱𝟐𝐣𝐱𝟐𝐨 
𝐱𝟐𝐣𝐱𝟐𝐨 ≤ 𝟏 

𝐲𝟏𝐣𝐲𝟏𝐨 
𝐲𝟏𝐣𝐲𝟏𝐨 ≥ 𝟏 

𝐲𝟐𝐣𝐲𝟐𝐨 
𝐲𝟐𝐣𝐲𝟐𝐨 ≥ 𝟏 

𝐲𝟑𝐣𝐲𝟑𝐨 
𝐲𝟑𝐣𝐲𝟑𝐨 ≥ 𝟏 

Sstep 0 of STEM 
(Equation 

(15)) 
DMU01 0.33 0.33 0.25 0.25 2.00 2.00 2.33 2.33 1.33 1.33 √ 
DMU02 0.33 0.33 0.50 0.50 2.00 2.00 2.00 2.00 1.00 1.00 √ 
DMU03 1.00 1.00 1.00 1.00 2.00 2.00 2.33 2.33 0.67 × × 
DMU04 0.67 0.67 1.25 × 1.25 1.25 2.00 2.00 0.83 × × 
DMU05 0.33 0.33 0.25 0.25 1.25 1.25 1.67 1.67 1.00 1.00 √ 
DMU06 0.67 0.67 0.75 0.75 1.50 1.50 2.67 2.67 1.17 1.17 √ 
DMU07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 √ 
DMU08 1.00 1.00 0.75 0.75 1.25 1.25 1.67 1.67 0.50 × × 
DMU09 0.67 0.67 0.50 0.50 0.75 × 2.00 2.00 0.67 × × 
DMU10 2.00 × 1.00 1.00 1.75 1.75 2.33 2.33 0.33 × × 
DMU11 1.67 × 1.00 1.00 1.00 1.00 2.33 2.33 0.67 × × 
DMU12 1.67 × 1.25  1.00 1.00 2.33 2.33 1.00 1.00 × 
DMU13 1.67 × 0.75 0.75 1.50 1.50 1.33 1.33 1.17 1.17 × 

Table A9. Applying the second target finding stage for DMU07 (the second case study). 

DMUj 
𝐙𝐣𝐨 

(Equatio
n (16)) 

Model 12 
Targets  

(Equation 
(18)) 

𝐟𝟏 
(Equat

ion 
(17)) 

𝐟𝟏 
Targets  

(Equation 
(19)) 

𝐟𝟐 
(Equat

ion 
(17)) 

𝐟𝟐 Targets 
(Equation 

(19)) 

𝐟𝟑 
(Equ
ation 
(17)) 

𝐟𝟑 Targets 
(Equation 

(19)) 

𝐟𝟒 
(Equ
ation 
(17)) 

𝐟𝟒 Targets 
(Equation 

(19)) 

𝐟𝟓 
(Equat

ion 
(17)) 

𝐟𝟓 Targets 
(Equation 

(19)) 

DMU01 2 DMU01 −1 DMU01 −1 DMU01 8 DMU01 7 × 8 DMU01 
DMU02 1 × −1 DMU02 −2 × 8 DMU02 6 × 6 × 
DMU05 1 × −1 DMU05 −1 DMU05 5 × 5 × 6 × 
DMU06 1 × −2 × −3 × 6 × 8 DMU06 7 × 
DMU07 0 × −3 × −4 × 4 × 3 × 6 × 

Max 2 - −1 - −1 - 8 - 8 - 8 - 

Target finding of non-radial FDH model 14 for DMU07 in the second case study 

First, step 1 of STEM (p = 1) should be considered. By applying the first target finding 
stage, DMUs of feasible region (in step 1 of STEM model) were found. As described in 
Section 3.2.2, DMUs belonging to the feasible region should be found. In DMUs of feasible 
regions, two conditions should be satisfied. At first, constraints  ≤ 1, i = 1, 2,  and 
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 ≥ 1, r = 1, 2, 3 ( 𝑗 = 1, … , 13) should be satisfied (the first condition). As is observable 
in Table A8, only DMU01, DMU02, DMU05, DMU06 and DMU07 satisfied these constraints. 

Moreover, the constraints max f ∗ − f (u) . β ≥ 0, l = 1, … , 5 should be satisfied 
for each DMU of feasible region (the second condition). Checking the second condition 
for DMU01, DMU02, DMU05, DMU06 and DMU07 are shown in Table A10. As shown in Table 
A10, the constraints of the second condition were also satisfied for DMU01, DMU02, DMU05, 
DMU06 and DMU07. So, S    = {DMU , DMU , DMU , DMU , DMU }. 

Table A10. Applying the first and second target finding stages to find targets of step 1 of STEM (p = 1) for DMU07 (the 
second case study). 

𝐃𝐌𝐔𝐣. 𝐟𝟏∗ − 𝐟𝟏(𝐮)  . 𝛃𝟏 
𝐟𝟐∗ − 𝐟𝟐(𝐮)  . 𝛃𝟐 

𝐟𝟑∗ − 𝐟𝟑(𝐮)  . 𝛃𝟑 
𝐟𝟒∗ − 𝐟𝟒(𝐮)  . 𝛃𝟒 

𝐟𝟓∗ − 𝐟𝟓(𝐮)  . 𝛃𝟓 

𝐒𝐬𝐭𝐞𝐩 𝟏 𝐨𝐟 𝐒𝐓𝐄𝐌𝟏  
(Equation 

(20)) 

𝐡𝐣 
(Equatio

n (21)) 

Targets 
(Equation 

(22)) 
DMU01 0.000 0.000 0.000 0.294 0.000 √ 0.294 DMU01 
DMU02 0.000 0.235 0.000 0.588 0.118 √ 0.588 × 
DMU05 0.000 0.000 0.529 0.882 0.118 √ 0.882 × 
DMU06 0.235 0.471 0.353 0.000 0.059 √ 0.471 × 
DMU07 0.471 0.706 0.706 1.471 0.118 √ 1.471 × h∗ = min max f ∗ − f (u) . β  

(l = 1, …, 5) 
- - - - - - 0.294 - 

By applying the second target finding stage, the optimum objective function value 
(in step 1 of STEM model) was calculated and DMU targets were found. By considering 
Equation (21), the minimum value of the left-hand side of the second condition for DMU01, 
DMU02, DMU05, DMU06 and DMU07 showed the optimum objective function value of non-
radial model 14 (last row of Table A10). By considering Equation (22), each DMU that the 
objective function value was equal to optimum objective function value, showed the tar-
gets of DMU . So, the target of DMU07 was DMU01 (the last column of Table A10). 

For target finding in step 2 of the STEM model (p = 1), first, DMUs belonging to fea-
sible region should be found. By considering Equation (22), DMUs of S     should 
satisfy three conditions. In this regard, DMU01, DMU02, DMU05, DMU06 and DMU07 satis-
fied the first and second conditions. Moreover, the constraints max f ∗ − f (u) . β ≥ 0,l = 1, … ,5 (the third condition) should be checked for DMUs of feasible regions. As DMU01 
and DMU06 satisfied the third condition, these DMUs belong to S     and two op-
timum benchmarks existed. 
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