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Abstract: Currently, Phuket Island is facing water scarcity because water demand for consumption
was approximately 51 million m3/year, whereas water supply was only about 46 million m3/year.
Thus, the study of water supply, demand and balancing are important for effective water resources
management. This study aims to simulate the LULC data using the CLUE-S model, estimate water
supply using the SWAT model, and calculate water demand using a water footprint basis for water
balancing on the Island. In addition, tourist water demand was separately estimated under normal
and new normal conditions (COVID-19 pandemic) to fit with the actual situation at national and
international levels. Water balance results with the consideration of ecological water requirements
suggest that a water deficit occurs every year under the dry year scenario in normal and new normal
conditions. In addition, the monthly water balance indicates that a water deficit occurs in the
summer season every year, both without and with the consideration of ecological water requirements.
Consequently, it can be concluded that remote sensing data with advanced geospatial models
can provide essential information about water supply, demand, and balance for water resources
management, particularly water scarcity, in Phuket Island in the future. Additionally, this study’s
conceptual framework and research workflows can assist government agencies in examining water
deficits in other areas.

Keywords: geospatial models; land use and land cover; water supply; water demand; water balance;
Phuket Island

1. Introduction

According to the annual report of Phuket Province in 2010, water demand for consump-
tion was approximately 51 million m3/year, whereas water supply was about 46 million
m3/year. The water supply is categorized into three groups: surface water, groundwater,
and seawater. Surface water accounts for about 38 million m3/year, or 82% of the total
water supply. In comparison, groundwater accounts for about 4 million m3/year or 9%
of the total water supply, and seawater accounts for 4 million m3/year or 9% of the total
water supply. The average water demand increases by about 2% per year according to
economic growth and tourism. Thus, the water demand estimates for 2017, 2027, and
2037 are approximately 61 million m3, 78 million m3, and 101 million m3, respectively [1].
Accordingly, balancing water supply and demand for consumption is very important for
water resources management, in particular water scarcity, in Phuket Island.

Phuket Island is the largest island in Thailand and a highly popular tourist destination.
In the past 30 years, Phuket Island has seen considerable tourism growth [2]. Information
from TAT Intelligence Center, Tourism Authority of Thailand and Economics Tourism and
Sports Division, Ministry of Tourism and Sports, shows that the total number of domestic
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(Thai) and international (foreign) tourists dramatically increased between 1993 and 2019,
from 2,088,179 people in 1993 to 14,576,466 people in 2019. There has been a threefold
increase in tourists in the last decade, although the number of tourists declined in some
years. For instance, the number of tourists declined to 2,510,276 in 2005 after the Indian
Ocean Tsunami on 26 December 2004. During the H1N1 pandemic in 2009, tourist numbers
dropped from 5,313,308 in 2008 to 3,375,931 in 2009. Similarly, due to the COVID-19 pan-
demic, tourist numbers dropped from 14,576,466 in 2019 to 4,003,290 in 2020 [3,4]. Between
1993 and 2020, the registered population of Phuket province continuously increased from
194,178 people in 1993 to 414,471 people in 2020 [5].

Recently, the balance between water demand and supply has been investigated to
mitigate water shortage problems in many countries. Kundu et al. applied the SWAT model
to assess the impact of land-use change on the water balance of the Narmada River basin in
Madhya Pradesh, India [6]. Kifle et al. applied the Water Evaluation and Planning (WEAP)
hydrological model and used population growth trends and climate change scenarios to
forecast the water demand and supply in Addis Ababa, Ethiopia [7]. Reyes Perez applied
Multi-Criteria Decision Analysis to assess water supply and demand management in Santa
Cruz, Galápagos Island, Ecuador, from the environmental, technical, economic, and social
aspects and relevant stakeholders’ perspectives [8]. Li et al. applied a system dynamics
approach to simulate and optimize the water supply and demand balance in Shenzhen,
China [9]. Liersch et al. applied the Soil and Water Integrated Model (SWIM) to assess gaps
between water demand and supply for water resources planning in Upper Niger and Bani
River Basins (UNBB) in West Africa [10].

During the last three decades, many researchers have conducted studies on Phuket
Island’s water supply, demand, and balance. Using statistical and field data, Charupongso-
pon explored the location and distribution of water resources to assess the water demand
situation and trend and delineate areas to develop as water storage sites [11]. Leelawattana-
goon applied spatial data and stepwise regression to assess the streamflow characteristics
of Phuket Island [12]. Thepnuan applied System Dynamics (SD) to develop a system tool
to analyze and explain significant variables that affect the tourism development carrying
capacity of water resources [13]. Vongtanaboon et al. applied the runoff coefficient to
assess water supply and demand in terms of quantity and time, evaluate the future wa-
ter situation, and propose water resource management strategies [14]. Sma-air applied
remote sensing data and field surveys to analyze surface-water amounts for water man-
agement [15]. Hanuphab applied GIS and the SCS-CN model to assess the water budget
in Phuket Island [16]. Similarly, Suwanprasit et al. applied GIS and the SCS-CN model
to assess the water balance of Phuket Island [17]. Recently, Prince of Songkla University,
Phuket Campus, applied SCADA (supervisory control and data acquisition) to explore
surface water and created a database of current water sources. The tool is reliable for
Phuket Island and has an online display that shows the water level in real-time, and it
applies the information to enable water management in Phuket Island [18]. Nevertheless,
the integration of remote sensing, land-use change modeling (CLUE-S model), and a dis-
tributed hydrological model (SWAT model) for water balancing has not been conducted in
Phuket Island.

Consequently, increasing water demand, and the real threat of water scarcity to needed
economic tourism and livelihoods on Phuket Island, requires an integrated modeling
framework to help manage water resources. Our objectives were therefore to (1) to assess
LULC status and its change, (2) to simulate LULC data using the CLUE-S model, (3) to
estimate water yield using the SWAT model, (4) to estimate water demand based on the
water footprint, and (5) to evaluate the water balance (surplus or deficit).

2. Study Area

Phuket Island is located in the Andaman Sea of Southern Thailand (Figure 1). With
an area of approximately 522 km2, mountains cover about 70% of the island, while the
remaining areas of the central and eastern portions of the island are relatively flat. The
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elevation of the island varies from 0 to 546 m above mean sea level. Phuket Island has
a tropical monsoon climate with two distinct seasons; a dry summer season (December–
March) and a rainy winter season (April to November) [19]. The average annual rainfall
from 2002 to 2011 was 2350 mm [17], while the average annual temperature was 28.1 degrees
Celsius [20].
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Figure 1. Elevation and topographic characteristics of the study area.

3. Materials and Methods

The research methodology workflow was composed of (1) data collection and prepa-
ration, (2) LULC assessment and change detection, (3) land use and land cover simulation,
(4) water supply estimation, (5) water demand estimation, and (6) water balance eval-
uation, is displayed in Figure 2. Details of each stage were separately described in the
following sections.

3.1. Data Collection and Preparation

The required remotely sensed data, GIS, and primary and secondary data were col-
lected and prepared for data analysis and modeling, as summarized in Table 1.
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Table 1. Details of data collection and preparation for analysis and modeling in the study.

Data Data Collection Source

Remote sensing Pleiades and SPOT imagery in 2019 CNES/Airbus, Maxar Technologies (Google satellite maps)
GIS 1. Administrative boundary DEQP

2. LULC data in 2002 and 2014 Boonchoo [21]
3. Digital elevation model USGS
4. Soil series LDD
5. Stream DEQP
6. Road PSO MOT

Primary data Field survey for ground-truthing in 2020
Secondary data 1. Daily weather between 1996 and 2019 TMD and SRIHC RID

2. Daily weather between 2000 and 2010 NCEP
3. Daily runoff observed between 1999 and 2019 SRIHC RID
4. Registered population between 1993 and 2020 DOPA MOI
5. Census data between 1960 and 2010 NSO
6. Tourist arrivals data between 1993 and 2020 TATIC TAT and ETSD MOTS
7. The average income of the population NSO

Note: USGS: The United States Geological Survey; LDD: Land Development Department; DEQP: Department of Environmental Quality
Promotion; PSO MOT: Permanent Secretary Office, Ministry of Transport; TMD: Thai Meteorological Department; SRIHC RID: Southern
Region Irrigation Hydrology Center, Royal Irrigation Department; NCEP: The National Centers for Environmental Prediction; DOPA
MOI: Department of Provincial Administration, Ministry of Interior; NSO: National Statistical Office; TATIC TAT: TAT Intelligence Center,
Tourism Authority of Thailand; ETSD MOTS: Economics Tourism and Sports Division, Ministry of Tourism and Sports.

3.2. Land Use and Land Cover Assessment and Change Detection

The LULC data in 2019 were first visually assessed from Pleiades and SPOT imagery
using the element of visual interpretation [22,23]. In this study, the LULC classes were
(1) urban and built-up areas, (2) paddy fields, (3) field crops and horticulture, (4) perennial
trees and orchards, (5) aquaculture areas, (6) idle land, (7) evergreen forests, (8) mangrove
forests, (9) scrub forests, (10) water bodies, and (11) miscellaneous land. Then, the thematic
accuracy of the preliminary 2019 LULC map was assessed in a field survey in 2020 using
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660 randomly stratified sampling points based on the multinomial distribution theory with
a 95% confidence level and 5% precision [24]. Finally, based on the collected and interpreted
LULC data, changes were assessed using a post-classification comparison change detection
algorithm, which is widely used to extract “from-to” change class information [25,26].

3.3. Land Use and Land Cover Simulation

The CLUE-S (Conversion of Land Use and its Effects at Small regional extent) model
was chosen to simulate LULC change between 2020 and 2029. In particular, the Markov
Chain model was first used to assess future land demand based on the annual rate of
each LULC class from the transition area matrix of LULC change between 2014 and 2019.
In general, the Markov chain is a stochastic process model that describes the probability
of change from one state to another, i.e., from one land-use type to another, using a
transition probability matrix [27]. Then, the selected driving factors of LULC change were
applied to identify the LULC type distribution using binomial logistic regression analysis
(Equation (1)) for allocating LULC types. In this study, the physical and socio-economic
driving factors of LULC change included elevation, slope, distance to water bodies, distance
to roads, distance to settlement, soil fertility, population density at the sub-district level,
and average income per capita at the sub-district level, which was successfully applied
to Phuket Island by Ongsomwang and Boonchoo [28]. Finally, future LULC data were
simulated using the CLUE-S model. The conversion matrix, the elasticity of LULC change,
and land use demand were simultaneously combined to allocate LULC data according
to the driving factors of LULC change for a specific LULC type at a given location. The
basic concept and the development of the CLUE-S model were explained in more detail by
Verburg et al. [29–31].

Log
(

Pi

1 − Pi

)
= β0+β1X1,i+β2X2,i . . . . . .+βnXn,i (1)

where Pi is the probability of a grid cell for the considered land-use type in location i, and
the Xs are location factors. The coefficients (β) were estimated through logistic regression
using the actual land use pattern as the dependent variable.

3.4. Water Supply Estimation

The SWAT model was applied to estimate water supply (water yield) between 2020
and 2029 under dry and wet year scenarios. The SWAT model is a basin-scale, continuous-
time model that operates on the basis of daily data and is designed to predict the impact of
management on water, sediment, and agricultural chemical yields in ungauged watersheds.
The model is physically based, computationally efficient, and capable of continuous simu-
lation over long periods. The major model components include weather, hydrology, soil
temperature and properties, plant growth, nutrients, pesticides, bacteria and pathogens,
and land management [32–34].

3.4.1. Calibration and Validation of SWAT Model

To determine the optimal local model parameters, the Khlong Bang Yai watershed in
the study area was chosen as a reference watershed because of the availability of long-term
observed hydrologic data. The hydrologic response unit (HRU) was first generated using
20 percent land use, 10 percent soil, and 20 percent slope thresholds, which are suitable for
most applications [35,36]. Weather data (precipitation, temperature, solar radiation, wind
speed, and humidity) collected by six meteorological stations of the Thai Meteorological
Department and Royal Irrigation Department between 1996 and 2019 were prepared and
input into the model. Then, a sensitivity analysis was conducted to determine the influence
of parameters on estimating total flow to identify the most sensitive parameters in the
study area. Seven critical parameters—curve number at moisture condition II, available
soil water capacity, soil evaporation compensation factor, surface runoff lag coefficient,
baseflow alpha factor, groundwater “revap” coefficient, and groundwater delay, which
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affect surface runoff and baseflow as suggested by many researchers [6,37–43]—were
analyzed using t-statistics in the SWAT-CUP software, with p-values considered significant
at the 5% significance level.

After that, these parameters were systematically calibrated to identify the optimal
local model parameters for water yield estimation according to annual runoff data at the
X.191 station of the Khlong Bang Yai watershed under dry and wet year conditions. Dry
and wet year conditions were defined based on the long-term mean annual runoff between
1999 and 2019 at the X.191 station (Figure 3). Any year in which annual runoff was higher
than the mean annual runoff was identified as a wet year. Conversely, any year in which the
annual runoff was less than the mean annual runoff was identified as a dry year. Then, the
local model parameters identified in the calibration phase were further applied to validate
the model. Table 2 summarizes the essential data required for the model calibration and
validation periods under dry and wet year conditions.
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Table 2. Essential data required for model calibration and validation under dry and wet year conditions.

Required Data
Dry Year Condition Wet Year Condition

Calibration Validation Calibration Validation

LULC data 2014 2019 2002 2014
Weather data 2006–2010 2015–2019 1996–2000 2013–2017

Model warming period 2006–2008 2015–2017 1996–1998 2013–2015
Estimated water yield 2009–2010 2018–2019 1999–2000 2016–2017
Observed water yield 2009–2010 2018–2019 1999–2000 2016–2017

Furthermore, the RMSE-observations standard deviation ratio (RSR) [44], Nash–
Sutcliffe efficiency (NSE) [45], and percent bias (PBIAS) [46], as shown in Equations (2)–(4),
were determined to evaluate the performance of the model, where good performance is
defined by expected threshold values of ≤0.60, ≥0.65, and ≤±15% in the model calibration
and validation phases (Table 3).

PSR =
RMSE

STDEVobs
=

√
∑n

i=1(Oi − Ei)
2√

∑n
i=1
(
Oi − O

)2
(2)

NSE =1 − ∑n
i=1(Oi − Ei)

2

∑n
i=1
(
Oi − O

)2 (3)
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PBIAS =
∑n

i=1(Oi−Ei)×100
∑n

i=1(O i)
(4)

where Ei is the estimated value, and Oi is the observed value at time i. O is the mean of the
individual observations of Oi, and n is the number of observations.

Table 3. Model performance scale.

Performance Rating
Model Performance Measurement Indicator

RSR NSE PBIAS

Very good 0.00 < RSR < 0.50 0.75 < NSE < 1.00 PBIAS < ±10
Good 0.50 < RSR < 0.60 0.65 < NSE < 0.75 ±10 < PBIAS < ±15
Satisfactory 0.60 < RSR < 0.70 0.50 < NSE < 0.65 ±15 < PBIAS < ±25
Unsatisfactory RSR > 0.70 NSE < 0.50 PBIAS > ±25

Source: Moriasi et al. [47].

3.4.2. Water Yield Estimation Using SWAT Model

The optimal local parameters of dry and wet year conditions from the model calibra-
tion phase were applied to estimate the time-series water yield between 2020 and 2029 for
Phuket Island with representative rainfall data under dry and wet year scenarios.

To identify rainfall data for dry and wet year scenarios, long-term historical rainfall
data were obtained from the Thai Meteorological Department for Phuket and Phuket
Airport stations from 1999 to 2019. According to the data, 2004 or 2005 can be used as
representative dry years. However, rainfall data at Krabi and Takua Pa stations were
unavailable for these years, so the lowest rainfall data in 2019 were chosen to represent
the dry year scenario. The highest rainfall value was found in 2016, which was used to
represent the wet year scenario (Figure 4). Thus, the time-series water yield between 2020
and 2029 under the dry and wet year scenarios in this study was estimated based on
weather data in 2019 and 2016, respectively.
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3.5. Water Demand Estimation

Phuket Island’s water demand between 2020 and 2029 was estimated under normal
and new normal (COVID-19 pandemic) conditions for three primary consumption activities:
residential, tourist, and agriculture and forest use.
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3.5.1. Residential Water Demand

Under normal and new normal conditions, the number of people (registered and
non-registered populations) was estimated based on historical data using linear regression
analysis. The registered population was estimated based on historical data between 2012
and 2019 from the DOPA database, Ministry of Interior. To extract the non-registered popu-
lation, census data were estimated based on historical data between 1980 and 2010 from
NSO. Finally, residential water demand was estimated in different community types using
the water consumption rate from the Royal Irrigation Department [48], as summarized in
Table 4.

Table 4. Water consumption rates in different community types.

No. Community Types Water Consumption Rate (Liters/Person/Day)

1 City municipality 250
2 Town municipality 200
3 Sub-district municipality 120
4 Outside the municipality 50

Source: Royal Irrigation Department [48].

3.5.2. Tourist Water Demand

The number of tourists under the normal condition was estimated using linear re-
gression analysis based on historical data between 2010 and 2019. In contrast, future
tourist projections by the Economics Tourism and Sports Division, Ministry of Tourism and
Sports, were adopted for tourist numbers under the new normal conditions (COVID-19
pandemic) [4]. In this condition, three future tourist scenarios were estimated for 2021, 2022,
and 2023 assuming 45%, 65%, and 85% of the tourists in 2019, respectively. The number
of tourists between 2024 and 2029 was based on the same data as the normal condition.
Finally, tourist water demand between 2020 and 2029 under normal and new normal
conditions was estimated according to the tourist type (tourists and excursionists) based
on the modified water consumption rate of Pansawad (1997) and the Department of Public
Works and Town and Country Planning (1993), as cited by Royal Irrigation Department [48]
and Srichai et al. [49], with an average length of stay of four days [3] (Table 5).

Table 5. The water consumption rates of tourists and excursionists.

No. Tourist Types Water Consumption Rate (Liters/Person/Day)

1 Tourists 300
2 Excursionists 30

3.5.3. Water Demand for Agriculture and Forest Uses

Under normal and new normal conditions, the water demand for agriculture and
forest uses was estimated based on the evapotranspiration coefficient and reference evapo-
transpiration [50], as shown in the following equation.

ETc= Kc×ETo (5)

where ETc is the water requirement (mm/day), Kc is the evapotranspiration coefficient,
and ETo is reference evapotranspiration (mm/day).

In particular, the water demand for agriculture and forest use was calculated based
on the area of each agriculture and forest type, the evapotranspiration coefficient (Kc) (see
Appendix A Table A1), and reference evapotranspiration using the Penman–Monteith
method (see Appendix A Table A2).

In this analysis, the water balance between 2020 and 2029 was evaluated with and
without the consideration of ecological water requirements based on the estimated water
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supply and demand under two different scenarios (dry year and wet year) and two different
conditions (normal and new normal).

In particular, the annual and monthly water balance without the consideration of
ecological water requirements was evaluated based on the annual and average monthly
water supply derived from the SWAT model. Additionally, the annual and monthly water
balance with the consideration of ecological water requirements was evaluated based on
water supply, which was derived from the SWAT model for 70% of the time and 0.5 m3

per second of flow (standard criteria) under the criteria of minimum water from the flow
duration curve at the outlet at X.191 station of Khlong Bang Yai watershed, as suggested
by Southern Region Irrigation Hydrology Center, Royal Irrigation Department [51] (see
Figure 5 and Table 6). On this basis, Phuket Island’s annual ecological water requirement
was 147.64 million m3 per year, while the monthly ecological water requirement was
12.30 million m3 per month.
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Table 6. The criteria of minimum water from the flow duration curve.

Station Code
Flow (cms) in Different Criteria

Normal (70%) Surveillance (70–90%) Critical (90%)

X.191 >0.50 0.50–0.20 0.24
Source: Southern Region Irrigation Hydrology Center, Royal Irrigation Department [51].

4. Results and Discussion
4.1. Land Use and Land Cover Assessment and Change Detection

The area and percentage of the LULC data in 2014 and 2019 are summarized in Table 7,
and the spatial distribution of LULC is mapped in Figure 6. Results indicate that three
LULC types are dominant on the Island. These include perennial trees and orchards,
urban and built-up areas, and evergreen forest, which covered 37.7%, 24.0%, and 15.5%,
respectively, in 2014 and 35.3%, 27.1%, and 14.2%, respectively, in 2019.

The results of the accuracy assessment of the LULC map in 2019 are reported in Table 8.
The overall accuracy and the Kappa hat coefficient of the LULC map in 2019 are 96.06% and
95.15%, respectively. The producer’s accuracy (PA), which represents omission error, varies
from 87.50% to 100%, and the significant omission error occurs in idle land, with a value
of 12.5%. At the same time, the user’s accuracy (UA), which represents commission error,
varies from 87.50% to 100%, and the significant commission error occurs in the paddy field
with a value of 12.5%. According to Fitzpatrick-Lins, a Kappa hat coefficient of more than
80% represents a strong agreement (high accuracy) between the classified and reference
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maps [52]. Additionally, an overall accuracy of more than 85% for the LULC map in 2019 is
regarded as an acceptable result [53].

Table 7. Area and percentage of LULC data in 2014 and 2019.

No. LULC Type
LULC Data in 2014 LULC Data in 2019

Area in km2 Percent Area in km2 Percent

1 Urban and built-up area 125.32 24.00 141.64 27.13
2 Paddy field 2.15 0.41 0.15 0.03
3 Field crop and horticulture 1.46 0.28 3.43 0.66
4 Perennial trees and orchards 196.63 37.66 184.39 35.32
5 Aquaculture 8.74 1.67 8.56 1.64
6 Idle land 34.67 6.64 39.74 7.61
7 Evergreen forest 80.86 15.49 74.16 14.20
8 Mangrove forest 25.15 4.82 24.72 4.73
9 Scrub forest 27.08 5.19 27.00 5.17

10 Waterbody 14.56 2.79 14.81 2.84
11 Miscellaneous land 5.43 1.04 3.46 0.66

Total 522.05 100 522.05 100
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Table 8. Error matrix and accuracy assessment of the LULC map in 2019.

LULC Types
Ground Reference Data from Google Earth in 2019

Ur Pa Fch Po Aq Id Ef Mf Sf Wa Mi Total

C
la

ss
ifi

ed
LU

LC
da

ta
in

20
19 Urban and built-up area (Ur) 161 161

Paddy field (Pa) 7 1 8
Field crop and horticulture (Fch) 12 1 13
Perennial trees and orchards (Po) 1 191 4 7 3 206

Aquaculture (Aq) 17 1 1 19
Idle land (Id) 1 49 1 1 1 53

Evergreen forest (Ef) 88 88
Mangrove forest (Mf) 36 36

Scrub forest (Sf) 1 2 36 39
Waterbody (Wa) 26 26

Miscellaneous land (Mi) 11 11

Total 162 7 12 193 17 56 98 36 41 27 11 660

Producer’s accuracy 99.38 100.00 100.00 98.96 100.00 87.50 89.80 100.00 87.80 96.30 100.00

User’s accuracy 100.00 87.50 92.31 92.72 89.47 92.45 100.00 100.00 92.31 100.00 100.00

Overall accuracy 96.06

Kappa hat coefficient 95.15

Moreover, the transition area matrix of LULC change between 2014 and 2019 is
presented in Table 9. These results indicate that the increase in urban and built-up areas in
2019 was due to the conversion of perennial trees and orchards and idle land in 2014. In
addition, the increase in perennial tree and orchard areas in 2019 was due to the conversion
of evergreen and scrub forests in 2014. Similarly, the increase in idle land area in 2019 was
due to the conversion of perennial trees and orchards in 2014.

Table 9. LULC change between 2014 and 2019 as a transition area matrix.

LULC Types
LULC 2019 (km2)

Ur Pa Fch Po Aq Id Ef Mf Sf Wa Mi Total

LU
LC

2
01

4
(k

m
2 )

Urban and built-up area (Ur) 125.21 - - 0.02 - 0.09 - - - - - 125.32
Paddy field (Pa) 0.18 0.15 0.39 0.06 0.02 1.32 - - 0.03 - - 2.15

Field crop and horticulture (Fch) 0.28 - 0.91 0.04 - 0.13 - - 0.10 - - 1.46
Perennial trees and orchards (Po) 7.29 - 1.80 176.44 - 8.86 0.63 - 1.50 0.05 0.06 196.63

Aquaculture (Aq) 0.11 - - 0.02 8.52 0.08 - - - 0.01 - 8.74
Idle land (Id) 5.19 - 0.29 1.85 - 25.33 0.10 0.01 1.69 0.19 0.01 34.67

Evergreen forest (Ef) 0.58 - - 3.69 - 0.87 73.28 - 2.43 - - 80.86
Mangrove forest (Mf) 0.08 - - 0.02 - 0.14 - 24.70 0.20 - 0.02 25.15

Scrub forest (Sf) 1.53 - 0.03 2.16 - 2.22 0.15 - 20.94 0.02 0.02 27.08
Water body (Wa) 0.14 - - 0.04 0.01 0.14 - - 0.02 14.22 - 14.56

Miscellaneous land (Mi) 1.07 - - 0.05 - 0.56 - - 0.09 0.32 3.35 5.43

Total 141.64 0.15 3.43 184.39 8.56 39.74 74.16 24.72 27.00 14.81 3.46 522.05

In contrast, perennial trees and orchards in 2014 were converted into idle land, field
crops and horticulture, scrub forest, evergreen forest, miscellaneous land, and water bodies
in 2019. Additionally, idle land in 2014 was converted into urban and built-up areas,
perennial trees and orchards, and scrub forest in 2019. Similarly, areas of evergreen forest
in 2014 were converted into perennial trees and orchards and scrub forests in 2019.

Furthermore, according to the pattern of LULC change identified in a previous study
by Boonchoo [21] and the current study, the urban and built-up areas will continuously
increase in the near future. Several potential causes of the transformation of the land
use pattern in Phuket Island have been identified, such as rapid economic development,
registered and non-registered population growth, and tourist growth. As a result, hotels
and recreational and commercial areas have been constructed to support tourism. Phuket
Island’s urban and built-up areas have been primarily expanded by converting perennial
trees and orchards and idle land. This finding is consistent with previous studies [54,55],
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which stated that most agricultural land and vegetation areas were transformed into urban
and built-up areas to meet people’s demands, leading to the LULC change.

4.2. Land Use and Land Cover Simulation

Table 10 reports the results of binary logistic regression analysis, which was carried
out to identify the LULC type distribution according to the driving factors of LULC change
after the multicollinearity test. The top three significant driving factors for the allocation
of specific LULC types in the study area are the distance to water bodies, elevation, and
distance to roads. The significant driving factors identified for each LULC type for LULC
allocation were further used in the CLUE-S model during the simulation process.

Table 10. Multiple linear regression equation of each LULC type and area under the curve value from logistic regres-
sion analysis.

Driving Forces
LULC Type

UR PA FCH PO AQ ID EF MF SF WA MI

Constant −3.33699 −6.69685 −3.73240 −0.44283 −2.14060 −1.63215 −3.43759 −1.92855 −2.46648 −3.21996 −5.21909
Elevation (X1) −0.03065 n. s. n. s. n. s. −0.09829 −0.00804 0.00549 −0.12154 n. s. −0.02983 −0.02009

Slope (X2) 0.03082 n. s. n. s. n. s. 0.09841 0.00829 n. s. 0.12170 n. s. 0.03006 0.01965
Distance to

settlement (X3) n. s. n. s. n. s. 0.00117 0.00154 n. s. 0.00072 0.00270 n. s. n. s. n. s.

Distance to road (X4) −0.00274 n. s. n. s. −0.00068 n. s. −0.00070 0.00075 0.00213 n. s. 0.00138 0.00099
Distance to water

bodies (X5) n. s. −0.00362 n. s. 0.00050 −0.00101 −0.00056 0.00065 −0.00192 −0.00082 n. s. 0.00055

Soil fertility (X6) n. s. n. s. 0.00026 n. s. n. s. n. s. n. s. 0.00007 −0.00002 n. s. n. s.
Population density at
sub-district level (X7) 0.00025 n. s. −0.00165 −0.00075 −0.00075 −0.00014 n. s. n. s. −0.00015 n. s. n. s.

The average income
per capita at the

sub-district level (X8)
0.00037 n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s.

Area Under Curve
(AUC) 0.883058 0.668109 0.717422 0.799695 0.879755 0.689687 0.888607 0.935244 0.651999 0.731248 0.695395

Remark: All explanatory variables are significant at p < 0.05 error level; n. s. is not significant at 0.05 level; AUC, area under the curve.

In addition, the area under the curve (AUC) values derived for allocating each LULC
type using binary logistic regression analysis are between 0.65 and 0.94, which means that
the difference between simulated and actual LULC is acceptable, and the model has fair to
outstanding discrimination ability [56]. The simulated LULC data between 2020 and 2029
and their distribution are summarized and presented in Table 11 and Figure 7.

Table 11. Area of simulated LULC data between 2020 and 2029.

LULC Types
Area of Simulated LULC in km2

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Urban and built-up area 145.03 148.29 151.54 154.81 158.07 161.32 164.55 167.83 170.92 174.34
Paddy field 0.13 0.13 0.10 0.09 0.07 0.06 0.05 0.03 0.02 0.00

Field crop and horticulture 3.47 3.52 3.82 3.76 3.99 4.19 4.30 4.44 4.39 4.67
Perennial trees and orchards 182.16 180.01 177.87 175.74 173.55 171.46 169.35 167.20 165.21 162.90

Aquaculture 8.47 8.47 8.45 8.45 8.45 8.30 8.25 8.17 8.17 8.07
Idle land 40.03 40.29 40.54 40.82 41.01 41.32 41.59 41.85 42.09 42.35

Evergreen forest 72.96 71.79 70.62 69.47 68.27 67.15 65.98 64.83 63.71 62.49
Mangrove forest 24.68 24.66 24.44 24.44 24.44 24.19 24.10 24.01 24.01 23.82

Scrub forest 26.85 26.84 26.81 26.79 26.74 26.76 26.75 26.74 26.77 26.69
Waterbody 14.98 14.98 14.98 14.98 14.98 14.98 15.04 15.04 15.04 15.22

Miscellaneous land 3.30 3.08 2.88 2.70 2.48 2.32 2.08 1.91 1.72 1.50

Total 522.05 522.05 522.05 522.05 522.05 522.05 522.05 522.05 522.05 522.05
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According to the results, the LULC types that will increase in 2029 are urban and
built-up areas, field crops and horticulture, idle land, scrub forest, and water bodies. On
the contrary, the LULC types that will decrease in 2029 are paddy fields, perennial trees and
orchards, aquaculture, evergreen forest, mangrove forest, and miscellaneous land. These
findings are based on the driving factors of LULC change, conversion matrix, and elasticity
of LULC change and their land requirements, which were applied to the CLUE-S model
for LULC simulation between 2020 and 2029.

In this study, a slight difference was found between the land demand (required land
area) and the simulated area of each LULC type in 2029. The deviation between the land
demand and the simulated area in 2029 is −0.01 km2 because the deviation value depends
on the iteration driving factors of each LULC type, which indicates the different maximum
allowances between the required and allocated areas of LULC types under the CLUE-S
model [57–59].
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4.3. Sensitivity Analysis and Model Calibration and Validation

The results of the sensitivity analysis are reported in Table 12. According to the
results, available soil water capacity (SOL_AWC) is the most sensitive parameter in the
Khlong Bang Yai watershed. Thus, the available soil water capacity, which is the soil’s
capacity to hold water available for plant use and reflects the soil’s capacity for water
storage [60,61], was the main value adjusted in the model calibration stage. In addition,
the curve number at moisture condition II (CN2), soil evaporation compensation factor
(ESCO), and groundwater “revap” coefficient (GW_REVAP), which relate to surface runoff
and baseflow, were slightly modified in this study.

Table 12. SWAT parameter sensitivity to monthly streamflow at the X.191 station.

Abbreviation Parameter t-Stat p-Value

SOL_AWC Available soil water capacity 5.7839 0.0286
SURLAG Surface runoff lag coefficient 2.6590 0.1171

GW_DELAY Groundwater delay −2.2600 0.1523
ESCO Soil evaporation compensation factor −2.2570 0.1526
CN2 Curve number at moisture condition II −1.0655 0.3983

GW_REVAP Groundwater “revap” coefficient 1.0291 0.4116
ALPHA_BF Baseflow alpha factor −0.4692 0.6851

The optimal model parameters in the calibration period under dry and wet year
conditions are reported in Table 13. The results indicate that the optimal value of available
soil water capacity (SOL_AWC) varies according to soil type. Likewise, the curve number
at moisture condition II (CN2) depends on land use, soil, and slope.

Table 13. Optimal parameter values of SWAT model for hydrologic component estimation under dry
and wet year conditions.

Parameter Unit Range
Calibration Period

Dry Year Condition Wet Year Condition

SOL_AWC a 0–1 0.19–0.30 0.05–0.16
SURLAG day 0–10 4 4

GW_DELAY day 0–100 31 31
ESCO 0–1 0.80 0.96
CN2 b 30–100 30–68 30–85

GW_REVAP 0–1 0.050 0.157
ALPHA_BF day−1 0–1 0.048 0.048

Note: a Varies with soil type; b Varies with land use, soil, and slope.

Furthermore, Table 14 and Figure 8 summarize the SWAT model’s performance for
the dry year condition in the calibration and validation periods based on the observed and
estimated hydrologic data at the X.191 station. According to the three statistical values, the
model shows good performance in the calibration period and very good performance in
the validation period, according to the model performance scale of Moriasi et al. [47]. The
R2 values in the calibration and validation periods are 0.88 and 0.89, as shown in Figure 9.

Table 14. Performance of the SWAT model for water yield estimation in calibration and validation
periods under the dry year condition.

Indicator
Calibration (Year) Validation (Year)

In 2009–2010 Performance Rating In 2018–2019 Performance Rating

RSR 0.56 Good 0.43 Very good
NSE 0.69 Good 0.82 Very good

PBIAS −13.60 Good 5.25 Very good
Note: Model performance rating scale by Moriasi et al. [47].



Appl. Sci. 2021, 11, 10553 15 of 32

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 33 
 

Table 14. Performance of the SWAT model for water yield estimation in calibration and validation 
periods under the dry year condition. 

Indicator 
Calibration (Year) Validation (Year) 

In 2009–2010 Performance Rating In 2018–2019 Performance Rating 
RSR 0.56 Good 0.43 Very good 
NSE 0.69 Good 0.82 Very good 

PBIAS −13.60 Good 5.25 Very good 
Note: Model performance rating scale by Moriasi et al. [47]. 

  
(a) (b) 

Figure 8. Monthly observed and estimated streamflow at Khlong Bang Yai watershed under the dry year condition: (a) 
calibration period; (b) validation period. 

 
Figure 9. Scatter plot between observed and estimated streamflow at Khlong Bang Yai watershed 
under the dry year condition: (a) calibration period; (b) validation period. 

The SWAT model’s performance for the wet year condition in the calibration and 
validation periods based on the estimated and observed hydrologic data at the X.191 sta-
tion is summarized in Table 15 and Figure 10. According to the three statistical values, the 
model shows good performance in the calibration and validation periods, as suggested 
by Moriasi et al. [47]. Additionally, the R2 values in the calibration and validation periods 
are 0.70 and 0.89, as shown in Figure 11. 

Figure 8. Monthly observed and estimated streamflow at Khlong Bang Yai watershed under the dry year condition:
(a) calibration period; (b) validation period.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 33 
 

Table 14. Performance of the SWAT model for water yield estimation in calibration and validation 
periods under the dry year condition. 

Indicator 
Calibration (Year) Validation (Year) 

In 2009–2010 Performance Rating In 2018–2019 Performance Rating 
RSR 0.56 Good 0.43 Very good 
NSE 0.69 Good 0.82 Very good 

PBIAS −13.60 Good 5.25 Very good 
Note: Model performance rating scale by Moriasi et al. [47]. 

  
(a) (b) 

Figure 8. Monthly observed and estimated streamflow at Khlong Bang Yai watershed under the dry year condition: (a) 
calibration period; (b) validation period. 

 
Figure 9. Scatter plot between observed and estimated streamflow at Khlong Bang Yai watershed 
under the dry year condition: (a) calibration period; (b) validation period. 

The SWAT model’s performance for the wet year condition in the calibration and 
validation periods based on the estimated and observed hydrologic data at the X.191 sta-
tion is summarized in Table 15 and Figure 10. According to the three statistical values, the 
model shows good performance in the calibration and validation periods, as suggested 
by Moriasi et al. [47]. Additionally, the R2 values in the calibration and validation periods 
are 0.70 and 0.89, as shown in Figure 11. 

Figure 9. Scatter plot between observed and estimated streamflow at Khlong Bang Yai watershed
under the dry year condition: (a) calibration period; (b) validation period.

The SWAT model’s performance for the wet year condition in the calibration and
validation periods based on the estimated and observed hydrologic data at the X.191 station
is summarized in Table 15 and Figure 10. According to the three statistical values, the
model shows good performance in the calibration and validation periods, as suggested by
Moriasi et al. [47]. Additionally, the R2 values in the calibration and validation periods are
0.70 and 0.89, as shown in Figure 11.

Table 15. Performance of the SWAT model for water yield estimation in calibration and validation
periods under the wet year condition.

Indicator
Calibration (Year) Validation (Year)

In 1999–2000 Performance Rating In 2016–2017 Performance Rating

RSR 0.58 Good 0.59 Good
NSE 0.66 Good 0.65 Good

PBIAS 14.90 Good −13.84 Good
Note: Model performance rating scale by Moriasi et al. [47].
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4.4. Estimation of Water Yield between 2020 and 2029

The optimal local parameters from the dry year condition were further applied to
estimate the water yield between 2020 and 2029 under the dry year scenario. The optimal
local parameters from the wet year condition were also applied to estimate the water yield
in the same period under the wet year scenario.

4.4.1. Water Yield Estimation under Dry Year Scenario

Table 16 displays the annual water yield of simulated LULC between 2020 and 2029 under
the dry year scenario with 2376.50 mm rainfall. According to the results, the estimated annual
water yield varies from 967.36 mm (505.01 million m3) to 999.49 mm (521.79 million m3), with
an average annual water yield of 981.17 mm (512.22 million m3). In addition, the estimated
annual evapotranspiration varies from 1281.50 mm to 1298.60 mm, with an average annual
evapotranspiration value of 1291.67 mm. These findings indicate that LULC change
affects water yield through its hydrologic component and evapotranspiration because, as
significant input data for water yield estimation, rainfall data are fixed, while LULC data
are dynamic.
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Table 16. Annual water yield of Phuket Island between 2020 and 2029 under dry year scenario.

Year

Hydrological Component (mm)

Surface Runoff Lateral Flow Groundwater
(Shallow Aquifer)

Groundwater
(Deep Aquifer) Evapotranspiration Water Yield

2020 575.23 110.68 264.10 17.35 1298.60 967.36
2021 578.95 109.98 262.55 17.25 1297.90 968.73
2022 582.68 109.41 260.65 17.14 1297.50 969.89
2023 587.34 110.49 257.20 16.92 1296.90 971.96
2024 590.45 107.93 258.30 16.95 1295.70 973.63
2025 601.77 106.19 252.51 16.58 1294.20 977.05
2026 646.69 100.71 229.32 15.20 1286.70 991.92
2027 652.05 99.15 228.90 15.11 1284.10 995.21
2028 656.34 98.73 226.44 14.97 1283.60 996.48
2029 664.12 96.80 223.77 14.79 1281.50 999.49

Average 613.56 105.01 246.37 16.23 1291.67 981.17

In addition, Table 17 presents the estimated monthly water yield between 2020 and
2029 under the dry year scenario. According to these results, the average monthly water
yield in the summer season (December–March) varies from a minimum of 1.84 million m3

in March to a maximum of 31.86 million m3 in December. The average monthly water yield
in the rainy season (April–November) varies from a minimum of 16.10 million m3 in May
to a maximum of 102.26 million m3 in October.

Table 17. Monthly water yield of Phuket Island between 2020 and 2029 under dry year scenario.

Month
Water Yield between 2020 and 2029 (Million m3)

Average
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

January 10.40 10.38 10.36 10.34 10.26 10.18 11.03 11.04 11.04 11.07 10.61
February 4.13 4.12 4.10 4.08 4.13 4.09 3.66 3.64 3.61 3.59 3.92

March 1.93 1.92 1.91 1.88 1.88 1.86 1.77 1.76 1.75 1.73 1.84
April 19.24 19.39 19.56 19.84 20.04 20.42 20.58 20.92 21.04 21.32 20.24
May 15.11 15.19 15.28 15.46 15.47 15.68 16.92 17.17 17.28 17.46 16.10
June 61.31 61.66 61.98 62.49 62.28 63.22 69.93 70.40 70.89 71.49 65.57
July 80.55 80.79 81.01 81.40 81.71 82.43 84.31 84.61 84.83 85.29 82.69

August 70.92 71.01 71.10 71.27 71.57 71.87 73.22 73.58 73.67 74.03 72.22
September 66.82 66.79 66.73 66.67 66.92 66.81 65.22 65.30 65.20 65.14 66.16

October 102.30 102.40 102.50 102.60 103.00 103.40 101.60 101.60 101.60 101.80 102.26
November 39.46 39.33 39.16 38.86 38.57 38.09 38.59 38.65 38.53 38.29 38.75
December 32.88 32.78 32.69 32.49 32.46 32.07 30.98 30.88 30.77 30.61 31.86

Average 42.08 42.14 42.19 42.29 42.40 42.51 43.20 43.29 43.35 43.48 42.68

4.4.2. Water Yield Estimation under Wet Year Scenario

Table 18 displays the annual water yield of simulated LULC between 2020 and 2029
under the wet year scenario with 3686.00 mm rainfall. According to the results, the es-
timated annual water yield varies from 2347.42 mm (1225.48 million m3) to 2379.23 mm
(1242.08 million m3), with an average annual water yield of 2361.84 mm (1233.00 million m3).
In addition, the estimated annual evapotranspiration varies from 934.30 mm to 936.10 mm,
with an average annual evapotranspiration value of 935.27 mm. The annual evapotranspi-
ration of Phuket Island under this scenario is relatively stable. Additionally, as with the
dry year scenario, these findings indicate that LULC change affects water yield through its
hydrologic component and evapotranspiration because, as significant input data for water
yield estimation, rainfall data are fixed.
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Table 18. Annual water yield of Phuket Island between 2020 and 2029 under the wet year scenario.

Year

Hydrological Component (mm)

Surface Runoff Lateral Flow Groundwater
(Shallow Aquifer)

Groundwater
(Deep Aquifer) Evapotranspiration Water Yield

2020 1264.17 147.02 882.84 53.39 935.00 2347.42
2021 1269.98 146.04 880.12 53.22 934.80 2349.36
2022 1275.22 145.45 877.16 53.06 934.50 2350.89
2023 1287.41 147.66 865.83 52.43 936.10 2353.33
2024 1294.66 143.86 863.70 52.31 935.50 2354.53
2025 1313.41 141.63 852.02 51.67 935.60 2358.73
2026 1397.25 134.91 791.27 48.60 936.00 2372.03
2027 1417.47 132.88 777.66 47.84 935.40 2375.84
2028 1424.99 132.35 772.17 47.56 935.50 2377.06
2029 1439.43 129.48 763.20 47.12 934.30 2379.23

Average 1338.40 140.13 832.60 50.72 935.27 2361.84

Furthermore, the monthly water yield estimation under the wet year scenario is re-
ported in Table 19. The results show that the average monthly water yield in the summer
season (December–March) varies from a minimum of 4.95 million m3 in March to a maxi-
mum of 58.92 million m3 in December. The average monthly water yield in the rainy season
(April–November) varies from a minimum of 2.80 million m3 in April to a maximum of
286.47 million m3 in October.

Table 19. Monthly water yield of Phuket Island between 2020 and 2029 under wet year scenario.

Month
Water Yield between 2020 and 2029 (Million m3)

Average
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

January 44.38 44.50 44.66 44.89 45.05 45.34 45.87 45.96 46.09 46.32 45.31
February 20.02 19.96 19.88 19.69 19.60 19.38 19.22 19.07 18.98 18.83 19.46

March 5.34 5.29 5.24 5.14 5.09 4.94 4.71 4.63 4.58 4.50 4.95
April 2.92 2.91 2.89 2.87 2.86 2.83 2.71 2.68 2.66 2.64 2.80
May 75.49 76.06 76.60 77.45 77.45 79.04 88.50 90.05 90.75 91.79 82.32
June 101.76 102.23 102.62 103.27 103.86 105.02 109.44 110.59 111.04 112.04 106.19
July 98.41 98.51 98.52 98.71 98.81 98.89 96.68 96.67 96.57 96.39 97.82

August 147.63 147.70 147.71 148.31 148.34 148.59 148.88 149.41 149.45 149.44 148.55
September 238.69 238.73 238.79 239.33 239.50 239.82 239.91 240.39 240.47 240.61 239.62

October 285.86 285.89 285.95 286.32 286.44 286.76 286.66 286.84 286.92 287.02 286.47
November 143.18 143.07 142.94 142.12 141.89 141.24 138.81 137.98 137.72 137.22 140.62
December 61.81 61.64 61.47 60.46 60.30 59.52 56.94 56.04 55.72 55.29 58.92

Average 102.12 102.21 102.27 102.38 102.43 102.61 103.19 103.36 103.41 103.51 102.75

4.5. Effect of LULC Change on Water Yield

Simple linear regression analysis was applied to identify the effect of LULC change
on water yield (see Appendix A for input data in Table A3). The simple linear equations
between water yield and specific dominant LULC types under dry and wet scenarios are
displayed in Figures 12 and 13.

The results show that annual water yield in the dry and wet year scenarios is positively
correlated with urban and built-up areas, with R2 values of 0.91 and 0.92, respectively
(Figures 12a and 13a). This finding indicates that when urban and built-up areas increase,
water yield increases. This phenomenon is expected because surface runoff, as a significant
hydrologic component of water yield, will increase when urban and built-up areas with imper-
vious surfaces increase. Likewise, annual water yield in both scenarios is positively correlated
with idle land (abandoned and fallowed fields), with R2 values of 0.91 and 0.93, respectively
(Figures 12b and 13b). This finding shows that when idle land increases, water yield increases.
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On the contrary, annual water yield in the dry and wet year scenarios has a high
negative correlation with perennial trees and orchards, with R2 values of 0.91 and 0.92,
respectively (Figures 12c and 13c). This finding indicates that when perennial trees and
orchards increase, water yield decreases. This phenomenon is expected because surface
runoff will decrease when areas are covered by vegetation. Likewise, annual water yield in
both scenarios shows a high negative correlation with evergreen forest, with R2 values of
0.91 and 0.92, respectively (Figures 12d and 13d). This finding confirms the influence of
LULC change on the surface runoff in the watershed.

These findings are comparable to those of other studies. To determine the impact
of land-use change on surface runoff in Huay Tung Lung Watershed of Mun Basin, Ong-
somwang and Kunto applied the SWAT model to estimate surface runoff and the CA
Markov model to predict land-use changes. They found that land-use changes in the
watershed area directly affected surface runoff [62]. Ayivi and Jha applied the SWAT model
to estimate water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in
North Carolina, USA. They found that the surface runoff and water yield at the watershed
outlet were significantly increased due to the conversion of forest and grassland to impervi-
ous surfaces [41]. Likewise, Hu et al. integrated GIS and remote sensing methods with the
SCS-CN model to assess the impact of land-use change on surface runoff in Beijing, China.
They found that changes in surface runoff were positively correlated with impervious
land changes but negatively correlated with woodland, grassland, farmland, and water
changes [63].

Similarly, Puno et al. applied the SWAT model to determine the hydrologic responses
to land cover and climate change in the Muleta watershed, Bukidnon, Philippines. Their
results showed that urbanization influenced the increase in surface runoff, evapotranspi-
ration, and baseflow. An increase in forest vegetation resulted in a minimal decrease in
baseflow and surface runoff [64].

4.6. Estimation of Water Demand between 2020 and 2029

The main results of water demand estimation between 2020 and 2029 under normal
and new normal (COVID-19 pandemic) conditions are separately described below for three
primary consumption activities: residential, tourist, and agriculture and forest uses.

4.6.1. Residential Water Demand

Table 20 reports the annual residential water demand in different community types
between 2020 and 2029 under normal and new normal conditions.

Table 20. Annual residential water demand in different community types between 2020 and 2029.

Community Types
Annual Residential Water Demand between 2020 and 2029 (Million m3)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 Average

Maikhaow Sub-district 0.37 0.36 0.37 0.37 0.38 0.39 0.39 0.40 0.40 0.41 0.38
Thepkrasattri Sub-district Municipality 0.61 0.60 0.64 0.65 0.68 0.70 0.72 0.74 0.77 0.79 0.69

Thepkrasattri Sub-district 0.44 0.42 0.44 0.45 0.47 0.48 0.49 0.51 0.52 0.53 0.48
Paklok Sub-district Municipality 1.19 1.15 1.23 1.24 1.30 1.33 1.37 1.41 1.45 1.48 1.31

Sakhu Sub-district 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.23 0.23 0.21
Cherngtalay Sub-district Municipality 0.46 0.45 0.47 0.46 0.48 0.48 0.49 0.49 0.50 0.51 0.48

Cherngtalay Sub-district 0.32 0.31 0.32 0.32 0.33 0.33 0.34 0.34 0.35 0.35 0.33
Srisunthon Sub-district Municipality 1.73 1.74 1.85 1.88 1.96 2.01 2.08 2.14 2.22 2.28 1.99

Kamala Sub-district 0.19 0.19 0.20 0.20 0.20 0.20 0.21 0.21 0.21 0.21 0.20
Kathu Town Municipality 3.35 3.37 3.57 3.61 3.76 3.82 3.94 4.03 4.17 4.26 3.79
Patong Town Municipality 2.23 2.21 2.30 2.27 2.33 2.32 2.35 2.35 2.39 2.41 2.32

Vichit Sub-district Municipality 3.47 3.38 3.57 3.60 3.75 3.79 3.90 3.98 4.08 4.16 3.77
Phuket City Municipality 10.76 10.43 10.81 10.68 10.92 10.88 11.02 11.06 11.21 11.23 10.90

Kohkeaw Sub-district 0.46 0.45 0.49 0.50 0.53 0.54 0.57 0.59 0.61 0.63 0.54
Rasada Sub-district Municipality 3.23 3.12 3.27 3.26 3.36 3.38 3.46 3.50 3.57 3.61 3.38

Chalong Sub-district Municipality 1.80 1.75 1.86 1.87 1.96 1.99 2.05 2.10 2.16 2.20 1.97
Rawai Sub-district Municipality 1.25 1.21 1.28 1.28 1.33 1.35 1.38 1.40 1.44 1.46 1.34
Karon Sub-district Municipality 0.51 0.50 0.51 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Total 32.58 31.83 33.38 33.35 34.46 34.7 35.49 35.98 36.79 37.25 34.58
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The top three areas with the highest average total residential water demand are
Phuket City Municipality (10.90 million m3), Kathu Town Municipality (3.79 million m3),
and Vichit Sub-district Municipality (3.77 million m3). The top three areas with the lowest
average total residential water demand are Kamala Sub-district (0.20 million m3), Sakhu
Sub-district (0.21 million m3), and Cherngtalay Sub-district (0.33 million m3).

According to the results, Phuket Island’s average annual residential water demand will
continuously increase between 2020 and 2029. Notably, residential water demand in urban
areas is higher than in rural areas of Phuket Island. This finding indicates that growth rates
of the population and consumption patterns differ between urban and rural areas of Phuket
Island, as suggested by Boretti and Rosa [65]. They found that increasing water demand
follows population growth, economic development, and changing consumption patterns.

Furthermore, these findings are comparable to those of other studies. For instance,
Wijitkosum and Sriburi studied the effect of urban expansion of Nakhon Ratchasima City,
the regional center of Northeastern Thailand, on water demand and water usage in the
Lam Ta Kong Watershed. The results showed that urbanization affected the water usage
pattern, and people’s high living standards continuously increased the water consumption
rate [66]. Similarly, Liu et al. integrated weighting methods to evaluate urban and rural
water poverty in Northwest China. The results showed that urban areas characterized by
rapid economic growth displayed accelerated improvement in water poverty [67].

4.6.2. Tourist Water Demand

Tourist water demand between 2020 and 2029 was estimated using the water con-
sumption rate for a four-day stay and the number of tourists under normal and new normal
conditions. Under normal conditions, the number of tourists varies from 16,534,377 people
to 21,671,107 people, with an average of 18,828,364 tourists per year. Tourist water demand
will increase from 18,861,284 m3 in 2020 to 24,757,427 m3 in 2029, with an average tourist
water demand of 21,493,892 m3 (Table 21).

Table 21. The number of tourists and water demand between 2020 and 2029 under normal conditions.

Year
Number of Tourists (People) Tourist Water Demand (m3)

Tourist Excursionist Total Tourist Excursionist Total

2020 15,696,798 837,580 16,534,377 18,836,157 25,127 18,861,284
2021 15,817,031 839,472 16,656,503 18,980,437 25,184 19,005,621
2022 16,285,696 869,848 17,155,544 19,542,835 26,095 19,568,931
2023 16,832,320 895,237 17,727,557 20,198,784 26,857 20,225,641
2024 17,493,473 922,615 18,416,087 20,992,167 27,678 21,019,845
2025 18,045,498 949,648 18,995,145 21,654,597 28,489 21,683,087
2026 18,728,566 978,676 19,707,243 22,474,279 29,360 22,503,640
2027 19,366,852 1,006,502 20,373,354 23,240,222 30,195 23,270,418
2028 20,009,937 1,036,790 21,046,726 24,011,924 31,104 24,043,028
2029 20,604,525 1,066,583 21,671,107 24,725,430 31,997 24,757,427

Average 17,888,069 940,295 18,828,364 21,465,683 28,209 21,493,892

Note: Tourist water demand was calculated based on an average length of stay (day) of four days (the average between 2015 and 2019)
from the TAT Intelligence Center, Tourism Authority of Thailand [3].

Conversely, the number of tourists under new normal conditions varies from 4,003,290
people to 21,671,107 people, with an average of 15,263,706 tourists per year. In addition,
tourist water demand varies from 4,524,179 m3 to 24,757,427 m3, with an average tourist
water demand of 17,417,294 m3 (Table 22). Under new normal conditions, the tourist water
demand will drop between 2020 and 2023 due to the COVID-19 pandemic, but it will
increase from 2024 to 2029 when the COVID-19 pandemic is under control and normal
conditions are re-established.
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Table 22. The number of tourists and water demand between 2020 and 2029 under new normal conditions.

Year
Number of Tourists (People) Tourist Water Demand (m3)

Tourist Excursionist Total Tourist Excursionist Total

2020 3,764,171 239,119 4,003,290 4,517,005 7174 4,524,179
2021 6,216,685 342,725 6,559,410 7,460,022 10,282 7,470,303
2022 8,979,656 495,047 9,474,703 10,775,587 14,851 10,790,438
2023 11,742,627 647,370 12,389,996 14,091,152 19,421 14,110,573
2024 17,493,473 922,615 18,416,087 20,992,167 27,678 21,019,845
2025 18,045,498 949,648 18,995,145 21,654,597 28,489 21,683,087
2026 18,728,566 978,676 19,707,243 22,474,279 29,360 22,503,640
2027 19,366,852 1,006,502 20,373,354 23,240,222 30,195 23,270,418
2028 20,009,937 1,036,790 21,046,726 24,011,924 31,104 24,043,028
2029 20,604,525 1,066,583 21,671,107 24,725,430 31,997 24,757,427

Average 14,495,199 768,507 15,263,706 17,394,239 23,055 17,417,294

Note: Tourist water demand was calculated based on an average length of stay (day) by four days (the average between 2015 and 2019)
from the TAT Intelligence Center, Tourism Authority of Thailand [3].

In addition, tourism growth under normal conditions shows a positive correlation
with urban expansion in Phuket Island, with a high coefficient of determination (0.99)
(Figure 14a). Tourism growth under new normal conditions is also positively correlated
with urban expansion in Phuket Island, with a high coefficient of determination (0.89)
(Figure 14b). These findings are in line with Rempis et al., who stated that urbanization,
driven by either anthropogenic elements, such as population growth, or economic geogra-
phy factors, contributes to the expansion of the extensive and intensive settlements [68].
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Moreover, the increase in tourism led to the high resource demand of Phuket Island.
Notably, water is a primary resource in many activities of daily life. A small island such
as Phuket Island has limited water supply storage in summer, and water demand is high
due to the high tourism in Phuket Island during this season. These findings agree with the
results of Tokarchuk et al., who found that increasing tourist flows affect local economies
and the lives of residents due to the construction of tourist facilities such as large hotels
and huge recreational and commercial areas. This construction leads to the degradation of
natural resources [69], for example, the littering of waste resulting from tourist traffic and
decreased water resources due to excessive demand [70].

Recently, many projects have been initiated in Phuket Island to further its development,
such as enhancing its status as a world-class tourism destination; making it a Smart city and
MICE city; and building infrastructure (Phuket Airport expansion, light rail transit, and
underpass), international schools, medical hub, international exhibition and conference
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centers, and shopping malls [71]. This continuous development will lead to the expected
LULC change and tourism growth over a short period.

4.6.3. Water Demand for Agriculture and Forest Uses

The water demand for agriculture and forest uses was estimated based on the evapo-
transpiration coefficient and reference evapotranspiration [50]. The area of each agriculture
and forest type between 2020 and 2029 and water demand are summarized in Table 23.
According to the results, the total agriculture area will decrease from 185.76 km2 in 2020
to 167.57 km2 in 2029, with an average of 176.67 km2. Water demand for agriculture use
will decrease from 264.84 million m3 in 2020 to 237.35 million m3 in 2029. The average
water demand for agriculture use is 250.93 million m3. Furthermore, the total forest area
will decrease from 124.49 km2 in 2020 to 113.00 km2 in 2029, with an average area of
118.78 km2. Water demand for forest use will decrease from 159.58 million m3 in 2020 to
142.74 million m3 in 2029. The average water demand for forest use is 151.10 million m3.
This finding indicates that agriculture and forest land will decrease between 2020 and 2029.

Table 23. Area of each agriculture and forest type and water demand between 2020 and 2029.

Year

Area in km2
Water

Demand
(Million m3)

Area in km2
Water

Demand
(Million m3)

Field
Crop

Paddy
Field

Para Rubber
Trees Total Evergreen

Forest
Mangrove

Forest
Scrub
Forest Total

2020 3.47 0.13 182.16 185.76 264.84 72.96 24.68 26.85 124.49 159.58
2021 3.52 0.13 180.01 183.66 260.98 71.79 24.66 26.84 123.29 157.37
2022 3.82 0.10 177.87 181.79 258.14 70.62 24.44 26.81 121.87 155.36
2023 3.76 0.09 175.74 179.59 255.03 69.47 24.44 26.79 120.70 153.70
2024 3.99 0.07 173.55 177.61 252.87 68.27 24.44 26.74 119.45 152.42
2025 4.19 0.06 171.46 175.71 249.25 67.15 24.19 26.76 118.10 150.00
2026 4.30 0.05 169.35 173.70 246.31 65.98 24.10 26.75 116.83 148.19
2027 4.44 0.03 167.20 171.67 243.33 64.83 24.01 26.74 115.58 146.40
2028 4.39 0.02 165.21 169.62 241.19 63.71 24.01 26.77 114.49 145.27
2029 4.67 0.00 162.90 167.57 237.35 62.49 23.82 26.69 113.00 142.74

Average 4.06 0.07 172.55 176.67 250.93 67.73 24.28 26.77 118.78 151.10

4.7. Water Balance Evaluation between 2020 and 2029

The annual and monthly water balance in terms of water surplus and deficit between
2020 and 2029 under dry and wet year scenarios in normal and new normal conditions
(COVID-19 pandemic) was evaluated without and with the consideration of ecological
water requirements for water resource management. For the evaluation of the monthly
water balance, two essential data analyses were performed: monthly water supply without
and with the consideration of ecological water requirements under dry and wet year
scenarios and average monthly water demand in each category in normal and new normal
conditions. The results are summarized in Tables A4 and A5 in Appendix A.

4.7.1. Annual Water Balance without the Consideration of Ecological Water Requirements

The annual water balance evaluation results without the consideration of ecological
water requirements under the two scenarios and conditions are reported in Table 24.

Under the dry year scenario, the annual water balance in the normal condition indicates
a surplus in all years. The water surplus varies from 29.15 million m3 to 79.70 million m3,
with an average water surplus of 54.12 million m3. In addition, the annual water balance in
the new normal condition also indicates a surplus in all years. The water surplus varies from
43.38 million m3 to 79.70 million m3, with an average water surplus of 58.19 million m3.
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Table 24. The annual water supply and demand balance evaluation without considering ecological water requirements
between 2020 and 2029.

Year
Water Supply (Million m3) Water Demand (Million m3)

Water Balance (Million m3)

Dry Year Wet Year

Dry Year Wet Year Normal New Normal Normal New Normal Normal New Normal

2020 505.01 1225.48 475.86 461.53 29.15 43.48 749.61 763.95
2021 505.73 1226.49 469.19 457.65 36.54 48.08 757.30 768.84
2022 506.34 1227.28 466.45 457.67 39.88 48.66 760.82 769.60
2023 507.41 1228.55 462.31 456.19 45.10 51.21 766.24 772.35
2024 508.28 1229.18 460.77 460.77 47.51 47.51 768.40 768.40
2025 510.06 1231.38 455.62 455.62 54.44 54.44 775.76 775.76
2026 517.83 1238.32 452.48 452.48 65.35 65.35 785.84 785.84
2027 519.55 1240.31 448.98 448.98 70.57 70.57 791.32 791.32
2028 520.22 1240.94 447.29 447.29 72.93 72.93 793.65 793.65
2029 521.79 1242.08 442.09 442.09 79.70 79.70 799.98 799.98

Average 512.22 1233.00 458.11 454.03 54.12 58.19 774.89 778.97

Similarly, the annual water balance in the normal condition reveals a surplus in all
years under the wet year scenario. The water surplus varies from 749.61 million m3 to
799.98 million m3, with an average water surplus of 774.89 million m3. In addition, the
annual water balance in the new normal condition also indicates a surplus in all years
under this scenario. The water surplus varies from 763.95 million m3 to 799.98 million m3,
with an average water surplus of 778.97 million m3.

4.7.2. Monthly Water Balance without the Consideration of Ecological Water Requirements

Table 25 reports the results of the monthly water balance without the consideration of
ecological water requirements in terms of surplus and deficit under the dry and wet year
scenarios in the normal and new normal conditions between 2020 and 2029.

Table 25. Monthly water supply and demand balance evaluation without consideration of ecological water requirements
between 2020 and 2029.

Month

Water Supply (Million m3) Water Demand (Million m3) Water Balance (Surplus or Deficit) (Million m3)

Dry Year Wet Year Normal New Normal
Dry Year Wet Year

Normal New Normal Normal New Normal

January 10.61 45.31 41.51 41.05 −30.89 −30.44 3.80 4.26
February 3.92 19.46 40.78 40.36 −36.86 −36.44 −21.32 −20.89

March 1.84 4.95 44.91 44.47 −43.07 −42.63 −39.97 −39.52
April 20.24 2.80 41.35 40.99 −21.11 −20.76 −38.55 −38.20
May 16.10 82.32 38.04 37.78 −21.94 −21.68 44.28 44.54
June 65.57 106.19 37.23 36.89 28.33 28.67 68.95 69.29
July 82.69 97.82 37.61 37.37 45.09 45.32 60.21 60.45

August 72.22 148.54 37.86 37.62 34.36 34.60 110.68 110.92
September 66.16 239.62 33.39 33.15 32.77 33.01 206.24 206.48

October 102.26 286.47 33.82 33.49 68.44 68.77 252.65 252.97
November 38.75 140.62 33.85 33.53 4.91 5.22 106.77 107.08
December 31.86 58.92 37.77 37.33 −5.91 −5.47 21.15 21.58

Total 512.22 1233.00 458.11 454.03 54.12 58.19 774.89 778.97

As indicated by the results in Table 25, under the dry year scenario in the normal
condition, the monthly water balance reveals a deficit from December to May. It varies
from −43.07 million m3 in March to −5.91 million m3 in December. However, the monthly
water balance indicates a surplus from June to November, varying from 4.91 million m3 in
November to 68.44 million m3 in October. Under the dry year scenario in the new normal
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condition, the monthly water balance indicates a deficit from December to May. It varies
from −42.63 million m3 in March to −5.47 million m3 in December. However, the monthly
water balance reveals a water surplus from June to November, varying from 5.22 million m3

in November to 68.77 million m3 in October.
On the contrary, the monthly water balance shows a deficit from February to April

under the wet year scenario in the normal condition. It varies from −39.97 million m3 in
March to −21.32 million m3 in February. However, the monthly water balance indicates a
surplus from May to January, varying from 3.80 million m3 in January to 252.65 million m3

in October. In addition, the monthly water balance indicates a deficit from February to April
under the wet year scenario in the new normal condition. It varies from −39.52 million m3

in March to −20.89 million m3 in February. However, the monthly water balance shows a
surplus from May to January, varying from 4.26 million m3 in January to 252.97 million m3

in October.
Furthermore, Figure 15 displays the monthly water balance without the consideration

of ecological water requirements in terms of surplus (positive) and deficit (negative) under
the dry and wet year scenarios in the normal and new conditions.
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Figure 15. Monthly water balance without the consideration of ecological water requirements under two scenarios in
normal and new normal conditions: (a) dry year scenario; (b) wet year scenario.

4.7.3. Annual Water Balance with the Consideration of Ecological Water Requirements

Table 26 reports the evaluation results of the annual water balance in terms of wa-
ter surplus or deficit between 2020 and 2029 with the consideration of ecological water
requirements in the two different scenarios and conditions.

Table 26. The annual water supply and demand balance evaluation with the consideration of ecological water requirements
between 2020 and 2029.

Year

Water Supply (Million m3) Water Demand (Million m3) Water Balance (Million m3)

Dry Year Wet Year Normal New Normal
Dry Year Wet Year

Normal New Normal Normal New Normal

2020 357.37 1077.84 475.86 461.53 −118.49 −104.16 601.97 616.31
2021 358.09 1078.85 469.19 457.65 −111.10 −99.56 609.66 621.20
2022 358.70 1079.64 466.45 457.67 −107.75 −98.98 613.19 621.96
2023 359.77 1080.91 462.31 456.19 −102.54 −96.43 618.60 624.71
2024 360.65 1081.54 460.77 460.77 −100.13 −100.13 620.77 620.77
2025 362.43 1083.74 455.62 455.62 −93.20 −93.20 628.12 628.12
2026 370.19 1090.69 452.48 452.48 −82.29 −82.29 638.20 638.20
2027 371.92 1092.67 448.98 448.98 −77.07 −77.07 643.68 643.68
2028 372.58 1093.30 447.29 447.29 −74.71 −74.71 646.01 646.01
2029 374.15 1094.44 442.09 442.09 −67.94 −67.94 652.35 652.35

Average 364.58 1085.36 458.11 454.03 −93.52 −89.45 627.26 631.33
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Under the dry year scenario, the annual water balance in the normal condition in-
dicates a deficit in all years. It varies from 67.94 million m3 to 118.49 million m3, with
an average water deficit of 93.52 million m3. Similarly, the annual water balance in the
new normal condition also shows a deficit in all years. It varies from 67.94 million m3 to
104.16 million m3, with an average water deficit of 89.45 million m3.

On the contrary, the annual water balance in the normal condition indicates a surplus in
all years under the wet year scenario. It varies from 601.97 million m3 to 652.35 million m3,
an average water surplus of 627.26 million m3. Similarly, the annual water balance in the
new normal condition also shows a surplus in all years. It varies from 616.31 million m3 to
652.35 million m3, with an average water surplus of 631.33 million m3.

4.7.4. Monthly Water Balance with the Consideration of Ecological Water Requirements

Table 27 reports the monthly water balance with the consideration of ecological water
requirements in terms of surplus and deficit under normal and new normal conditions
between 2020 and 2029.

Table 27. Monthly water supply and demand balance evaluation with the consideration of ecological water requirements
between 2020 and 2029.

Month

Water Supply (Million m3) Water Demand (Million m3) Water Balance (Surplus or Deficit) (Million m3)

Dry Year Wet Year Normal New Normal
Dry Year Wet Year

Normal New Normal Normal New Normal

January −1.69 33.01 41.51 41.05 −43.19 −42.74 −8.50 −8.04
February −8.38 7.16 40.78 40.36 −49.16 −48.74 −33.62 −33.19

March −10.46 −7.35 44.91 44.47 −55.37 −54.93 −52.27 −51.82
April 7.94 −9.50 41.35 40.99 −33.41 −33.06 −50.85 −50.50
May 3.80 70.02 38.04 37.78 −34.24 −33.98 31.98 32.24
June 53.27 93.89 37.23 36.89 16.03 16.37 56.65 56.99
July 70.39 85.52 37.61 37.37 32.79 33.02 47.91 48.15

August 59.92 136.24 37.86 37.62 22.06 22.30 98.38 98.62
September 53.86 227.32 33.39 33.15 20.47 20.71 193.94 194.18

October 89.96 274.17 33.82 33.49 56.14 56.47 240.35 240.67
November 26.45 128.32 33.85 33.53 −7.39 −7.08 94.47 94.78
December 19.56 46.62 37.77 37.33 −18.21 −17.77 8.85 9.28

Total 364.62 1085.40 458.11 454.03 −93.48 −89.41 627.29 631.37

As indicated by the results in Table 27, under the dry year scenario in the normal
condition, the monthly water balance shows a deficit from November to May. It varies
from −55.37 million m3 in March to −7.39 million m3 in November. However, the monthly
water balance indicates a surplus from June to October and varies from 16.03 million m3

in June to 56.14 million m3 in October. Under the dry year scenario in the new normal
condition, the monthly water balance reveals a deficit from November to May. It varies
from −54.93 million m3 in March to −7.08 million m3 in November. However, the monthly
water balance in the same period indicates a surplus from June to October, varying from
16.37 million m3 in June to 56.47 million m3 in October.

On the contrary, the monthly water balance shows a deficit from January to April under
the wet year scenario in the normal condition. It varies from −52.27 million m3 in March
to −8.50 million m3 in January. However, the monthly water balance reveals a surplus from
May to December, varying from 8.85 million m3 in December to 240.35 million m3 in October.
In addition, the monthly water balance indicates a deficit from January to April under the
wet year scenario in the new normal condition. It varies from −51.82 million m3 in March
to −8.04 million m3 in January. However, the monthly water balance shows a surplus
from May to December, varying from 9.28 million m3 in December to 240.67 million m3

in October.
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Figure 16 displays the monthly water balance with the consideration of ecological
water requirements in terms of surplus (positive) and deficit (negative) under the dry and
wet year scenarios in the normal and new conditions.
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In summary, the annual water balance in Phuket Island without the consideration of
ecological water requirements between 2020 and 2029 reveals a water surplus in all years
under the dry and wet year scenarios in the normal and new normal conditions. Under the
dry year scenario in the same period, the monthly water balance in Phuket Island without
the consideration of ecological water requirements reveals a water deficit for six months
(December–May) in the normal and new normal conditions. Under the wet year scenario,
the monthly water balance in Phuket Island without the consideration of ecological water
requirements indicates a water deficit for three months (February–April) in the normal and
new normal conditions (see Figure 15).

On the contrary, when considering ecological water requirements, the annual water
balance in Phuket Island between 2020 and 2029 shows a water deficit in all years under the
dry year scenario in the normal and new normal conditions. However, under the wet year
scenario for the same period, the annual water balance in Phuket Island indicates a water
surplus in all years in the normal and new normal conditions. Under the dry year scenario,
the monthly water balance in Phuket Island in the same period reveals a water deficit for
seven months (November–May) in the normal and new normal conditions. Under the wet
year scenario, the monthly water balance in Phuket Island shows a water deficit for four
months (January–April) in the normal and new normal conditions (see Figure 16).

Accordingly, these findings indicate the effect of rainfall on the water balance in terms
of deficit and surplus and imply the possibility of water scarcity in the future.

5. Conclusions

Land use and land cover assessment and change detection between 2014 and 2019 were
successfully conducted using visual interpretation and a post-classification comparison
change detection algorithm. The overall accuracy and Kappa hat coefficient of the LULC
map in 2019 were more than 95%. Then, time-series LULC data between 2020 and 2029 were
simulated using the CLUE-S model. These simulated LULC data provide realistic results
that reflect expected trends. After that, to evaluate the water balance, the interpreted and
simulated LULC data between 2019 and 2029 were used as the primary input to estimate
water supply and demand. For the water supply assessment, annual and monthly water
yields were successfully estimated using the SWAT model. In the calibration and validation
periods under the dry and wet year conditions, the SWAT model performance ranged from
good to very good according to statistical measurements, namely, the RMSE-observations
standard deviation ratio, Nash–Sutcliffe efficiency, and percent bias. Furthermore, for the
water demand assessment, three primary consumption activities—residential, tourist, and
agriculture and forest use—were calculated under normal and new normal conditions
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using the water footprint basis. Finally, the annual and monthly water balance in terms
of water surplus and deficit between 2020 and 2029 under dry and wet year scenarios
in normal and new normal conditions was successfully evaluated without and with the
consideration of ecological water requirements for water resource management. The annual
water balance evaluation with the consideration of ecological water requirements revealed
a water deficit every year under the dry year scenario in normal and new normal conditions.
In addition, the monthly water balance indicated a water deficit in the summer every year,
both without and with the consideration of ecological water requirements.

Consequently, it can be concluded that integrating remote sensing data (very high
spatial resolution) with advanced geospatial models (CLUE-S model, SWAT model, and
water footprint) can provide essential information about water supply, demand, and
balance for water resources management, particular water scarcity, in Phuket Island in the
future. This study’s conceptual framework and research workflows can assist government
agencies in examining the water deficit in other areas, particularly the Northeast Region of
Thailand, where agricultural drought frequently occurs.
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Appendix A

Table A1. The evapotranspiration coefficient (Kc) of each agriculture and forest type.

No. Agriculture and Forest Type Evapotranspiration Coefficient (Kc)

1 Field crop 0.6
2 Paddy field 0.6
3 Para rubber trees 1.0
4 Evergreen forest 1.0
5 Mangrove forest 1.0
6 Scrub forest 0.5

Note: The Kc values were obtained from Trisurat et al. [72].

Table A2. The reference evapotranspiration under the Penman–Monteith method.

Station
ETo (mm/Day)

January February March April May June July August September October November December

Phuket 4.29 4.62 4.55 4.34 3.84 3.81 3.78 3.98 3.43 3.53 3.65 3.83
Phuket
Airport 4.04 4.37 4.58 4.36 3.93 3.93 3.92 3.78 3.52 3.19 3.32 3.67

Average 4.17 4.50 4.57 4.35 3.89 3.87 3.85 3.88 3.48 3.36 3.49 3.75

Note: The average values between Phuket and Phuket Airport stations from Royal Irrigation Department [73] were used in the analysis.
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Table A3. Annual water yield (dependent variable) and primary LULC types (independent variable) area in Phuket Island
between 2020 and 2029.

Year

Water Yield (Million m3) Area of LULC Type (km2)

Dry Year Scenario Wet Year Scenario Urban and
Built-Up Area

Perennial Tree
and Orchard Idle Land Evergreen Forest

2020 505.01 1225.48 145.03 182.16 40.03 72.96
2021 505.73 1226.49 148.29 180.01 40.29 71.79
2022 506.34 1227.28 151.54 177.87 40.54 70.62
2023 507.41 1228.55 154.81 175.74 40.82 69.47
2024 508.28 1229.18 158.07 173.55 41.01 68.27
2025 510.06 1231.38 161.32 171.46 41.32 67.15
2026 517.83 1238.32 164.55 169.35 41.59 65.98
2027 519.55 1240.31 167.83 167.20 41.85 64.83
2028 520.22 1240.94 170.92 165.21 42.09 63.71
2029 521.79 1242.08 174.34 162.90 42.35 62.49

Table A4. Monthly water supply without and with the consideration of ecological water requirements under dry and wet
year scenarios between 2020 and 2029.

Month
Water Supply without Ecological Water Requirement

Consideration (Million m3)
Water Supply with Ecological Water Requirement

Consideration (Million m3)

Dry year Wet year Dry year Wet year

January 10.61 45.31 −1.69 33.01
February 3.92 19.46 −8.38 7.16

March 1.84 4.95 −10.46 −7.35
April 20.24 2.80 7.94 −9.50
May 16.10 82.32 3.80 70.02
June 65.57 106.19 53.27 93.89
July 82.69 97.82 70.39 85.52

August 72.22 148.54 59.92 136.24
September 66.16 239.62 53.86 227.32

October 102.26 286.47 89.96 274.17
November 38.75 140.62 26.45 128.32
December 31.86 58.92 19.56 46.62

Total 512.22 1233.00 364.62 1085.40

Average 42.69 102.75 30.39 90.45

Table A5. Average monthly water demand estimation of each category between 2020 and 2029 under normal and new
normal conditions.

Month

Type of Water Demand (Million m3)

Residential
Tourist

Agriculture Use Forest Use
Total Water Demand

Normal New Normal Normal New Normal

January 2.88 2.42 1.96 22.60 13.61 41.51 41.05
February 2.88 2.22 1.80 22.27 13.41 40.78 40.36

March 2.88 2.35 1.90 24.77 14.91 44.91 44.47
April 2.88 1.87 1.52 22.84 13.75 41.35 40.99
May 2.88 1.39 1.12 21.08 12.69 38.04 37.78
June 2.88 1.80 1.46 20.32 12.24 37.23 36.89
July 2.88 1.26 1.02 20.89 12.58 37.61 37.37

August 2.88 1.25 1.01 21.05 12.68 37.86 37.62
September 2.88 1.27 1.03 18.25 10.99 33.39 33.15

October 2.88 1.73 1.40 18.23 10.98 33.82 33.49
November 2.88 1.65 1.33 18.30 11.02 33.85 33.53
December 2.88 2.29 1.86 20.35 12.25 37.77 37.33

Total 34.58 21.49 17.42 250.93 151.10 458.11 454.03
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