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Abstract: In this paper, we explore the impact of the COVID-19 lockdown in Serbia on the air
pollution levels of CO, NO2 and PM10 alongside the possibility for low-cost sensor usage during this
period. In the study, a device with low-cost sensors collocated with a reference public monitoring
station in the city of Belgrade is used for the same period of 52 days in 2019 (pre-COVID-19 period),
2020 (COVID-19 lockdown) and 2021 (post-COVID-19 period). Low-cost sensors’ measurements
are improved by using a convolutional neural network that applies corrections of the influence
of temperature and relative humidity on the low-cost sensors. As a result of this study we have
noticed a remarkable decrease in NO2 (primarily related to traffic density), while on the other hand
CO and PM10, related to domestic heating sources and heating plants, showed constant or slightly
higher levels. The obtained results are in accordance with other published work in this area. The
low-cost sensors have shown a satisfactory correlation with the reference CO measurements during
the lockdown, while the NO2 and PM10 measurements of 2020 were corrected using a convolutional
neural network trained on meteorological and pollutant data from 2019. The results include an
improvement of 0.35 for the R2 of NO2 and an improvement of 0.13 for the R2 of PM10, proving that
our neural network model trained on data from 2019 can improve the performance of the sensor in
the lockdown period in 2020. This means that our neural network model is very robust, as it exhibits
good performance even in the case where training data from the prior year (2019) are used in the
following year (2020) in very different environment circumstances—a lockdown.

Keywords: air pollution monitoring; COVID-19; emergency lockdown; low-cost PM and gas sensors
(CO and NO2); neural network; sensor calibration

1. Introduction

Due to the COVID-19 pandemic, in order to protect citizens and stop the virus spread-
ing, most governments around the world declared a state of emergency and conducted
a partial or total lockdown for a certain period. In Serbia, an emergency lockdown was
introduced on 16 March 2020 and lasted until 6 May 2020 (i.e., 52 days) [1]. During that
period, some days had tighter emergency measures (complete lockdown) while during
other days there was a partial lockdown. Generally, Belgrade is a moderately polluted
city, mostly affected by traffic and transport, construction, industrial activities, dust and
domestic-heating-related pollution. As a consequence of the lockdown, vehicle traffic vol-
ume, manufacturing, construction and industrial activities were reduced. To understand
the influence of these factors on pollution, it is of interest to analyze air quality during the
emergency lockdown and compare it with the preceding and following periods.

There are many analyses, studies and pieces of research related to the influence of
COVID-19 lockdowns on air quality [2]. In [3], the authors compare the consecutive
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intervals that occur immediately pre-COVID, COVID and post-COVID in terms of their
influence on air quality in the city of Novi Sad (Serbia) for PM2.5, PM10, CO and NOx. The
authors have noticed a significant reduction in NO2, while CO and PM10 mostly remained
on the same level (depending on the location in Novi Sad). PM2.5, PM10, NO2 and O3
concentrations are explored and compared for the same periods in 2019 and 2020 (during
the COVID lockdown in Florence, Pisa and Lucca in Italy) in [4]. In this study, a significant
reduction in NO2 was observed, while the pollution level of O3 remained the same; PM10,
in most of the analyzed cases, remained on the same level. Major urban cities are explored
in [5], and a reduction in NO2 pollution is highly noticeable (in comparison to 2019) in
the cities where there was a strict lockdown (Madrid, Milan and Paris), while in the cities
with a partial lockdown this decrease was much lower (Warsaw, Bismarck and Lincoln).
The French National Institute (INERIS) has conducted a comprehensive study related to
NO2 and PM10 around Europe, and a decrease in NO2 pollution was also noticed, but the
PM10 pollution was shown to depend on the observed region (an increase/decrease was
observed) [6]. The same behavior, regarding NO2 and PM pollution levels, is also noticed
in Canada and presented in [7]. The impact of the COVID-19 lockdown on traffic-related
air pollution (PM2.5, black carbon (BC), NO, NO2 and CO) in a northwestern US city is
evaluated in [8]. Based on the multiple studies in this area, it was concluded that road
traffic is a major urban pollutant source. The measurements were conducted near a major
freeway. During the lockdown period, the median traffic volume decreased by a third. This
caused a decrease in the level of pollutants, where the median BC concentration decreased
by a fourth, PM2.5, NO and NO2 decreased by a third and CO decreased by a sixth in
comparison to the pre-COVID-19 state.

The modeling of the influence of weather conditions on low-cost air quality sensors
is quite present in modern research. More specifically, artificial neural networks (ANNs),
as very promising machine learning algorithms, can be found in several papers related
to low-cost sensors. In [9], the authors use a deep ANN consisting of convolutional,
fully connected and long short-term memory layers, and train it on the O3, PM2.5 and
PM10 measurements, taking into consideration various weather conditions. They have
concluded that by training a network using reference, low-cost measurements, such as
wind speed, wind direction, temperature and relative humidity, the error of low-cost
sensors can be drastically decreased. The AirNet model was developed in [10] and uses
dual encoder neural networks to calibrate CO and O3 low-cost sensors. The developed
AirNet architecture has been proven to be superior via comparison to several baseline
algorithms. A mobile PM2.5 sensing system was developed and calibrated using fully
connected ANNs in [11]. It considers relative humidity and temperature in addition to
PM2.5 measurements and was shown to greatly increase the accuracy of the developed
system. In [12], the authors explore three different machine learning algorithms for the
calibration of low-cost CO and O3 sensors based on a number of pollutant measurements
and weather conditions. Univariate and multivariate linear regression are implemented as
well as fully connected ANNs. Several training algorithms for the ANNs are implemented
as well, and it was concluded that the ANN outperforms the linear algorithms for both
pollutants. The authors have explored the possibility of applying linear models and fully
connected ANNs to data collected from a location different than the one used for the
acquisition of training data in [13]. O3 and CO2 measurements have been observed. It was
shown that the ANN is overall more effective, but that there are some exceptions influenced
by the selection of training and test scenarios. An evaluation of linear models and fully
connected ANNs is performed in [14], with an assortment of observed pollutants: O3, CO,
CO2 and CH4. It was shown that the ANN has better performance when the modeling of
complex nonlinear behavior is concerned, using a wide range of pollutant and weather
condition measurements. Regardless of the variety of the papers that have covered air
quality sensor calibration, to the best of the authors’ knowledge no paper has attempted to
train algorithms on data from a single year and evaluate it on data that is gathered a year
later during a different day-to-day regime.
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The scope and contributions of our research are twofold. The first part is to explore
the impact of the COVID-19 lockdown in Serbia on air pollution levels. The second
part includes a device with low-cost sensors which is collocated with a reference public
monitoring station. The goal here is to validate the device measurements by comparing
them with reference measurements, and to apply corrections due to the influence of
temperature and relative humidity on the measurements by using convolutional ANNs.
Our results show that by using data from the year preceding the COVID-19 lockdown, a
convolutional ANN model can be trained and successfully applied to low-cost sensors’
measurements during the lockdown period. This shows that our model can be applied
to low-cost measurements that are acquired a year later than the ones used for training
data. This indicates that the sensors can be successfully used for multiple years and that
our calibration algorithm can be implemented at least one year after it is trained (showing
a decent level of robustness). Furthermore, the pollutant concentrations are different in
2019 and 2020 (COVID-19 lockdown), and the algorithm was trained in 2019 and tested in
2020, showing that it is useful even if the regimes during training and testing are different.

The rest of the paper is organized as follows: in Section 2 our research methods are
presented. The results and subsequent discussion are presented in Section 3. Finally,
Section 4 concludes the paper.

2. Methods

The IoT (Internet of Things)-based air quality monitoring ekoNET device AQ10x
(DunavNET, AQ103, Novi Sad, Serbia) with low-cost sensors for outdoor air quality mea-
surements [15] has been collocated with a reference public monitoring station in Belgrade
(Serbia). The system contains the following components: an AQ10x device (Figure 1), a
cloud database for permanent data storage, a data analytics engine (Microsoft Azure), a
visualization engine, an administration module and a web application. The AQ10x is a
portable device that can be installed both indoors and outdoors, as well as on vehicles
to enable larger coverage. The device’s power consumption is 2.5 W, weight is 1.5 kg
and dimensions are 180 × 180 × 265 mm3. AQ10x devices support different transmis-
sion technologies (WiFi, BLE (Bluetooth Low Energy), LoRa (Long Range), SigFox, GPRS
(General Packet Radio Service), 3G, LTE (Long-Term Evolution) and NB-IoT (Narrowband
Internet of Things), and measurements are sent to the back-end server via one of the
selected communication modules. The average payload for one data transmission (one
measurement period) is 100 B. The transmission period can be set by the user, and for
a recommended period of 1 min the total monthly payload is about 4.5 MB. The data
are visualized in real time using the web application, which provides a rich set of tools
for data processing (averaging, filtering, noise elimination, etc.). In comparison to the
public monitoring station, for the same set of observed pollutants, the cost of the low-cost
device is about 25 times lower (i.e., for the cost of 1 public reference station, 25 low-cost
devices can be purchased). Furthermore, the public reference station additionally requires
a significantly higher amount of maintenance.

The device contains the following B4 series Alphasense electrochemical gas sensors,
intended to monitor air quality in urban areas [16]: CO-B4 gas sensor (measurement
range: 0–50 ppm, unit ppm or mg/m3, accuracy ± 2% FS), NO2-B43F gas sensor (mea-
surement range: 0–20 ppm, unit ppb or µg/m3, accuracy ± 2% FS), air temperature (t)
and relative humidity (RH) sensors (Bosch BME 280) in addition to PM1, PM2.5 and PM10
Plantower PMS7003 optical counters (measurement range: 0~1000 µg/m3, unit µg/m3,
accuracy ± 2% FS) [17].

The measurement point is located in the biggest municipality in Belgrade (and in
Serbia), i.e., New Belgrade. The station is located a few tens of meters away from one of the
main intersections in New Belgrade with a high traffic volume, and a few hundred meters
from the Sava River as well as the Ada Lake. The main sources of air pollution in this area
are transport (traffic), a heating plant (about 1 km from the measurement point), industrial
and construction activities, domestic heating and dust. The device sampling resolution
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is 1 minute, and data are sent via a GPRS network to the back-end server in the cloud,
where data are stored and processed. Obtained values are averaged for each hour and
statistically correlated to values captured from the public monitoring station in the same
time intervals. Results are collected and analyzed for the periods of 16 March–6 May 2019,
16 March–6 May 2020 (COVID lockdown) and 16 March–6 May 2021. In this study, CO,
NO2 and PM10 measurements are used, alongside weather data. The data from the period
of the Aralkum desert storm are excluded from the 2020 dataset to avoid interference with
the results [3].
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Figure 1. Air quality ekoNET device, AQ10x. The whole device is shown on the left, with the bottom
view of the device shown in the middle and the interior shown on the right. The sensors are placed
at the bottom of the device, with access to open air, while the power supply and the microprocessor
with the data transfer module are placed on the back.

The raw measurement data are collected from low-cost sensors. Since low-cost sen-
sors do not provide highly precise measurements, the collected measurements should be
corrected. As we stated in the Introduction section, we used convolutional ANNs for this
purpose. The goal regarding the ANN calibration performed in this paper is to train the
network to correct the raw low-cost sensors’ measurements, using air temperature and
relative humidity measurements. To evaluate the model in a realistic scenario, the model is
trained on data from 2019 and tested on data from 2020 and 2021. The model is also trained
on data from both 2019 and 2020 and tested on the 2021 measurements. In this manner, we
test whether the calibration done in one year could be applied in the following year, and
if the calibration done during regular activities (2019) could be applied when there was a
lockdown (2020).

The gathered raw pollutant measurements from each of the three years are initially
corrected using the Environmental Protection Agency (EPA) co-location method, with
linear regression (LR) between the raw and reference values obtained in the two-week
period preceding the observed one (LR performed on the data gathered from 2 March
to 16 March of the respective year) [18]. After this, each measured variable is grouped
into sequences with a length of 24. A window of 24 h (1 day) is moved through the data
of length 1248 for a single year (number of hours in the observed main interval), with a
stride of 1 hour creating a 1224 × 24 matrix of data. The corrected sensor measurements,
RH and t data are concatenated, resulting in a 1224 × 24 × 3 matrix of input data created
for each year. The output data for each year are 1224 × 24 matrices containing reference
measurements. The data instances (1224 per year), each of shape 24 × 3, are the input to
the developed convolutional ANN, and the reference measurements for the respective 24 h
are the output of the network.

The architecture of the convolutional ANN used for the correction of the influence of
relative humidity and temperature on measurements is given in Table 1.
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Table 1. Convolutional network architecture.

Layer Type Layer Properties

Conv1D filters = 64, kernel size = 3, strides = 1
Conv1D filters = 64, kernel size = 3, strides = 1
Batch normalization /
Max pooling pool size = 2, strides = 2
Dropout drop rate = 0.5
Conv1D filters = 128, kernel size = 3, strides = 1
Conv1D filters = 128, kernel size = 3, strides = 1
Batch normalization /
Max pooling pool size = 2, strides = 2
Dropout drop rate = 0.5
Conv1D filters = 256, kernel size = 3, strides = 1
Batch normalization /
Max pooling pool size = 2, strides = 2
Dropout drop rate = 0.5
Conv1D transpose filters = 256, kernel size = 3, strides = 1
Batch normalization /
Upsampling upsampling factor = 2
Dropout drop rate = 0.5
Conv1D transpose filters = 128, kernel size = 3, strides = 1
Conv1D transpose filters = 128, kernel size = 3, strides = 1
Batch normalization /
Upsampling upsampling factor = 2
Dropout drop rate = 0.5
Conv1D transpose filters = 64, kernel size = 3, strides = 1
Conv1D transpose filters = 64, kernel size = 3, strides = 1
Batch normalization /
Upsampling upsampling factor = 2
Dropout drop rate = 0.5
Conv1D transpose filters = 1, kernel size = 3, strides = 1

This convolutional ANN is trained for each pollutant separately, but the architecture
itself remains the same for all pollutants. To evaluate the algorithm, the commonly used
metrics R2 and root mean square error (RMSE) are used [19].

3. Results and Discussion

Table 2 shows the evaluation metrics for the performed measurement corrections
for NO2 and PM10. The agreement between the raw and reference CO measurements
is initially quite high for each year (R2 ranging from 0.833 to 0.894), and no significant
improvement is achieved for this pollutant using the correction of the raw measurements
described in the previous section. Because of this, results regarding the CO measurements
are not shown in Table 2.

The presented results show that, for NO2, every train/test scenario for the ANN shows
an improvement over the simple LR correction results. The most prominent improvement
for NO2 is achieved when the ANN is trained on data from 2019 and evaluated on data
from 2020. It is also notable that the results for the test year 2021 are better when data from
both 2019 and 2020 are used as the training set. When it comes to the results for the PM10,
the most prominent improvement is present when the ANN is trained on 2019 data and
tested on 2020 data. The R2 factor for PM10 is also improved for 2021, but only when the
ANN is trained on 2020 data, and there seems to be an increase in the RMSE parameter.
All of these observations can be explained when taking into consideration the nature of
the sensors alongside the values of the measured pollutants and weather parameters. The
mean, median and standard deviation values are shown in Table 3, for each year and
each measured variable. In the remainder of this section, we explain in more detail the
observations made for the results shown in Table 2.
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Table 2. Evaluation metrics for different train/test scenarios.

Evaluation Scenario
Pollutant

NO2 PM10

Train Set Test Set R2 RMSE (µg/m3) R2 RMSE (µg/m3)

LR
2.3–16.3.2019. 16.3–6.5.2019. 0.728 11.416 0.615 15.644
2.3–16.3.2020. 16.3–6.5.2020. 0.260 14.487 0.699 14.903
2.3–16.3.2021. 16.3–6.5.2021. 0.601 13.061 0.299 16.689

ANN

16.3–6.5.2019. 16.3–6.5.2020. 0.606 9.123 0.741 13.950
16.3–6.5.2020. 16.3–6.5.2021. 0.614 11.292 0.438 23.396
16.3–6.5.2019. 16.3–6.5.2021. 0.652 10.460 0.157 18.185

16.3–6.5.
2019. & 2020. 16.3–6.5.2021. 0.671 10.555 0.255 19.211

Table 3. Mean, median and standard deviation values for the measured variables.

CO

Year
Ref.

Mean
(mg/m3)

Ref.
Median
(mg/m3)

Ref.
Std

(mg/m3)

LR
Mean

(mg/m3)

LR
Median
(mg/m3)

LR
Std

(mg/m3)

2019 0.33 0.28 0.18 0.35 0.30 0.17
2020 0.64 0.60 0.13 0.72 0.67 0.15
2021 0.50 0.43 0.18 0.54 0.48 0.18

NO2

Year
Ref.

Mean
(µg/m3)

Ref.
Median
(µg/m3)

Ref.
Std

(µg/m3)

LR
Mean

(µg/m3)

LR
Median
(µg/m3)

LR
Std

(µg/m3)

2019 24.73 17.78 20.52 27.84 22.74 19.90
2020 9.76 5.92 13.57 13.82 14.80 14.50
2021 23.04 18.45 17.54 27.27 26.02 19.06

PM10

Year
Ref.

Mean
(µg/m3)

Ref.
Median
(µg/m3)

Ref.
Std

(µg/m3)

LR
Mean

(µg/m3)

LR
Median
(µg/m3)

LR
Std

(µg/m3)

2019 29.98 26.00 18.45 32.23 26.00 18.35
2020 29.03 24.40 19.16 22.25 19.81 7.99
2021 30.27 25.18 18.46 36.57 33.64 9.95

Meteorological Data

Year
RH

Mean
(%)

RH Median
(%)

RH
Std
(%)

t
Mean
(◦C)

t
Median

(◦C)

t
Std
(◦C)

2019 58.78 57.00 21.20 13.33 12.70 5.01
2020 52.78 49.00 19.60 12.29 12.60 6.31
2021 60.77 61.34 19.55 10.96 10.19 6.06

The values given in Table 3 can explain many phenomena regarding the influence of
the state of emergency, as well as provide an explanation for the results shown in Table 2.

Firstly, let us observe the measurements of CO. The values of the mean and median
values of the CO reference measurements are the highest in 2020. This can be explained
by the larger number of people staying indoors, because of the state of emergency, in
comparison to 2019 and 2021. The observed period in each year includes the heating
season, which, in addition to the larger number of people staying indoors in 2020, could
explain the observable increase in the CO measurements.
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When it comes to the NO2 measurements, quite a significant decline in the mean,
median and standard deviation values can be observed in 2020 for both the reference
and low-cost sensors. This is also consequence of the state of emergency, since the main
source of NO2 is traffic, which was significantly reduced during the state of emergency.
The low values of NO2 are also responsible for the poor correlation between the reference
and LR data (R2 factor of 0.260). The low-cost NO2 sensor tends to have trouble with
low concentrations of NO2, but the implemented ANN managed to pick up on these
dependencies as well as the influence of RH and t on the measurements. Furthermore, the
ANN trained on 2019 data that was applied to 2020 data shows a significant improvement
of the raw measurements, implying that the behavior of the NO2 sensor, although not
perfect, is consistent through 2019 and 2020. The achieved improvement can be seen in
Figures 2 and 3, with Figure 2 containing the results of the LR performed in 2020 and
Figure 3 containing the results of the ANN trained on 2019 data and applied to 2020 data.

Figures 2 and 3 show not only a clear improvement in regard to the scattered points
being closer to the y = x line, but the histogram shape as well. The consistent behavior of
the low-cost NO2 sensor can also be observed in 2021. The initial correlation (after only the
LR correction) is a lot better than in 2020, since the traffic (and therefore NO2 concentration)
was closer to the regular regime. The improvement achieved using the ANN is still present,
but less prominent than in 2020. It is also important to note that a better improvement was
achieved when the ANN was trained on the data from both 2019 and 2020, as opposed
to the case where the training set contained only 2020 data. This is an expected result
because the low-cost NO2 sensor seems to have consistent behavior throughout the years,
and a larger training dataset implies a better correspondence of the algorithm with the
underlying dependencies. The achieved results can be seen in the following figures, with
Figure 4 showing the results of the LR performed in 2021 and Figure 5 showing the results
of the ANN that was trained on 2019 and 2020 data.

Higher concentrations of the NO2 measurements can also be seen in the figures in
comparison to the year 2020. The improvement achieved is visible, again, both in the
position of the scatter points as well as the histogram distribution.
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When it comes to the PM10 measurements, no significant change in the concentrations
throughout the years can be observed in the reference measurements. The low-cost mea-
surements are successfully corrected for 2020 using the ANN, but for 2021 this is not the
case. In contrast to the NO2 measurements, the results for 2021 are better when the ANN
is trained solely on data from 2020. This can be expected considering the nature of the
low-cost PM10 sensors and their degradation. The low-cost PM10 sensors are optical, and
they measure the light that is reflected off the particles that enter the sensor chamber. As
time passes, the particles accumulate, blocking the entrance to the sensor chamber, resulting
in lower PM10 measurements as the particles cannot properly circulate through the sensor
chamber and therefore refract less light. Taking this into account, the low-cost sensors’
behavior in 2019 is vastly different from their behavior in 2021. Because of this, the ANN
gains no benefit from 2019 data as they do not represent the same dependency between the
variables that can be observed in 2021. Finally, the improvement for 2021 (when the ANN
is trained on 2020 data) is present only for the R2 factor, while the RMSE is higher than
the one obtained after LR. This is most likely because of the changes in the baseline of the
low-cost sensor, caused by sensor degradation, although the overall behavior of the sensor
in 2021 is still similar enough to the one in 2020 to provide an increase in R2.

4. Conclusions

The source of NO2 pollution in cities comes from burning fuel (cars, buses, trucks
and power plants), so road traffic is the main source of NO2. In accordance with other
published work in this area, we have noticed a remarkable decrease in NO2 during the
COVID-19 lockdown. On the other hand, pollutants related to domestic heating showed
constant or higher levels. CO and PM10 pollutants in cities are mostly related to individual
domestic heating sources (gas, fossil fuels and biomass) and heating plants, thus showing
almost the same level for PM10, while CO showed a slight increase. It has to be noted
that the source of PM pollution might not always be local pollution, but could come from
remote areas, brought by the wind. It could be observed that the PM concentrations did
not decline remarkably despite a reduction in traffic, which leads to the conclusion that
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the PM concentration locally varies according to the dominant PM pollution source in the
observed area that corresponds to the specific micro-meteorological climate.

A convolutional ANN has been proposed in this paper to explore the possibilities of
modeling the influence of relative humidity and air temperature on the low-cost measure-
ments. We have concluded that for the CO measurements, no significant improvement
could be achieved, but for those of NO2 and PM10 a clear improvement can be observed.
When training the developed convolutional network on 2019 data and testing it on 2020
data (during the COVID-19 lockdown), an improvement of 0.346 is achieved for the NO2
R2 value, and an improvement of 0.126 is achieved for the PM10 R2 value. This shows that
the data from a regular period can be used to train a model which can then improve the
performance of low-cost sensors even during a different day-to-day regime. It is important
to note that our developed model uses sequences of data, and that this choice is made
because when the same train/test data splitting methodology was attempted with single
measurement points and simpler machine learning models (fully connected ANN and
random forest) no improvement could be achieved.

In our future work, we will explore the influence of the lockdown on different pol-
lutants. An exploration of more complex convolutional neural networks will also be
performed, including an expansion of the network input parameters (both meteorological
and other pollutants) as well as the possibilities of cross-calibration between low-cost
sensors.
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