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Abstract: Pile buckling is infrequent, but sometimes it can occur in slender piles (i.e., micropiles)
driven into soils with soft layers and/or voids. Buckling analysis of piles becomes more complex
if the pile is surrounded by multi-layered soil. In this case, the well-known Timoshenko’s solution
for pile buckling is of no use because it refers to single-layered soils. A variational approach for
buckling analysis of piles in multi-layered soils is herein proposed. The proposed method allows for
the estimation of the critical buckling load of piles in any multi-layered soil and for any boundary
condition, provided that the distribution of the soil coefficient of the subgrade reaction is available.
An eigenvalue-eigenvector problem is defined, where each eigenvector is the set of coefficients of a
Fourier series describing the second-order displaced shape of the pile, and the related buckling load
is the eigenvalue, thus obtaining the effective buckling load as the minimum eigenvalue. Besides
the pile deformed shape, the stiffness distribution in the multi-layered soil is also described through
a Fourier series. The Rayleigh–Ritz direct method is used to identify the Fourier development
coefficients describing the pile deformation. For validation, buckling analysis results were compared
with those obtained from an experimental test and a finite element analysis available in the literature,
which confirmed this method’s reliability.

Keywords: pile buckling; multi-layered soils; variational approach; Fourier series; Rayleigh–Ritz
method; soft soils

1. Introduction

The design problem of pile buckling is not usually faced in civil engineering practice
because its occurrence is infrequent. However, this problem is becoming more important
with the increasing use of micropiles, especially for retrofit interventions, and indeed
elastic buckling of micropiles surrounded by soft soils is possible and is therefore worth
investigating.

In the literature, different approaches have been adopted for studying pile buckling.
Following Madhav and Davis’ [1] study on buckling of piles in an elastic continuum
and supported at the bottom by a rigid base, some other authors studied rod buckling
through modelling the soil as an elastic continuum. Poulos and Davis [2] demonstrated that
the soil models using Winkler’s medium or elastic continuum show identical behaviour.
Timoshenko and Gere [3] proposed a variational approach to study the elastic buckling of
a bar on an elastic foundation, hinged at its ends and axially loaded on top. Timoshenko’s
study’s conclusion is similar to the Engesser formula for calculating the buckling load of
an elastically embedded beam.

Gabr et al. [4] developed a pile buckling model assuming a general power distribution
of the soil’s horizontal subgrade reaction to represent various soil conditions. The minimum
potential energy method was adopted to develop the model using the Rayleigh–Ritz
method to select a suitable deflection function. The effects of nine different boundary
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conditions on the buckling capacity and the equivalent buckling length as well as the
effects of the distribution of the horizontal subgrade reaction were examined; the effect of
the subgrade reaction was considered as fully embedded or partially embedded, so could
only be used to evaluate two layers of soil [4]. Shields [5] compared pile buckling loads
obtained from a semiempirical relationship developed by Bergfelt [6] with the allowable
loads permitted by building codes and design guidelines [7]. A new formula (Pcr = β

(cuEI)0.5, where cu is undrained shear strength of the soil, EI is flexural rigidity, and β is
a factor for regulation) derived from Engesser was derived to calculate the critical global
buckling load. While the formula factor β was improved to calculate the pile imperfection,
the method was for homogeneous soils [5]. Using the linear small-angle bending theory,
Hegazy [8] provided a theoretical relationship between critical buckling load ratio and
lateral deflection of a micropile subjected to vertical axial load and embedded in a weak
homogeneous soil. Although the study covered different boundary conditions, it merely
studied fully embedded piles.

Ofner et al. [9] extended buckling analysis of micropiles in homogeneous soils to
micropiles driven into different soil layers. They based their assumptions on experimental
buckling tests carried out on 4 m long micropiles embedded in soft clay. The research
studied three types of pile-buckling calculations: 1. Code design calculations [10,11],
2. Experimental tests, and 3. FEM calculations using ABAQUS software. Despite the fact
that the study considered multi-layered soil, the calculations were done for each layer
separately, and the softest soil layer was the only candidate for the buckling position.
Vogt et al. [12] highlighted how buckling failure can occur at higher undrained shear
strengths in slender piles (i.e., micropiles) despite the codes’ assumptions. In this case,
the eccentricity of the pile was included in the momentum equilibrium of the forces
under vertical load. Thus, this method considered pile imperfection in the derivations.
Nevertheless, this method is only valid for single-layered soil.

Piles instability in liquefied soils is due to the absence of lateral support [13]. Buckling
failure of piles, considering vertical and seismic loads, require a more critical regard of the
undefined effects of forces [14]. In the recent decade, many research groups have studied
liquefaction effects on buckling of piles. A method to calculate buckling critical load based
on the beam-on nonlinear Winkler foundation (BNWF) model was proposed, considering
multi-boundary conditions, the degree of soil layers liquefaction, and piles’ nonlinearities.
The critical buckling load of a pile in liquefied soils increases with the increase of the soil’s
relative density and the flexural rigidity of the pile [15,16]. Bhattacharya et al. [17] investi-
gated the dynamic instability of piles in liquefiable soils. A correction factor was suggested
to compensate for the natural frequency reduction of piles in a liquefied condition. Utilising
the differential transformation method, Vega-Posada et al. [18] showed the effects of high
and low soil stiffness and intermediate boundary conditions on pile buckling behaviour.

To reinforce the foundation of existing structures, micropiles require less effort to
apply than do other driven piles, which are longer, and if they are precast, splicing is
inevitable according to the site limit space [19]. Furthermore, micropiles enhance the
load-bearing capacity of the foundations, even when soil is prone to liquefaction [20,21].
In this paper, the buckling of piles driven into multi-layer (non-homogeneous) soils for
all boundary conditions is investigated. The uneven distribution of the coefficient of
the subgrade reaction of a multi-layered soil is described by using a Fourier series. The
boundary condition at the pile top can be given by assigning a suitable coefficient of
the subgrade reaction to the part of the foundation crossed by the upper part of the pile.
This means that the pile can be clamped or partially clamped at the top. The boundary
condition at the bottom end is automatically assigned as it depends on the stiffness of the
soil around the lower region of the pile. Using the principle of minimum potential energy,
a variational approach to find buckling load through the Rayleigh–Ritz method has been
proposed (Section 2.1). Two Fourier series were used, one describing the distribution of the
coefficient of subgrade reaction and the other describing the displaced shape of the buckled
pile. The algorithm was shown to be of general validity for any kind of multi-layer soil, and
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has been applied to different multi-layered soils, thus allowing for the investigation of the
influence of position and thickness of layers of soft soils on buckling load (Section 3.1). The
influence of the rotation of the pile sections in the closeness of the interface between layers
with different stiffness, as well as of the rotation of the pile’s lower end depending on the
pile embedding in a stiffer soil layer close to its base were also considered (Section 3.1).
This study shows how pile buckling can be an issue when slender piles pass through
cavities or very soft soils, especially peaty soils, even if some silty sands and normally
consolidated clays can be soft enough to allow for buckling of the slender piles driven in
them (Section 3.1).

2. Methodology

Buckling analysis is often neglected in the design of foundation piles, but in the case of
highly slender piles in soft soils, the pile load-bearing capacity can be reduced by buckling.
Therefore, in this case, an elastic buckling analysis is equipped to calculate the critical
buckling load of such slender compression members. Typically, buckling analysis involves
solving an eigenvalue-eigenvector problem; that process was used in this article to perform
buckling analysis of piles in multi-layered soils. In general, such a problem is faced using
finite differences or finite elements, where one could even consider different soil stiffness
values for each pile element. In contrast, by using a Fourier development of soil stiffness
along the pile, this method considers continuous functions only, notwithstanding the
stiffness discontinuity between different soil layers. Moreover, the variational approach
was pursued using a direct method (the Rayleigh–Ritz method) to implement the analytical
model. In the following, considering the applied load P as a function of the coefficients
ak (k = 1, 2, . . . , m) of another Fourier series describing the pile modal shapes, the critical
buckling load can be identified through minimising function P = P(a1, a2, . . . , ak, . . . , am)
of m unknowns ak. Figure 1 shows the flowchart of the methodology adopted for buckling
analysis of piles in multi-layered soils.

2.1. Formulation of the Problem

Consider a circular pile with a constant cross-section A, moment of inertia I of the
cross-section, length L, and elastic modulus E. Modelling the soil as a Winkler’s medium,
the subgrade reaction Kh can be assumed as either constant or linearly variable, depending
on the soil type. The same coefficients of the subgrade reaction as those used in laterally
loaded piles are considered [22,23]. A list of coefficients of subgrade reaction for different
soils is provided by [2,24,25].

For a pile with a constant cross-section and, therefore, constant diameter d, considering
an abscissa x with origin at the pile top, the soil reaction is

K(x)= Kh(x).d (1)

The pile is axially loaded, hinged at its ends, and embedded in a Winkler’s soil with
varying rigidity K = K(x), (Figure 2).

Function K(x) is assumed to be a step function. Therefore, depending on step height and
spacing, K(x) can vary almost linearly with Kh(x) (depending on soil type) or be constant.

Through using the energetic criterium, the potential energy U1 in the pile added to
the potential energy in the Winkler’s soil U2 is equal to the decrease of potential energy U3
of the external force P applied at the pile top, that is:

U3= U1+U2 (2)

Say y is the second-order displacement of the pile subject to the axial force P. In
the following, the order of the derivatives of y are indicated through a Roman numeral
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superscript. The potential energy of the pile and that in the Winkler’s soil are, respectively,
expressed as:

U1 =
∫ L

0

EI
2

yI2
dx (3)

U2 =
1
2

∫ L

0
K(x) y2 dx (4)

where E and I are the elastic modulus and moment of inertia of the pile cross-section,
respectively, and y is the second-order displacement.
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The variation of the potential energy of the force P is:

U3 =
P
2

∫ L

0
yI2

dx (5)

By substituting Equations (3)–(5) into Equation (2), we obtain:

P =

∫ L
0

EI
2 yII2

dx+ 1
2

∫ L
0 K(x) y2 dx

1
2

∫ L
0 yI2dx

(6)

where K(x) is the soil horizontal stiffness along the pile.
Therefore, the buckling load P is obtained from Equation (6) by finding the function

y = y(x) for which the functional P of Equation (6) is a minimum, that is Pcr = min(P). For
this aim, as y and K are variables dependent on the pile’s depth, the Fourier series of y and
K are developed, considering y and K as odd functions with period 2L in the interval (−L,
L), thus obtaining:

y(x) =
m

∑
k=1

ak sin
(
πk
L

x
)

(7)

K(x) =
n

∑
i=1

bi sin
(
πi
L

x
)

(8)

Coefficients ak, k = 1,2, . . . m, are unknown and will be obtained through solving
the variational problem of calculating the buckling load. Coefficients bi, i = 1, 2, . . . , n, in
Equation (8) depend on function K(x) distribution along with the pile. A multi-layered soil
with s layers, each one with constant rigidity, is herein considered. This leads to:

biL =
∫ L

−L
K(x) sin

(
iπ
L

x
)

dx (9)

The generic coefficient bi is obtained within this equation, which is transformed to:

bi =
2
iπ

s

∑
r=1

Kr

[
cos
(

iπ
L

xr

)
− cos

(
iπ
L

xr+1

)]
(10)
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where xr is the initial abscissa of the r-th layer, r = 1, 2, . . . , s.
After substituting Equations (7) and (8) into Equations (3)–(5), the potential energy of

the pile, soil, and external force are expressed as:

U1 =
EI
2

∫ L

0

(
∑
k

ak sin
(
πk
L

x
))2

π4k4

L4 dx (11)

U2 =
1
2

∫ L

0

(
∑

i
bi sin

(
πi
L

x
))(

∑
k

ak sin
(
πk
L

x
))2

dx (12)

U3 =
P
2

∫ L

0

(
∑
k

ak cos
(
πk
L

x
))2

π2k2

L2 dx (13)

After integration, U1 and U3 become, respectively:

U1 =
EI

4L3π
4 ∑

k
a2

kk4 (14)

U3 =
π2P
4L ∑

k
a2

k k2 (15)

Taking into account the Fourier series of y(x) and K(x), it can be noted that the generic
term of the integrating function of the expression of U2 in Equation (12) is:

bi aj ak sin
(

iπ
L

x
)

sin
(

jπ
L

x
)

sin
(

kπ
L

x
)

(16)

where i = 1, 2, . . . , n, indicates the terms of the Fourier series expansion of soil rigidity
K(x), and j, k = 1, 2, . . . , m, indicates the term of the Fourier series expansion of the pile
deformed shape y(x).

From the well-known trigonometric formulae, we have:

sin
(

iπ
L x
)

sin
(

jπ
L x
)

sin
(

kπ
L x
)
=

1
4
{

sin
[
π
L x(i + j− k)

]
+ sin

[
π
L x(j + k− i)

]
+ sin

[
π
L x(k + i− j)

]
− sin

[
π
L x(i + j + k)

]} (17)

Hence, for S1 = i + j − k, S2 = j + k − i, S3 = k + i − j, S4 = i + j + k, the expression of
U2 becomes:

U2 =
1
8 ∑

i
∑

j
∑
k

∫ L

0
bi aj ak

[
sin
(π

L
x S1

)
+ sin

(π
L

x S2

)
+ sin

(π
L

x S3

)
− sin

(π
L

x S4

)
dx
]

(18)

By integrating:

U2 =
L
8π ∑

j
∑
k

ajak ∑
i

bi

[
1− cos(πS1)

S1
+

1− cos(πS2)

S2
+

1− cos(πS3)

S3
− 1− cos(πS4)

S4

]
(19)

and substituting:

Φijk =

[
1− cos(πS1)

S1
+

1− cos(πS2)

S2
+

1− cos(πS3)

S3
− 1− cos(πS4)

S4

]
(20)

where Φijk = Φikj, the soil potential energy is thus obtained as:

U2 =
L
8π

[
∑

j
∑
k

ajak

(
∑

i
biφijk

)]
(21)
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Finally, after substituting Equations (14), (15), and (21) into Equation (2), and extracting
P, we obtain:

P =

EI
L3 π

4 ∑k a2
k k4 + L

8π

[
∑j ∑k ajak

(
∑i bi φijk

)]
π2

L ∑k a2
k k2

(22)

2.2. Conditions for Minimum P

Equation (22) synthetically shows that, for a given geometry and various mechanical
properties of the pile driven into the multi-layered soil, the load P can vary through varying
the coefficients a1, a2, . . . , ak, . . . , am that define the Fourier series of the deformed shape
of the pile. To find the buckling load Pcr and the values of the coefficients ak defining
the related pile deformed shape, the Rayleigh–Ritz method is used. It is a so-called
direct variational method that allows for finding of a solution for the minimum of the
functional P[y(x), y”(x), y′(x), x] defined in Equation (6) and re-arranged in Equation (22)
after developing through a Fourier series the functions y(x) and K(x). Since for Equation (7),
the function y(x) is a linear combination of m sinusoidal functions through the m unknown
constants ak, k = 1, . . . , m, then, according to the Rayleigh–Ritz method, the functional
P[y(x), y” (x), y′(x), x] can be considered as a function P = P(a1, a2, . . . , ak, . . . , am) of
m unknowns ak. The stationary condition for this function is then imposed through the
stationary conditions for P = P(a1, a2, . . . , ak, . . . , am), that is:

∂P
∂ak

= 0, k = 1, 2, . . . , m (23)

thus allowing us to find the m coefficients ak and therefore the related buckling deformation
shape y(x). Of course, the higher the number of equations and therefore of coefficients ak
used to describe the function y = y(x), the better is the accuracy of the determination of y(x)
and therefore of the buckling load Pcr.

Since in Equation (6) P is a ratio between the numerator N (
∫ L

0
EI
2 y′′ 2 dx+ 1

2

∫ L
0 K(x) y2 dx)

and the denominator D ( 1
2

∫ L
0 y′2dx), the stationary conditions can be rewritten as:

∂N
∂ak
−Pcr

∂D
∂ak

= 0 (24)

After deriving Equation (24), we can obtain:

a1
L2

2π3k2

(
∑

i
biφi1k

)
+ . . . + ak

[
L2

2π3k2

(
∑

i
biφikk

)
+

EIπ2k2

L2 −Pcr

]
+ . . . + am

L2

2π3k2

(
∑

i
biφimk

)
= 0 (25)

By varying k, this is an equation system that defines an eigenvalue-eigenvector prob-
lem. It can be, in fact, noted that Equation (25) defines a characteristic system of equations,
that is:

A − Pcr I = 0 (26)

where I is the unit matrix, and the square matrix A is the sum of a matrix A1 is:

A1 =



L2

2π312 ∑n
i=1(biφi11) · · · L2

2π312 ∑n
i=1(biφi1k) · · · L2

2π312 ∑n
i=1(biφi1m)

...
...

...
L2

2π312 ∑n
i=1(biφik1) · · · L2

2π312 ∑n
i=1(biφikk) · · · L2

2π312 ∑n
i=1(biφikm)

...
...

...
L2

2π312 ∑n
i=1(biφim1) · · · L2

2π312 ∑n
i=1(biφimk) · · · L2

2π312 ∑n
i=1(biφimm)


(27)
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and of a matrix A2 with all terms zero except the m terms on the diagonal is:

A2 =



EI
L2 π212 · · · 0 · · · 0

...
...

...
0 · · · EI

L2 π2k2 · · · 0
...

...
...

0 · · · 0 · · · EI
L2 π2m2


(28)

Therefore, from the characteristic Equation (26), m eigenvalues Pcr,k, k = 1, . . . , m, can
be obtained, and the minimum one is the effective buckling load Pcr. For each eigenvalue
Pcr,k, an eigenvector ak= [a1, a2, . . . , ak, . . . , am]T can also be obtained. Saying the eigen-
vector is related to the effective buckling load Pcr, the related eigenvector can be obtained
through solving the system:

[A − Pcr I] a = 0 (29)

a = [a1, a2, . . . , ak, . . . , am]T (30)

For P = Pcr the deformed shape y(x) of the pile, as defined through its Fourier series in
Equation (7), is thus obtained.

3. Discussion and Results

After having defined the methodology, the accuracy and efficiency of the calculations
was to be adjusted. Since Pcr depends on the number m of elements of the related eigenvec-
tor (where it is on the number m of coefficients ak) and converges to an asymptotic value
for increasing values of m, it is necessary to control the solution accuracy by checking if
two successive values of Pcr are sufficiently close for two respective values of m.

Figure 3 shows an example of how the buckling load Pcr of a pile with flexural
stiffness EI = 100 kNm2 converges to a sufficiently approximated value for an increasing
number of equations. It is well evident that the larger is the number of equations, the
closer is the convergence to the actual critical buckling load. For example, a sufficiently
approximated buckling load with optimal deformed shape is reached with 25 coefficients
ak, but 20 equations already provide essentially the same numerical result.

A similar consideration can be made regarding the number of coefficients of the
Fourier series of the step function describing the distribution of the soil stiffness K(x).
Figure 4 shows the distribution with the depth of function K(x) for soil with four layers in
which K(x) is described through a Fourier series with 100 terms. The results have shown
that even by halving the number of terms describing K(x), the value of Pcr varies only
slightly, although the given step function results are clearly less described by a Fourier
series with a lower number of terms.

3.1. Applications and Validations

In general, elastic buckling may occur in foundation piles with lower flexural rigidity,
as in micropiles for foundation underpinning, especially if surrounded by soft soils or
crossing caves and voids.

Next, some applications are described. First, a comparison of the critical buckling
load of micropiles in a single-layered (homogeneous) soil calculated both through the
variational approach herein presented and through the Engesser [26] approach was made
(Figure 5). The outcomes showed identical results for any soil stiffnesses.

However, since this method can also be suitably applied to piles driven in more than
one soil layer, next, some examples of pile buckling in multi-layered soils were analysed
(Figure 6). In addition, the outcome of the experimental test of a pile driven into multi-
layered soil [9] was compared to validate the proposed method.
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The critical buckling load of six micropiles made of steel hollow bars, length 12 m,
embedded in different multi-layered soils were analysed. The geometrical and mechanical
characteristics of the pile hollow bars are briefly described in Table 1 [27]. The micropile
tube is usually surrounded by mortar. However, in this study, the flexural stiffness of
the mortar was neglected due to the uncertain contribution in flexural resistance because
of cracks forming in the mortar. Figure 6 illustrates the soil stratigraphy and the pile
deformed shapes.

The load-bearing capacity of the micropiles under consideration would be Npl = As·
fy = 676 kN, unless buckling occurs before Npl is attained, depending on the mechanical
characteristics of the different soil layers and on soil stratigraphy, in particular, if soft layers
and caves are present. This is what happens in the following examples. The soil stiffness
was calculated with two different formulas based on the soil type. For cohesive soils,
Kh = 60 ·cu/d, where Kh is the subgrade reaction, and cu is the undrained shear strength
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of the soil; for cohesionless soils, Kh = nh ·z/d, where nh is the coefficient of the subgrade
reaction, z is the soil depth, and d is the diameter of the pile.

Note that when the stratigraphy includes soft soils and rock layers, high precision
in the evaluation of rock rigidity is not required because the buckling load is mainly
influenced by the presence of soft layers rather than by the variation of rock rigidity, that in
any case is very high compared to the rigidity of soft soil. Moreover, the stiffness of the
reinforced concrete foundation at the pile top end is given to be of the same magnitude as
that assigned to the rock layers.

Table 1. Geometrical and mechanical characteristics of Titan 52/26 hollow bars for piles.

Geometry and Material Properties Units

Length (L) m 12
Outer diameter (D) mm 49
Inner diameter (d) mm 26

Cross-section area (A) mm2 1352
Modulus of elasticity (E) GPa 210

Yield strength (fy) MPa 500
Cross-section moment of inertia (I) mm4 250,000
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Figure 6. Examples of second-order displaced shapes and buckling load of piles in multi-layered
soil conditions with: (a) two not-embedded segments, i.e., stilt houses; (b) bottom of the pile is
not embedded in hard rock; (c,d) same configuration of soil layers with only an inversion of the
sedimentation order of the two soft soils; (e) presence of clay and peat layers surrounding the pile
without crossing any caves; (f) soft clay with no cavities and peat layers.
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The buckling load of the pile in Figure 6a is mainly affected by the not-embedded
part of the pile between the foundation and the first soil layer. The pile also deviates from
the straight configuration when the lower cave is passed through, but this deviation is so
slight that it can be identified only by calculations, while it is not distinguishable in the
plot. Figure 6b shows that when a pile, instead of being embedded in the limestone rock,
is only embedded in the soft clay layer at the cave base, its bottom end is free to rotate,
thus causing the buckling load to decrease dramatically and become much less than Npl.
Figure 6c,d show that if a pile passes through a limestone cave with two layers of soft soil
with low but different stiffnesses (peat and very soft clay) sedimented over the bottom of
the cave, buckling load is highly affected by the inversion of the sedimentation order of the
two soft soils.

Figure 6e,f show that a micropile may buckle in soft soil layers with cu even higher
than 15 kPa, which is more than the limit proposed by some design codes for checking
pile buckling [11,12]. Even if there are no cavities or peaty soils where buckling can more
easily occur, the low stiffness of these types of soils can make a pile prone to buckle. In fact,
Figure 6f shows that buckling can also occur in soft soils without peat, such as very soft
clays and silty sands. Buckling load results increased with the absence of peat, but were
still lower than Npl. The buckling behaviour of one more pile was analysed to validate the
proposed method through comparison with the experimental results obtained by testing a
real micropile in situ [9]. The micropile characteristics are presented in Table 2 [27], and
the soil layers specifications are described in Figure 7. The pile load-bearing capacity
is Npl = As·fy = 2750 kN. The flexural stiffness of the grout was neglected, as in the
previous buckling analyses. Loads were applied in successive steps of ∆F = 325 kN over a
period of about five hours. The experimental result shows that the micropile experienced
buckling between the fifth and sixth load steps, which is between 1625 to 1923 kN. In
addition, the authors implemented in ABAQUS a finite element model (FEM) for which
buckling occurred with Pcr = 2000 kN, which is decreased to 1740 kN accounting for the
eventual effect of imperfections. Through the variational approach proposed in this paper,
Pcr = 1923 kN was obtained. Moreover, the same pile (details in Table 2) was modelled in
SAP2000 [28] to confirm the approach’s accuracy. The buckling factor was obtained from
the modal analysis, using horizontal springs on the pile representing Winkler’s medium.
For the sake of precision, spring spacing was 25 cm, and spring stiffness was selected
according to the coefficient of the subgrade reaction in this interval. The output of the
analysis showed a buckling factor equal to 1895 kN with the identical deformed shape.
It must be noticed that while the variational method was a continuum-based analytical
method, the FEA was performed on a discrete-spring model. Even if the experimental
evaluation of the buckling load cannot be precise, the results obtained through the proposed
method were shown to fit very well with those obtained from finite element analyses and
quite well with the experimental results.

Table 2. Geometrical and mechanical characteristics of Titan 105/51 hollow bars for piles.

Geometry and Material Properties Units

Length (L) m 16.8

Outside diameter (D) mm 98

Inside diameter (d) mm 51

Cross-section area (A) mm2 5500

Modulus of elasticity (E) GPa 210

Yield strength (fy) MPa 500

Cross-section moment of inertia (I) mm4 4,200,000
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Figure 7. (a) Second-order displaced shape of Sap2000 buckling analysis model with horizontal springs correspondent to
soil stiffness of that level. (b) Second-order displaced shape of analytical variational approach and buckling load of a pile in
a multi-layered soil. (c) Configuration of the soil layers provided by [9].

Therefore, pile buckling is significantly affected by the low rigidity of the softest layer,
where second-order displacements can more easily occur between the two stiffer layers
over and below the soft layer. In particular, pile buckling is considered critical in caves,
both when the cave is between two stiff layers (i.e., made of rock) and when a soft soil layer
fills up the bottom of the cave. The latter case is even more critical when the rotation of the
bottom end of the pile is free, as it happens, for instance, if it is not embedded sufficiently
at the bottom end of the cave, even if the cave is partially filled up by a soft soil layer.

4. Conclusions

As expected, the proposed approach was demonstrated to be of general use, because
developing in Fourier series the stiffness distributions of the different layers of a non-
homogeneous soil allows for the handling of many different stiffnesses of the different
layers as a single non-uniform stiffness distribution function. Additionally, this feature
can be used to determine boundary conditions. In this way, pinned, clamped, or partially
clamped ends of piles can be assigned by varying the stiffness and thickness of the soil at
that level.

Furthermore, the Rayleigh–Ritz method successfully solved complex buckling analysis
problems, where a pile usually crosses several soil layers. Indeed, adopting the Rayleigh–
Ritz method effectively simplifies the variational problem of minimum to a minimisation
problem of the function of the coefficients of the Fourier development describing the
second-order displaced shape y(x) of the pile subject to buckling.

The robustness and efficiency of the proposed method have allowed for the solving
of many different cases of buckling analyses of piles in multi-layered soils. In order to
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understand how different soil layers with varied depths and stiffnesses can affect the
critical buckling load, some examples were reported to highlight some crucial cases. It has
been confirmed that pile buckling is unlikely to occur unless some voids or very soft layers
are interposed between stiffer layers. Unfavourable boundary conditions at the pile top
(not enough of it clamped to the foundation) and at the pile bottom (insufficient embedding
of the pile’s lower end in a stiff layer) have the effect of decreasing buckling load.

Since the proposed method is valid for vertical piles with constant cross-sections, in
future research the cases of tapered piles, inclined piles, as well as the effect of imperfections
will be investigated.
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