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Abstract: The ongoing COVID-19 pandemic has caused devastating effects on humanity worldwide.
With practical advantages and wide accessibility, chest X-rays (CXRs) play vital roles in the diagnosis
of COVID-19 and the evaluation of the extent of lung damages incurred by the virus. This study
aimed to leverage deep-learning-based methods toward the automated classification of COVID-19
from normal and viral pneumonia on CXRs, and the identification of indicative regions of COVID-19
biomarkers. Initially, we preprocessed and segmented the lung regions usingDeepLabV3+ method,
and subsequently cropped the lung regions. The cropped lung regions were used as inputs to
several deep convolutional neural networks (CNNs) for the prediction of COVID-19. The dataset
was highly unbalanced; the vast majority were normal images, with a small number of COVID-19
and pneumonia images. To remedy the unbalanced distribution and to avoid biased classification
results, we applied five different approaches: (i) balancing the class using weighted loss; (ii) image
augmentation to add more images to minority cases; (iii) the undersampling of majority classes;
(iv) the oversampling of minority classes; and (v) a hybrid resampling approach of oversampling
and undersampling. The best-performing methods from each approach were combined as the
ensemble classifier using two voting strategies. Finally, we used the saliency map of CNNs to identify
the indicative regions of COVID-19 biomarkers which are deemed useful for interpretability. The
algorithms were evaluated using the largest publicly available COVID-19 dataset. An ensemble of
the top five CNNs with image augmentation achieved the highest accuracy of 99.23% and area under
curve (AUC) of 99.97%, surpassing the results of previous studies.

Keywords: COVID-19; chest X-rays; deep learning; ensemble learning; image augmentation; oversampling;
undersampling; weighted loss

1. Introduction

COVID-19 is a contagious disease caused by severe acute respiratory syndrome coron-
avirus (SARS-CoV-2). It affects people differently: most infected people will experience
mild to moderate illness and recover without hospitalization and special treatment; how-
ever, some will become severely ill and need immediate medical treatment. COVID-19
can attack the upper respiratory airways and often exhausts the infected person’s immune
system. Many infected people suffer short-term and long-term side effects. As of Septem-
ber 2021, COVID-19 has infected more than 220 million people worldwide, and more
than 4 million people have died as a result of infection. Figure 1 shows the number of
COVID-19-related cases and fatalities by territory and area [1,2].

Researchers around the world are intensively working on the development of accurate
and reliable diagnostic tools, medical treatments, and necessary vaccines to prevent the
virus from spreading, and to eventually eradicate it. Our work contributes to the develop-
ment of accurate and reliable diagnostic tests. Real-time reverse transcription-polymerase
chain reaction (RT-PCR) assays are used as the standard test for COVID-19 diagnosis.
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However, it is a time-intensive and complex process, and not widely available in some
geographic regions, especially in rural communities of developing countries. Medical
images such as computed tomography (CT) scans and CXRs are vital for the early diag-
nosis and treatment of COVID-19 and represent the main clinical resources to evaluate
the extent of lung damage caused by COVID-19 [3,4]. COVID-19 patients exhibit several
unique clinical and para-clinical features on radiology images, such as reciprocal, multi-
focal, ground-glass opacities with a fringe or back-dissemination in the early stage, and
pulmonary consolidation in the late stage. Some studies have encountered changes in CXR
and CT images before the onset of COVID-19 symptoms [5]. Although CT is a sensitive
technique to diagnose COVID-19 and provides greater resolution, it is a cost-intensive
and highly radiating technique that carries a high risk of cross-infection among medical
experts and necessitates intensive sterilization of the apparatus [6]. In contrast to CTs, CXRs
are less costly and inflict a lower radiation dose and are easier to obtain without risking
contamination of the imaging equipment. The imaging process can be performed with
portable X-ray machines at the patient’s bedside. X-ray imaging machines are ubiquitously
available worldwide and almost all hospitals have these machines; therefore, CXRs can
be used to screen or triage COVID-19 without dedicated test kits, thus not incurring any
overhead operational costs for data collection. Hence, CXR imagery has become a key
tool to screen or triage COVID-19 patients and plays a vital role in the evaluation of lung
deterioration incurred by COVID-19 [4,7].
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Figure 1. Cumulative COVID-19 (a) confirmed cases and (b) the fatalities by territory and area [1] (accessed on 19
September 2020).

The manual examination of CXRs is a time-intensive and subjective task and needs
a high degree of expertise. There is a shortage of trained radiologists in many healthcare
systems, especially in developing countries and remote areas. COVID-19 pneumonia may
have similar pathology patterns with non-COVID-19 pneumonia; therefore, it is hard to
discern COVID-19 CXRs from those of pneumonia, requiring extra time commitments and
thereby exacerbating the shortage of competent medical experts. Moreover, COVID-19 has
exhausted and caused a strain on medical experts [8]. Health services have been used to the
fullest extent and sometimes to the brink of collapse due to the pandemic. These concerns
necessitate the development of accessible and feasible innovative systems. With the advent
of artificial intelligence (AI) and computer vision techniques, AI-assisted tools have become
an adjunct tool for clinicians. They can serve as a complementary tool to human readings
of medical images and aid the medical personnel in diagnoses. Thus, efficient and accurate
AI-assisted tools are urgently needed to facilitate medical experts in COVID-19 diagnosis
and expedite mass testing programs in high-risk areas, where many chest medical scans
need to be examined. This study aimed to develop accurate and effective algorithms for
the classification of COVID-19, normal, and pneumonia on CXRs using deep learning.
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1.1. Related Works

Remarkable progress has been made in the automated detection of COVID-19 in
CXRs [9–24]. Several studies in the literature have leveraged deep convolutional neural
networks (CNNs) with and without modifications to convincingly predict COVID-19.
CNNs are end-to-end learning models that use multiple processing layers to learn and
discover classification patterns and features without explicitly extracting the hand-crafted
features. In general, there are two types of classification—binary classification and multi-
classification—to predict the prevalence of COVID-19 in CXRs. Binary classification aims
to discriminate between positive and negative cases of COVID-19 [10–14]. Nevertheless,
binary classification can lead to the misclassification of COVID-19 with other lung diseases
such as non-COVID-19 pneumonia, bacterial pneumonia, and tuberculosis (TB). To remedy
this issue, researchers have applied multi-classification of COVID-19 from normal, bacterial
pneumonia, TB. Multi-classification methods have improved the detection accuracy of
COVID-19 [9].

Hemdan et al. [10] presented deep learning-based COVIDX-Net using seven CNNs
to distinguish positive COVID-19 CXRs from negative ones and obtained an F-measure
of 89% for normal and 91% for COVID-19 on a dataset of 25 normal and 25 COVID-19
CXRs. However, their dataset is relatively small to build a reliable deep learning-based
model. Sahlol et al. [11] presented a hybrid classifier that uses the pretrained InceptionNet
model as a feature extractor and marine predators’ algorithms as the feature selection
method to find the dominant features among all extracted features. They achieved 98.7%
accuracy on dataset1 consisting of 200 COVID-19 positive CXRs and 1675 CXRs, and 99.6%
accuracy on dataset2 consisting of 219 COVID-19 positive and 1341 negative COVID-19
CXRs. Alazab et al. [12] utilized VGG-19 based COVID-19 detection with and without
image augmentation. Their algorithm attained 95% of F-measure on the original dataset
consisting of 28 healthy and 70 COVID-19, and 99% of F-measure on the augmented dataset
consisting of 500 healthy and 500 COVID-19 CXRs. Duran-Lopez et al. [13] proposed a
deep learning-based COVID_XNet to differentiate between COVID-19 and normal CXRs
and to visualize the COVID-19 pathologies. They first applied a set of image preprocessing
techniques such as histogram matching, bone suppression, and contrast limited histogram
equalization to reduce the image variability and enhance the image quality. Then, the
preprocessed images were input to a customized deep learning architecture to identify
COVID-19 CXRs. Their proposed algorithm claimed accuracy of 94.43% and AUC of 98.8%
on a dataset consisting of 2589 COVID-19 and 4337 normal CXRs. Khasawneh et al. [14]
presented the customized CNN, VGG-16, and MobileNet based classifiers to distinguish
COVID-19 from normal CXRs. They claimed the accuracy of 98.7% on the combined public
and local dataset containing 1210 COVID-19 and 1583 normal CXRs.

Several multi-classifications of COVID-19 from normal, pneumonia, and TB have
been developed using deep CNNs [15–21]. Wang et al. [15] first introduced an open-
source COVID-Net to identify COVID-19 CXRs using a customized CNN model. Using
the COVIDx dataset consisting of CXRs from 266 COVID-19 cases, 8066 normal cases
and 5538 cases of non-COVID-19 pneumonia patients, they claimed that COVID-Net
achieved a sensitivity of over 80%. Brunese et al. [16] presented a VGG-16-based three-
fold framework. The first fold classifies between normal and pneumonia CXRs using
3520 healthy and 3003 CXRs of pulmonary diseases, obtaining an accuracy of 96%. Then,
the second fold is applied to differentiate COVID-19 pneumonia from non-COVID-19
pneumonia using 250 COVID-19 CXRs and 2753 CXRs of lung diseases, obtaining an
accuracy of 98%. The third fold is subsequently carried out to localize the areas of COVID-19
pathologies using Gradient Class Activation Map (Grad-CAM). Ahmed et al. [17] proposed
ReCoNet (residual image-based COVID-19 detection network) to classify COVID-19 CXRs
from normal and non-COVID-19 pneumonia. ReCoNet is a deep learning framework that
applies multi-level filtering blocks for preprocessing images followed by multilevel feature
extraction layers and classification layers. Their proposed network was evaluated using a
combined dataset consisting of 238 COVID-19, 8851 normal, and 6045 pneumonia CXRs,
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and attained an overall accuracy of 97.48%. Yoo et al. [18] introduced a deep-learning-
based decision tree classifier to recognize COVID-19 CXRs from normal and pneumonia
images. The first tree classified between normal and abnormal on a dataset of 585 normal
and 585 abnormal CXRs and obtained an accuracy of 98%. The second decision tree
further differentiated the abnormal CXRs into TB or non-TB on a dataset consisting of
492 images per class and achieved an accuracy of 80%. The final decision tree differentiated
between COVID-19 and TB on a dataset of 142 images per class and attained an average
accuracy of 95%. Ozturk et al. [19] presented a variant of the Darknet-19 model with
fewer layers and filters to automatically predict COVID-19. Their model was trained as
a binary classifier (COVID-19 vs. no findings) and a multi-class classifier (COVID-19 vs.
non-findings and pneumonia). Using the dataset consisting of 125 COVID-19, 500 normal,
and 500 pneumonia CXRs, the binary classifier achieved 98.08% accuracy, whereas the
multi-class classifier achieved 87.02%. Ben Jabra et al. [20] compared the performance of
16 pretrained CNN models and combined the best-performing methods as an ensemble
classifier to enhance the accuracy. They achieved the highest accuracy of 99% with the
ensemble classifier by using majority voting on the dataset of 237 COVID-19, 1338 normal,
and 1336 viral pneumonia CXRs. Shelke et al. [21] presented a three-stage COVID-19
detection and severity scoring metric. The first stage used VGG-16 to differentiate between
normal, pneumonia and TB, and achieved 95.9% accuracy. Then, the second stage further
classified the pneumonia CXRs into COVID-19 pneumonia and non-COVID-19 pneumonia
using DenseNet-161, obtaining 98.9% accuracy. The final stage used ResNet-18 to grade the
COVID-19 pneumonia CXRs into mild, medium, and severe, with a test accuracy of 76%.
Except for [13,14], previous studies have applied deep learning on the dataset with a very
limited number of COVID-19 CXRs, fewer than 300 images. Deep learning algorithms need
massive amounts of data to learn the information and patterns for classification; therefore,
using a small dataset might hinder the efficiency of these studies.

To mitigate the problem of a limited number of COVID-19 CXRs, Oh et al. [22] and
Rajaraman et al. [23] proposed algorithms which work well with limited datasets. Oh et al. [22]
proposed a patch-based deep learning method for the classification of COVID-19 CXRs from
normal, non-COVID-19 pneumonia and TB images on a limited training dataset. Initially,
the images are preprocessed, and subsequently, lung regions are segmented using FC-
DenseNet. The segmented images are partitioned into small patches and fed to ResNet-18
to predict COVID-19. Finally, the heat saliency maps are superimposed on the segmented
lung regions to spot biomarkers. Their algorithm was assessed on a combined dataset of
six public datasets consisting of 180 COVID-19, 191 normal, 74 pneumonia and 57 TB CXRs,
and attained a sensitivity of 92.5%. For multi-classification of COVID-19, pneumonia,
and normal CXRs, Rajaraman et al. [23] presented several fine-tuned CNNs which were
optimized with the grid search method. Lung regions were segmented and cropped using
U-Net segmentation. The models were then iteratively pruned to reduce the model com-
plexity and to deal with the limited number of images. Finally, the best-performing pruned
models were combined as the ensemble classifier. Their ensemble model yielded an aver-
age accuracy of 99.01% on a combined dataset of four public datasets with 313 COVID-19,
7595 normal, and 8792 pneumonia CXRs. An exception to the neglect of unbalanced data
problems by previous studies, Bridge et al. [24] presented the generalized extreme value
(GEV) as the activation function of InceptionNet to handle the highly imbalanced dataset
of 129 COVID-19, 5689 pneumonia, and 62,267 healthy CXRs. Compared to the classic
sigmoid activation function, InceptionNet with GEV function produced better accuracy
by giving an AUC of 82% on binary classification between healthy and COVID-19 and
attained 73.1% AUC on the multi-classification of healthy, pneumonia, and COVID-19
images. Nishio et al. [25] proposed a VGG-16 based computer aided diagnosis system to
classify COVID-19 pneumonia, non-COVID-19 pneumonia, and healthy CXRs. To pre-
vent overfitting, they applied a composite of conventional data augmentation and mixup
method on the original dataset and input it to VGG-16 for transfer learning. Their proposed
method is evaluated using a dataset consisting of 215 COVID-19 pneumonia, 533 non-
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COVID-19 pneumonia, and 500 healthy CXRs extracted from two public datasets, and
obtained the accuracy of 83.6% of three-category classification and over 90% sensitivity for
COVID-19 pneumonia.

1.2. Our Contributions

From the above section, it has been shown that the limitations of the previous studies
lay in three aspects: using whole CXRs, using datasets with limited availability of COVID-
19 CXRs, and using highly unbalanced datasets. Most previous studies, except for [22,23],
directly used the whole image without lung segmentation. CXRs contain regions other than
lungs, which are irrelevant for the classification of COVID-19 from normal and pneumonia.
The irrelevant regions present in the images can mislead the decision-making of CNN
models and increase the computational time. Moreover, the dataset used in this study was
a heterogeneous dataset curated from many different sources, such as hospitals, healthcare
centers, published journals, and articles. Some COVID-19 CXRs in the dataset contain
labels, texts, and pointing arrows. Deep CNNs learn from the distinguished features of
images for each class; foreign and irrelevant signs may cause misclassification because only
COVID-19 CXRs contain these signs. It is of the utmost importance to segment lung regions
from whole CXRs. In this study, we utilized deep semantic algorithms to segment the
lungs to maximize the prediction capacity of CNNs and minimize the computational time.
Another major bottleneck of most prior studies is the limited availability of COVID-19
CXRs. Training data-hungry deep learning models using a small dataset will underfit
the models. Another limitation that hinders the effectiveness of the previous studies is
unbalanced class distribution, which can cause biased classification results. We utilized five
different approaches which are alternatives to the method proposed by Bridge et al. [24],
to handle the unbalanced data. In summary, the main contributions of this study can be
elaborated as follows:

• Performing lung segmentation before the classification of diseases;
• Applying five different approaches which are simple, easy to implement and repro-

duce, yet effective, to tackle unbalanced class distribution;
• Evaluating and validating the presented algorithms using the dataset with the largest

number of COVID-19 CXRs;
• Visualizing the indicative regions that highly influence CNNs’ prediction, which are

deemed useful for interpretability and explainability.

First, we preprocessed the images using filtering and image enhancement. The pre-
processed images were then input to DeepLabV3+ segmentation algorithm to segregate
the lung regions from the whole CXRs. The cropped lung regions were then used as
inputs to the classification of COVID-19 from normal and pneumonia CXRs using the deep
learning methods. To overcome the unbalanced class distribution, we applied five different
approaches: (i) weighted loss; (ii) image augmentation; (iii) undersampling; (iv) oversam-
pling; and (v) hybrid sampling. The best-performing models from each approach were
then combined as the ensemble classifier using voting strategies to improve the prediction
accuracy. We found that an ensemble of CNNs with image augmentation achieved the
highest accuracy of 99.23% and AUC of 99.97%. Finally, Grad-CAM was used to identify
the indicative regions of COVID-19 biomarkers.

The rest of the paper is structured with four sections. In Section 2, we present a de-
scription of the dataset. We will detail the methods in Section 3. Section 4 discusses the
experimental results. The last section, Section 5, will conclude the study.

2. Dataset Description

In this study, we utilized version 2 of the COVID-19 Radiography Database which is
the winner of COVID-19 Dataset Award by the Kaggle community [26,27]. The dataset was
created, curated and made public by a group of researchers from Qatar University, Doha,
and the University of Dhaka, Bangladesh, along with their collaborators from Pakistan and
Malaysia in collaboration with medical doctors [26,27]. The dataset is publicly accessible
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at https://www.kaggle.com/tawsifurrahman/covid19-radiography-database (accessed
on 30 May 2021). We acquired a total of 15,153 CXR images consisting of 10,192 normal,
3616 COVID-19, and 1345 pneumonia CXRs from the dataset. Figure 2 shows the example
CXRs from the dataset, and Table 1 presents the description of the dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 32 
 

2. Dataset Description 
In this study, we utilized version 2 of the COVID-19 Radiography Database which is 

the winner of COVID-19 Dataset Award by the Kaggle community [26,27]. The dataset 
was created, curated and made public by a group of researchers from Qatar University, 
Doha, and the University of Dhaka, Bangladesh, along with their collaborators from Pa-
kistan and Malaysia in collaboration with medical doctors [26,27]. The dataset is publicly 
accessible at https://www.kaggle.com/tawsifurrahman/covid19-radiography-database 
(accessed on 30 May 2021). We acquired a total of 15,153 CXR images consisting of 10,192 
normal, 3616 COVID-19, and 1345 pneumonia CXRs from the dataset. Figure 2 shows the 
example CXRs from the dataset, and Table 1 presents the description of the dataset.  

Table 1. COVID-19 RADIOGRAPHY DATABASE (version 2). 

Class Number of Images File Type Image Resolution 
Normal 10,192 PNG 299 × 299 

COVID-19 3616 PNG 299 × 299 
Pneumonia 1345 PNG 299 × 299 

 

 
Figure 2. Example CXRs of COVID-19 Radiography Dataset [26,27]. 

3. Methodology 
In this study, we propose ensemble deep-learning-based COVID-19 predictions from 

CXRs. Figure 3 presents a block diagram of the proposed study. Initially, image prepro-
cessing was performed to reduce image variability and noise and enhance the contrast of 
the images. Lung segmentation was carried out using DeepLabV3+ semantic algorithm. 
The lung regions were cropped using the lung masks and inputted to deep learning mod-
els to classify COVID-19 CXRs from normal and pneumonia images. At first, we applied 
transfer learning of CNN models to classify CXRs. However, the dataset was highly un-
balanced; therefore, we applied five different approaches: (i) class loss weighting; (ii) im-
age augmentation; (iii) undersampling; (iv) oversampling; and (v) hybrid sampling, to 
prevent biased classifications. The best-performing models from each approach were 
combined as the ensemble classifier to improve the prediction accuracy. Finally, the indic-
ative regions of COVID-19 lesions were detected by deep learning for better interpretabil-
ity. 

(a) Examples of normal CXR      (b) Examples of pneumonia CXR (c) Examples of COVID-19 CXR 

Figure 2. Example CXRs of COVID-19 Radiography Dataset [26,27].

Table 1. COVID-19 RADIOGRAPHY DATABASE (version 2).

Class Number of Images File Type Image Resolution

Normal 10,192 PNG 299 × 299
COVID-19 3616 PNG 299 × 299
Pneumonia 1345 PNG 299 × 299

3. Methodology

In this study, we propose ensemble deep-learning-based COVID-19 predictions from
CXRs. Figure 3 presents a block diagram of the proposed study. Initially, image preprocess-
ing was performed to reduce image variability and noise and enhance the contrast of the
images. Lung segmentation was carried out using DeepLabV3+ semantic algorithm. The
lung regions were cropped using the lung masks and inputted to deep learning models to
classify COVID-19 CXRs from normal and pneumonia images. At first, we applied transfer
learning of CNN models to classify CXRs. However, the dataset was highly unbalanced;
therefore, we applied five different approaches: (i) class loss weighting; (ii) image augmen-
tation; (iii) undersampling; (iv) oversampling; and (v) hybrid sampling, to prevent biased
classifications. The best-performing models from each approach were combined as the
ensemble classifier to improve the prediction accuracy. Finally, the indicative regions of
COVID-19 lesions were detected by deep learning for better interpretability.

3.1. Image Preprocessing

Image preprocessing is a prerequisite in medical image analysis. It greatly influences
lung segmentation and classification results [28]. The dataset we used was curated from
many sources; therefore, it presents large variability among the images and contains some
with noise and some with blurred contrast. Hence, we performed image preprocessing to
normalize image variability and enhance the image quality. First, noise elimination was per-
formed using a median filter, which is a nonlinear filter which reduces noise and preserves
edges [29]. Then, the contrast of the image was enhanced using contrast-limited adaptive
histogram equalization (CLAHE) [30]. Figure 4 shows the image preprocessing procedure.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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3.2. Lung Segmentation

Segmentation is an essential step toward medical image analysis. It is used to sep-
arate the region of interest (ROI) from other less relevant regions. For the prediction of
COVID-19, lung regions are considered as ROIs because COVID-19 deteriorates the lungs.
Hence, we performed image segmentation to segment and crop the lung regions from
the whole CXRs. In our previous study of TB detection from CXRs [31], we observed and
compared several deep semantic segmentation methods for lung segmentation and found
that DeepLabV3+ [32] semantic segmentation performed better than other segmentation
methods. Thus, we applied the DeepLabV3+ algorithm with the XceptionNet [33] backbone
to segment the lung pixels from CXRs. Figure 5 shows the lung segmentation process.
DeepLabV3+ used the preprocessed CXRs as the inputs and generated lung masks as the
outputs. Morphological closing and opening [34] were then used to fill the small holes in
the mask and refine the boundaries. Using the areas and coordinates of the refined lung
mask, we cropped the lung regions from CXRs.
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Figure 5. Segmentation of lung regions using DeepLabV3+ and cropping.

3.3. Classification of COVID-19, Normal and Pneumonia Using Deep Convolutional
Neural Networks

After lung regions were cropped from whole CXRs, the cropped images were used
as inputs to deep CNNs to distinguish COVID-19 CXRs from normal and pneumonia
images. A CNN (or ConvNet) is a specific deep learning architecture that learns from data
directly without explicitly extracting the manual features. Building a CNN from scratch
needs intensive computational and data resources and can lead to poor performance and
overfitting on the small datasets. Another option to apply CNN is fine-tuning pretrained
CNNs with transfer learning, which requires smaller datasets and fewer computational
resources. Transfer learning is a type of deep learning approach in which a model that
has been trained for one task is used as a starting point for a model that performs a
similar task. In our study, fine-tuning the CNN models with transfer learning was carried
out by transferring the weights of the pretrained network trained on millions of natural
images to learn the pattern of CXRs. We employed 11 state-of-the-art deep CNNs as the
pretrained models: (i) InceptionV3 [35], (ii) VGG-16, (iii) VGG-19 [36], (iv) XceptionNet [33],
(v) ResNet-50 [37], (vi) ResNet-152 [37], (vii) MobileNet [38], (viii) DenseNet201 [39],
(ix) InceptionResNetV2 [40], (x) EfficientNetB7 [41], and (xi) NasNetMobile [42], which
were trained on ImageNet. For more details on the architectures of these CNN models,
please refer to Appendix A. On top of each base model, we added a global pooling layer
and sigmoid activation function to create a new fully-connected layer. The new fully-
connected layer was trained on the training dataset of cropped lung images to classify
between COVID-19, normal, and pneumonia. The categorical cross-entropy loss along
with the Adam optimizer is used for fine-tuning the models. The categorical cross-entropy
loss is used for multi-class classification and can be formatted as in Equation (1).

Lcategorial_cross_entropy(T) = − 1
N ∑N

i=1 yi log(ŷi) where yi ε Cyi (1)

where T and N are the training set and its size, respectively. ŷi is the predicted probability
outputs of the model for i-th samples, and yi is the corresponding ground-truth label. C
denotes the number of classes or categories. Fine-tuning CNNs models using normal
categorical cross-entropy loss is regarded as Approach 0.

A problem we encountered was the unbalanced class distribution. Figure 6 plots the
class distribution of the dataset. The plot shows that it is a heavily unbalanced dataset,
where normal CXRs are abundant and COVID-19 and pneumonia CXRs are relatively scarce
compared to it. Fine-tuning pretrained CNNs with unbalanced datasets will cause bias in
the classification. It is likely to favor the majority class. To remedy the unbalanced data,
we applied five simple approaches: (i) Approach 1: training CNNs with the weighted loss,
(ii) Approach 2: image augmentation, (iii) Approach 3: undersampling, (iv) Approach 4:
oversampling, and (v) Approach 5: hybrid sampling.
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Figure 6. The unbalanced class distribution of the dataset.

3.3.1. Approach 1: Deep Learning with Weighted Loss on an Unbalanced Dataset

Pretrained CNNs were trained on the normal cross-entropy loss to backpropagate
the errors, minimizing the loss. However, using a normal cross-entropy loss with our
highly unbalanced dataset will incentivize the models to prioritize the majority class,
because it contributes more to the loss. Simply put, the majority class will dominate the
loss. Therefore, training the deep learning models with a uniformly balanced dataset is
preferred so that the positives and negatives of each training class would have an equal
contribution to the loss. The first approach to balance the class distribution without altering
or transforming the original dataset is to modify the loss of the CNN models. Here, we
substituted the cross-entropy loss with the weighted loss to handle the unbalanced dataset.
Figure 7 presents a classification of normal, pneumonia, and COVID-19 using CNN models
with the weighted cross-entropy loss. The weighted loss will be replaced as the loss of
every 11 pretrained CNNs.
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Figure 7. Transfer learning of CNNs with the weighted loss on the unbalanced dataset.

In this approach, we applied weighting the loss on the one-class learning strategy
for each class in which the samples of the particular class are considered as positive
and all other samples as negatives. Suppose we would utilize the cross-entropy loss for
prediction of each class: the loss of deep CNNs on the ith training sample can be formulated
as Equation (2).

Lcross_entropy(xi)
= −(yi log( f (xi)) + (1 − yi) log(1 − f (xi))) (2)

where xi and yi are the input features extracted from the pretrained CNNs and the label,
and f (xi) is the prediction output of CNN, i.e., the predicted probability value of a certain
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class. For every training image, either yi = 0 or else(1 − yi) = 0. Therefore, only one
among these terms has the contribution to the loss and the other term is multiplied by zero
and becomes zero [43]. The overall cross-entropy loss for the whole training dataset T of
size N can be formatted as in Equation (3).

Lcrossentropy(T) = − 1
N

(
∑

positive samples
log( f (xi)

)
+ ∑

negative samples
log( f (xi)(1 − f (xi))) (3)

From the above equation, it can be seen that, if the training set is largely unbalanced
with a small number of positive class, the negative class will dominate the loss. The
contribution of each class (i.e., positive or negative) can be computed as a summation of
the contribution over all the training cases for each class, in Equations (4) and (5) [43]. As
shown in Figure 8a, the contribution of each class varies significantly and is unbalanced,
especially in COVID-19 and pneumonia classes.

f reqpositive =
number o f positive samples
N(all samples in each class)

(4)

f reqnegative =
number o f negative samples
N(all samples in each class)

(5)
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To equalize the contribution of loss for each class, we balanced the contribution of
positive and negative labels using weighted loss, which was computed by multiplying
each example from each class by a class-specific weight factor, wpositive and wnegative. To
ensure that the overall loss contribution of each class was equal, we performed Equation (6).
The weight of each class could be computed using Equations (7) and (8). The weighted
cross-entropy for each training sample is defined as Equation (9). Figure 8b plots the
equally contributed frequency of each class after loss-weighting. It shows that when using
the weighted loss, the positive and negative labels within each class would have the same
aggregate contribution to the loss function [43].

wpositive × f reqpositive = wnegative × f reqnegative (6)

wpositive = f reqnegative (7)

wnegative = f reqpostive (8)

Lcross_entropy(x) = −
(
wpostitive log( f (x)

)
+ wnegative(1 − y) log(1 − f (x))) (9)

The weighted loss computed above is substituted in the place of cross-entropy loss for
fine-tuning 11 CNN models.
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3.3.2. Approach 2: Deep Learning with Image Augmentation on an Unbalanced Dataset

Another simple and effective approach to handling the unbalanced class distribution
is image augmentation. It is used to increase the number of images of the minority classes
for training a model. Deep CNN models need a sufficient number of images with an
evenly balanced dataset to make reliable predictions. Data augmentation can prevent the
overfitting of CNNs as well. Figure 9 shows the flowchart for deep learning with image
augmentation on an unbalanced dataset. The number of pneumonia and COVID-19 CXRs
are relatively small compared to normal CXRs; therefore, we proportionally applied simple
image augmentation methods such as rotation, flipping, shearing, and shifting to increase
the number of images in the minority class. The augmented image examples are given in
Figure 10. Only the images in the training dataset are augmented. Using the augmented
training dataset, 11 CNNs are fine-tuned using categorical cross entropy loss as described
in Section 3.3.
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Figure 9. Deep learning with image augmentation on the unbalanced dataset.
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3.3.3. Approach 3: Deep Learning with Undersampling on an Unbalanced Dataset

Another naive approach to address the unbalanced class problem is random resam-
pling. One such resampling technique is undersampling. Undersampling randomly selects
the samples from the majority class, in our cases, normal CXRs, and deletes them from
the training dataset until a more balanced data distribution is achieved. The purpose
of resampling here is to influence the fit of the CNNs; therefore, undersampling is only
applied to the training dataset [44,45]. In our cases, the normal class had the most images
whereas the pneumonia class had the fewest images. We intended to resample normal and
COVID-19 CXRs to balance with the pneumonia class. Therefore, we randomly discarded
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the samples from normal and COVID-19 classes until the normal class was nearly balanced
with the pneumonia class. The flowchart of the undersampling approach is illustrated
in Figure 11. Using the undersampled training dataset, 11 CNNs are fine-tuned using
categorical cross entropy loss as described in Section 3.3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 32 
 

 
Figure 10. Augmented CXRs using rotation, flipping, shearing, and shifting. 

3.3.3. Approach 3: Deep Learning with Undersampling on an Unbalanced Dataset 
Another naive approach to address the unbalanced class problem is random 

resampling. One such resampling technique is undersampling. Undersampling randomly 
selects the samples from the majority class, in our cases, normal CXRs, and deletes them 
from the training dataset until a more balanced data distribution is achieved. The purpose 
of resampling here is to influence the fit of the CNNs; therefore, undersampling is only 
applied to the training dataset [44,45]. In our cases, the normal class had the most images 
whereas the pneumonia class had the fewest images. We intended to resample normal 
and COVID-19 CXRs to balance with the pneumonia class. Therefore, we randomly dis-
carded the samples from normal and COVID-19 classes until the normal class was nearly 
balanced with the pneumonia class. The flowchart of the undersampling approach is il-
lustrated in Figure 11. Using the undersampled training dataset, 11 CNNs are fine-tuned 
using categorical cross entropy loss as described in Section 3.3. 

 
Figure 11. Deep learning with undersampling on the unbalanced dataset. Normal and COVID-19 CXRs were randomly 
removed to ensure a better balance with the number of pneumonia CXRs. 

3.3.4. Approach 4: Deep Learning with Oversampling on an Unbalanced Dataset 
In contrast to undersampling, oversampling randomly selects samples from minority 

classes and then duplicates them. This process is repeated until the more desirable bal-
anced class distribution is reached. COVID-19 and pneumonia were minority classes in 
our dataset; therefore, we performed oversampling on these two classes until they were 
nearly equal to the normal class [44,45]. As mentioned in undersampling, oversampling 
was also applied to the training dataset in order to fit the model. The flowchart of the 
oversampling approach is depicted in Figure 12. Using the oversampled training dataset, 
11 CNNs are fine-tuned using categorical cross entropy loss as described in Section 3.3. 

Original CXRs Rotated CXRs Flipped CXRs Sheared CXRs Shifted CXRs 

Transfer learning using 
CNN models 

Predicted  
output 

Normal 

Pneumonia 

COVID-19 

Unbalanced dataset 

COVID-19 CXRs 
Pneumonia CXRs 

Minority classes 

Majority class 
Normal CXRs 

Resampled dataset 
using undersampling 

Figure 11. Deep learning with undersampling on the unbalanced dataset. Normal and COVID-19 CXRs were randomly
removed to ensure a better balance with the number of pneumonia CXRs.

3.3.4. Approach 4: Deep Learning with Oversampling on an Unbalanced Dataset

In contrast to undersampling, oversampling randomly selects samples from minority
classes and then duplicates them. This process is repeated until the more desirable balanced
class distribution is reached. COVID-19 and pneumonia were minority classes in our
dataset; therefore, we performed oversampling on these two classes until they were nearly
equal to the normal class [44,45]. As mentioned in undersampling, oversampling was also
applied to the training dataset in order to fit the model. The flowchart of the oversampling
approach is depicted in Figure 12. Using the oversampled training dataset, 11 CNNs are
fine-tuned using categorical cross entropy loss as described in Section 3.3.
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3.3.5. Approach 5: Deep Learning with Hybrid Sampling on an Unbalanced Dataset

The undersampling approach may discard valuable images and lose invaluable in-
formation while resampling. On the other hand, oversampling may cause overfitting and
could increase the computation effort if a higher oversampling rate is applied. The combi-
nation of both undersampling and oversampling can improve the overall performance and
avoid overfitting and information loss. A hybrid approach resamples the training set with
a modest amount of oversampling to the minority class and a modest amount of under-
sampling to the majority class. This can result in improved overall performance compared
to performing one or another of the techniques in isolation [44,45]. In our case, our dataset
comprised an approximate 1:3:10 ratio of pneumonia, COVID-19 and normal images. Pneu-
monia was the most common minor class, whereas normal was the most common majority
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class. We oversampled pneumonia CXRs and undersampled the normal CXRs until they
reached a quantity nearly equal to the number of COVID-19 CXRs. The hybrid sampling
approach is depicted in Figure 13. Using the hybrid-sampled training dataset, 11 CNNs
are fine-tuned using categorical cross entropy loss as described in Section 3.3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 32 
 

 
Figure 12. Deep learning with oversampling on the unbalanced dataset. COVID-19 and pneumonia CXRs were randomly 
duplicated to ensure a better balance with the number of normal CXRs. 

3.3.5. Approach 5: Deep Learning with Hybrid Sampling on an Unbalanced Dataset 
The undersampling approach may discard valuable images and lose invaluable in-

formation while resampling. On the other hand, oversampling may cause overfitting and 
could increase the computation effort if a higher oversampling rate is applied. The com-
bination of both undersampling and oversampling can improve the overall performance 
and avoid overfitting and information loss. A hybrid approach resamples the training set 
with a modest amount of oversampling to the minority class and a modest amount of 
undersampling to the majority class. This can result in improved overall performance 
compared to performing one or another of the techniques in isolation [44,45]. In our case, 
our dataset comprised an approximate 1:3:10 ratio of pneumonia, COVID-19 and normal 
images. Pneumonia was the most common minor class, whereas normal was the most 
common majority class. We oversampled pneumonia CXRs and undersampled the nor-
mal CXRs until they reached a quantity nearly equal to the number of COVID-19 CXRs. 
The hybrid sampling approach is depicted in Figure 13. Using the hybrid-sampled train-
ing dataset, 11 CNNs are fine-tuned using categorical cross entropy loss as described in 
Section 3.3. 

 
Figure 13. Deep learning with hybrid resampling on an unbalanced dataset. 

3.4. Ensemble Learning  
As reported in the literature, ensemble methods produced better performance than a 

single model. It can improve not only the classification performance but also reduce the 
risk of overfitting. Ensemble learning makes predictions based on the estimates made by 
other classifiers or models. Here, we combined the top five models from each approach to 
enhance the performance. We applied majority voting-based ensemble learning [46] be-
cause it is a straightforward way of making final decisions from different predictions 
made by single models. There are two types of majority voting methods: hard and soft 
voting. Figure 14, inspired by [20], depicts ensemble learning using hard and soft majority 
voting methods. Hard voting makes the final prediction with the largest sum of votes 

Transfer learning using 
CNN models 

Predicted  
output 

Normal 

Pneumonia 

COVID-19 

Unbalanced dataset 

COVID-19 CXRs 
Pneumonia CXRs 

Minority classes 

Majority class 
Normal CXRs 

Resampled dataset 
using oversampling 

Transfer learning using 
CNN models 

Predicted  
output 

Normal 

Pneumonia 

COVID=19 

Unbalanced dataset 

COVID-19 CXRs 
Pneumonia CXRs 

Minority classes 

Majority class 
Normal CXRs 

Resampled dataset 
using hybrid of 

oversampling and 
undersampling 

Figure 13. Deep learning with hybrid resampling on an unbalanced dataset.

3.4. Ensemble Learning

As reported in the literature, ensemble methods produced better performance than a
single model. It can improve not only the classification performance but also reduce the
risk of overfitting. Ensemble learning makes predictions based on the estimates made by
other classifiers or models. Here, we combined the top five models from each approach
to enhance the performance. We applied majority voting-based ensemble learning [46]
because it is a straightforward way of making final decisions from different predictions
made by single models. There are two types of majority voting methods: hard and soft
voting. Figure 14, inspired by [20], depicts ensemble learning using hard and soft majority
voting methods. Hard voting makes the final prediction with the largest sum of votes from
the models. If there are equal votes for two different classes, we chose to assign the final
label to the class with the smallest index. Soft voting sums the predicted probability of
models for each class, and the class label with the largest probability is considered as the
final class label.
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3.5. Visualization

The interpretation and understanding of DCNN is an emerging and active research
topic in machine learning, especially for medical diagnosis. A poorly interpreted model
could adversely impact the diagnostic decision. To strengthen the user confidence in AI-
based models and move towards integrating them into real-time clinical decision-making,
we must explain how a DCNN made a decision. Therefore, visualization and interpretation
to gain insights into the DCNN decision process is of utmost importance, especially for
medical applications. Visualization enables us to evaluate whether the classification is
based on the lesion regions or surrounding areas. Sometimes, the learning algorithm
focused on another part of the context rather than the region of interests or actual lesions
to make a prediction. Further, it helps to investigate reasons for misclassifications. If
the model consistently misclassifies certain types of images, visualization can show the
features of the image that are baffling the model. As there is no available dataset with
annotated COVID-19 biomarkers, we only aim to spot the indicative regions of COVID-19.
Grad-CAM is utilized to visualize the distinguishing features and areas used by CNN
models to predict COVID-19 [47,48]. The visualized maps generated by Grad-CAM can
guide the medical experts and point to informative patterns or features.

4. Experimental Setting, Results and Discussions
4.1. Experimental Setting and Training Strategy

We performed the experiments in the MATLAB-R2020a environment using Windows
10 with a Core i7 processor at 3.0 GHz CPU and Nvidia T1660Ti GPU, and Kaggle, the web-
based data science environment. The image preprocessing, lung segmentation and image
augmentation were carried out using MATLAB-2020a. Deep learning-based classification
and performance evaluation were conducted using Tensorflow and Keras libraries on the
Kaggle platform. For the classification of COVID-19 from normal and pneumonia, we
used a public dataset containing 10,192 normal, 3616 COVID-19, and 1345 pneumonia
images. As the dataset is large and contains more than 15,000 CXRs, we utilized the
hold-out strategy to train and evaluate the models. As depicted in Figure 15, we initially
fragmented the dataset into training and testing datasets in an 80:20 ratio. Then, a 20%
of the training set is randomly allocated as the validation set. The training set contained
a total of 2893 COVID-19, 8154 normal, and 1076 pneumonia CXRs which were used to
train and validate the models using the training process. The testing set contains a total
of 3030 CXRs with 723 COVID-19, 269 pneumonia and 2038 normal CXRs. It was used
to judge the classification performance of the models. The training and testing sets are
disjoint so that the same images do not represent both sets. The models are trained using
the training set and its suitable parameters are selected using the validation set. Once
training of the models is accomplished, the testing set is used to check how well each
model performs.
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4.2. Performance Metrics

Multi classification of CXRs can be regarded as a set of many binary classification
problems—one for each class. Thus, the evaluation metrics for multiclass classification are
computed in the context of the binary classification in which the classes are simply either
positive or negative. The term “positive” and “negative” will be changed depending on
the true label of a particular class of the image. In our case, for COVID-19 class, COVID-19
CXRs are considered as “positive” whereas pneumonia and normal CXRs are regarded as
“negative”. The same concept straightforwardly applies to normal class and pneumonia
class as well. When considering the “COVID-19” class, a true positive occurs when an
actual “COVID-19” CXR is predicted as “COVID-19” class. Any other prediction of COVID-
19 CXR as “pneumonia” or “normal” will be considered a false negative. This applies to
every single class. For a given prediction, there are multiple classes that are considered true
negatives. For instance, if we are considering “COVID-19” class, a true “COVID-19” CXR
must be predicted as “COVID-19” to be a true positive. However, if we are considering the
class of “COVID-19”, then the original “pneumonia” could be labeled as “pneumonia”, or
“normal” as long as it is not predicted as “COVID-19” and it will still be a true negative
for the class “COVID-19”.) For COVID-19 class, false positive occurs when pneumonia or
normal CXRs are wrongly predicted as COVID-19.

This concept will apply to all classes. We can define TruePositive, TrueNegative,
FalsePositive and TrueNegative as follows:

• TruePositive denotes the number of correctly classified CXRs in which the true label is
positive and prediction is positive for the particular class.

• TrueNegative refers to the number of CXRs in which the true label is negative and
prediction is negative for the particular class.

• FalsePositive represents the number of CXRs which are negative but predicted as the
positive for the particular class.

• FalseNegative (FN) denotes the number of CXRs which are positive but predicted as
the negative for the particular class.

From the above categories, we can derive the evaluation metrics to judge the perfor-
mance of the machine learning or deep learning classifiers. In this study, the classification
performance of each model was evaluated using five measures: sensitivity, specificity,
accuracy, f-measure, and AUC. They are formulated as follows:

Sensitivity, Recall =
TruePositive

TruePositive + FalseNegative
× 100% (10)

Speci f icity =
TrueNegative

TrueNegative + FalsePositive
× 100% (11)

Precision =
TruePositive

TruePositive + FalsePositive
× 100% (12)

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FlaseNegative
× 100% (13)

F − measure =
(

2 × Precision × Recall
Precision + Recall

)
× 100% (14)

AUC of ROC is computed from the ROC curve which plots sensitivity against 1-specificity
to judge the quality of the classifier. The larger AUC-ROC indicates the better prediction
quality. AUC of ROC is usually computed for binary classification. To extend the ROC
curves and AUC of ROC for multi classification, the outputs are binarized per class. This
means that we plotted ROC for each class and computed AUC of ROC per class. The mean
AUC is used as the final AUC score of each model.
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4.3. Experimental Results and Discussions

Initially, we preprocessed the images using median filtering and CLAHE. Using the pre-
processed images, lung regions were segmented and cropped using the DeepLabv3+ algorithm
with an XceptionNet backbone. In our previous study of TB detection on CXRs, we devel-
oped and trained DeepLabV3+-based lung segmentation using a combined dataset from
Montgomery (MC) [49], Shenzhen [49], and Japanese Society of Radiological Technology
(JSRT) databases [50]. That trained DeepLabv3+ algorithm was reused here to segment
lung ROIs. Morphological operations were then used to fill small holes and refine the lung
boundaries. Using the coordinates of the segmented mask, the lung regions were cropped
from the whole CXRs.

The cropped lung regions were used as inputs to deep learning models to classify
between normal, pneumonia, and COVID-19. Deep learning with five different approaches
was used to handle the highly unbalanced dataset. The first approach (Approach 1) was
the substitution of the pre-trained network’s loss with the weighted loss, which helped
to balance the distribution of positive and negative labels within each class. The second
approach (Approach 2) was using image augmentation to increase the number of CXRs
in the minority classes, in our cases, COVID-19 and pneumonia. We randomly applied
rotation of ±10 degrees, flipping, shearing with ±20 pixels, and shifting with ±10 pixels
on COVID-19 and pneumonia CXRs. Using image augmentation, we added 2500 more
COVID-19 and 3288 more pneumonia CXRs. The normal class was the majority class;
therefore, we maintained the same number of normal CXRs without image augmentation.
The number of images in the augmented training set is listed in Table 2. The third approach
(Approach 3) was the undersampling of the majority class. The normal class was the
majority whereas pneumonia images were the minority; therefore, the pneumonia class
remained the same and the other classes were resampled to be nearly equal with it. We
performed undersampling of the training dataset by randomly discarding normal CXRs
and COVID-19 CXRs. The number of CXRs in the training set after undersampling is
listed in Table 2. l CXRs. In contrast to undersampling, the fourth approach (Approach
4) was oversampling, which duplicated samples from the minority class to achieve equal
distribution with the majority class. The normal class was the majority here; therefore,
we oversampled COVID-19 and pneumonia by randomly duplicating samples until they
reached a quantity nearly equal to the normal class. The number of images in the over-
sampled training dataset is tabulated in Table 2. The final approach (Approach 5) was a
hybrid of oversampling and undersampling. Our original training dataset contained the
most images in normal (8154), with 2893 COVID-19 images, and the fewest pneumonia
images, with 1076 CXRs. Undersampling discarded over seven times more normal images
than pneumonia images, whereas oversampling duplicated over seven times more pneu-
monia images than normal images. A high undersampling rate can cause information loss,
because we eliminated many normal CXRs. On the other hand, oversampling may cause
overfitting, because more than seven times as many pneumonia CXRs were duplicated. To
avoid extreme undersampling and oversampling, we used a combination of them as hybrid
sampling. The hybrid sampling approach applied a modest amount of undersampling
and oversampling. The COVID-19 class had a medium number of images; therefore, we
used it as the desired number of images for hybrid sampling. Normal and pneumonia
CXRs were resampled to a number nearly equal to COVID-19 CXRs. The hybrid-sampled
dataset contained 2893 COVID-19, 2690 pneumonia and 2854 normal CXRs, and. The
aforementioned approaches were applied only onto the training dataset in order to fit
the model. The samples in the testing dataset were maintained in the original form to
assess the performance of the models. Using each approach, 11 CNNs: XceptionNet, Incep-
tionV3, VGG-16, VGG-19, ResNet50, ResNet152, InceptionR also esNetV2, MobileNetV2,
DenseNet201, NasNetMobile and EfficientNetB7, were fine-tuned on the training dataset to
perform the multi-classifications of normal, pneumonia and COVID-19. All CNN models
were trained jointly using Adam with standard parameters listed in Table 2 [17]. Hence-
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forth, the approach that used the unbalanced data directly is regarded as Approach 0 for
simpler explainability.

Table 2. The data associated with each approach for handling unbalanced class, and hyperparameters for fine-tuning CNNs.

Unbalanced Data
Handling Approaches Methods

Data Hyperparameters of CNNs

COVID-19 Normal Pneumonia α β_1 β_2

Approach 0 Normal loss 2893 8154 1076 0.001 0.9 0.999
Approach 1 Weighted loss 2893 8154 1076 0.001 0.9 0.999
Approach 2 Image augmentation 5393 4363 8154 0.001 0.9 0.999
Approach 3 Undersampling 1013 1223 1076 0.001 0.9 0.999
Approach 4 Oversampling 8100 8154 8070 0.001 0.9 0.999
Approach 5 Hybrid sampling 2893 2854 2690 0.001 0.9 0.999

Each CNN was fine-tuned with different approaches to handle the unbalanced dataset.
To compare the effectiveness of those approaches, we used Approach 0 as the based ap-
proach. CNN models with each approach listed in Table 2 were evaluated on the testing
dataset using the five performance measures described in Section 4.2. With Approach
0, We also evaluated the performance of CNNs using the whole CXRs (without lung
segmentation) and compared with using the cropped lungs (with lung segmentation).
The classification results of with and without lung segmentation using Approach 0 are
tabulated in Tables 3 and 4, respectively. The tables exhibited that with and without lung
segmentation produced similar results. Most CNN models using the whole CXRs (i.e.,
without lung segmentation) generated slightly higher accuracy than CNN models with
lung segmentation. However, this may not be precise as the whole CXRs contained irrel-
evant regions other than lung regions where the disease pathologies are located. Hence,
we decided to use the cropped lung CXRs as the input images. For Apporach_0 with lung
segmentation, XceptionNet yielded the highest accuracy of 97.40% and an AUC of 99.90%,
followed by MobileNetV2 and InceptionResNetV2. InceptionNetV3, VGG nets, ResNet50
and EfficientNetB7 performed poorly, obtaining an accuracy of less than 90%. Table 5
presents the classification results of Approach 1, fine-tuning CNNs with the weighted
loss. The empirical results show that using weighted loss marginally improved the overall
accuracy of every CNN. InceptionV3, VGG nets, ResNet50, and EfficientB7, which per-
formed poorly using normal loss, improved significantly using weighted loss, with an
increase in accuracy of more than 7%. XceptionNet and DenseNet201 attained an accuracy
of over 98%, whereas ResNet, MobileNetV2, and EfficientB7 attained an accuracy of over
97%. The classification results of Approach 2, of CNNs with image augmentation, are
listed in Table 6. Image augmentation significantly improved the prediction performance of
every CNN. DenseNet201, InceptionResNetV2, MobileNetV2 and NasNetMobile achieved
98.57%, 98.5%, 98.43% and 98.2% accuracy, respectively. Table 7 tabulates the classifica-
tion results of each CNN with undersampling: Approach 3. This improved most CNNs’
performance, except InceptionResNetV2, compared to Approach 0. The accuracies of Mo-
bileNetV2 and InceptionResNetV2 were slightly decreased. Compared to Approach 1 and
Approach 2, Approach 3 slightly decreased the classification accuracy. Many CXRs from
normal and COVID-19 classes were discarded for undersampling; therefore, some CXRs
with valuable information may have been lost, thereby causing noticeable information
loss and underfitting the model. The classification results of Approach 4 are given in
Table 8. Oversampling greatly improved the prediction accuracy of each CNN compared to
Approach 0. Among all CNNs, InceptionResNetV2 and XceptionNet achieved the highest
accuracies, of 98.67% and 98.63%, respectively, and outperformed Approach 1, Approach 2,
and Approach 3. The performance of MobileNetV2, DenseNet201, and ResNet50 were on
par with Approach 1 and Approach 2 and generated more sensitive results than Approach
3. The classification results of Approach 5, hybrid sampling, are listed in Table 9, and show
significant improvements over Apporach_0, attaining comparable results with Approach 2.
However, it was less sensitive than Approach 1, Approach 2 and Approach 4 and produced
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lower accuracy. From these empirical results, we found that CNNs with the five proposed
approaches improved the overall performance of COVID-19 detection compared to Ap-
proach 0. The approaches which involved increasing the number of CXRs performed better
than other approaches. Image augmentation and oversampling approaches outperformed
undersampling and hybrid sampling approaches that involved the elimination of CXRs.
Approach 1 (using weighted loss), which did not transform or alter the number of samples
in the dataset, yielded an accuracy on par with Approach 2 and Approach 4 (adding more
images), and outperformed Approach 3 and Approach 5 (elimination of images). In the lit-
erature, ensemble learning frequently outperforms single models. Inspired by those results,
here, we combined the top five models from each approach as the ensemble classifier using
majority soft voting and hard voting. The performance of ensemble classifiers is evaluated
in Table 10. Ensemble learning improved the overall prediction and those with soft voting
attained better performance compared to hard voting. The ensemble classifier of the top
five models in Approach 2 (augmentation) achieved the highest accuracy, 99.23%, followed
by those of Approach 4 with 99.17% and those of Approach 1 with an accuracy of 99.03%.

To graphically evaluate the ensemble classifiers, we plotted receiver operating char-
acteristic (ROC) curves in Figure 16. ROC plots the true positive rate against the true
negative rate to evaluate each class. The closer the curve to the top-left corner, the better the
methods. All ensemble classifiers obtained comparable results and AUC values; therefore,
all ROC visualizations were similar. Among these classifiers, the ensemble of Approach 1
and Approach 2 managed to attain the highest AUC scores: 99.9% for COVID-19, and 100%
for normal and pneumonia classes. COVID-19 is a life-threatening disease that needs imme-
diate medical attention; therefore, false-negatives (i.e., the misclassification of COVID-19
as another class, especially as normal) will seriously endanger patients’ lives. We need to
determine the algorithms with the lowest false-negatives of identifying COVID-19. There-
fore, we evaluated these ensemble classifiers with false-negatives of COVID-19 as well
as five performance measures. The empirical results in Table 11 show that the ensemble
classifier of Approach 0 returned the largest number of false-negatives, misclassifying
14 COVID-19 CXRs as other classes. The ensemble classifier of the hybrid-sampled ap-
proach returned the fewest false-negative results, only misclassifying three COVID-19
CXRs as other classes.

Finally, we computed the Grad-CAM of CNN models and overlaid those maps on
CXRs to identify the indicative regions of COVID-19 biomarkers. The reddest regions
imply the most impactful regions for a certain class. If an input CXR is classified as COVID-
19-positive, those reddest regions refer to the regions which have a high impact on that
decision and suggest the disease location. Figure 17 shows Grad-CAM maps of COVID-19
CXRs which are correctly classified by the classifier. Visualization and lesion localization
were performed as a sanity check, where the prediction decisions were made on relevant
clinical pathologies or on the surrounding context of the image. However, this kind of
validation requires the manual annotation of COVID-19 biomarkers. At present, there is
no publicly available dataset with explicit annotations of COVID-19 lesions. Although
we are not able to validate COVID-19 biomarkers using these maps, they can suggest the
indicative regions which could indicate the disease locations.

We have compared our proposed methods with previous studies and presented
this in Table 12. Most previous studies claimed high performance values; among them,
Ben Jabra et al. [20] claimed 99.31% and 100% recall. However, the common theme among
them is the use of a dataset with a limited number of COVID-19 images, which was the
main concern in this research. Moreover, most studies omitted to handle the unbalanced
class problem, which can result in biased classifications. Rajaraman et al. [23] proposed
an iterative prune method that works well on a limited number of images and achieved
99.01% accuracy; however, those methods cannot guarantee the production of similar
results for larger datasets. Bridge et al. [24] proposed GEV-based deep learning to remedy
unbalanced class distribution; however, their proposed method obtained an AUC of 71%,
which is significantly low. In this study, we proposed alternative approaches to tackle
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unbalanced data using the largest dataset consisting of 3619 COVID-19 CXRs and achieved
an accuracy of 99.23% and an AUC of 99.97%. It is not necessarily best to directly compare
with previous studies due to the use of different datasets. Therefore, Table 10 presents
a comparison of the datasets, classification methods and techniques among the existing
studies and our study, rather than a comparison of the obtained results.

Table 3. Classification results of normal, pneumonia, and COVID-19 on the whole CXRs using
11 CNNs (Approach 0 without lung segmentation: Unbalanced dataset).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 97.07% 97.13% 92.77% 99.80% 96.20%
InceptionV3 95.10% 98.57% 93.63% 99.57% 91.60%

VGG-16 83.97% 99.87% 67.40% 99.30% 74.77%
VGG-19 87.60% 97.27% 79.87% 97.80% 82.80%

ResNet50 97.70% 99.47% 96.37% 99.90% 95.23%
ResNet152 95.83% 97.27% 91.53% 99.53% 93.40%

MobileNetV2 97.17% 98.07% 94.57% 98.93% 94.13%
DenseNet201 95.97% 95.43% 96.67% 98.37% 93.23%

InceptionResNetV2 96.53% 98.67% 94.53% 99.70% 93.97%
EfficientNetB7 88.43% 89.37% 91.50% 98.23% 83.80%
NasNetMobile 97.97% 98.97% 96.03% 99.90% 94.90%

Table 4. Classification results of normal, pneumonia, and COVID-19 using the cropped lungs and
11 CNNs (Approach 0: Unbalanced dataset).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 97.40% 99.37% 94.97% 99.90% 95.17%
InceptionV3 86.67% 87.20% 80.23% 99.03% 77.83%

VGG-16 83.90% 99.33% 74.07% 98.60% 72.77%
VGG-19 86.03% 94.83% 69.60% 96.73% 78.30%

ResNet50 86.63% 98.83% 76.53% 98.87% 83.57%
ResNet152 94.27% 98.27% 89.50% 99.33% 88.20%

MobileNetV2 97.23% 98.33% 95.43% 99.67% 94.63%
DenseNet201 95.47% 99.40% 89.63% 99.67% 93.63%

InceptionResNetV2 97.17% 99.07% 94.00% 99.80% 95.30%
EfficientNetB7 83.37% 94.87% 64.83% 97.47% 80.43%
NasNetMobile 93.13% 94.07% 94.20% 99.17% 87.60%

Table 5. Classification results of normal, pneumonia and COVID-19 using cropped lungs and
11 CNNs with Weighted Loss (Approach 1).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 98.17% 98.33% 98.53% 99.93% 97.07%
InceptionV3 93.50% 95.13% 95.23% 99.67% 88.47%

VGG-16 96.73% 95.33% 97.10% 99.33% 94.03%
VGG-19 91.60% 85.50% 88.70% 98.07% 83.90%

ResNet50 97.63% 96.93% 97.90% 99.70% 95.10%
ResNet152 97.40% 96.03% 97.53% 99.47% 95.33%

MobileNetV2 97.57% 97.50% 97.53% 99.63% 95.20%
DenseNet201 98.00% 97.90% 98.50% 99.80% 95.67%

InceptionResNetV2 96.63% 95.53% 96.10% 99.30% 94.17%
EfficientNetB7 97.13% 98.10% 97.70% 99.87% 92.10%
NasNetMobile 95.93% 97.13% 92.47% 99.77% 93.30%
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Table 6. Classification results of normal, pneumonia and COVID-19 using cropped lungs and
11 CNNs with Image Augmentation (Approach 2).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 97.60% 98.23% 98.07% 99.90% 95.43%
InceptionV3 95.80% 97.00% 96.83% 99.83% 92.33%

VGG-16 95.17% 95.90% 96.53% 99.50% 92.23%
VGG-19 95.67% 94.47% 94.03% 99.07% 92.03%

ResNet50 97.13% 97.40% 97.57% 99.70% 94.97%
ResNet152 96.43% 97.03% 95.77% 99.27% 93.50%

MobileNetV2 98.43% 98.20% 98.23% 99.83% 96.20%
DenseNet201 98.57% 98.17% 97.40% 99.87% 97.70%

InceptionResNetV2 98.50% 98.50% 98.50% 99.87% 97.43%
EfficientNetB7 93.87% 95.40% 95.50% 98.67% 85.50%
NasNetMobile 98.20% 98.33% 98.47% 99.87% 96.73%

Table 7. Classification results of normal and pneumonia and COVID-19 using cropped lungs and
11 CNNs with Undersampling (Approach 3).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 97.80% 97.93% 97.87% 99.77% 96.075
InceptionV3 96.63% 93.13% 94.13% 99.37% 93.93%

VGG-16 95.57% 95.50% 96.77% 99.07% 92.27%
VGG-19 94.67% 93.77% 95.37% 98.70% 90.60%

ResNet50 97.77% 97.80% 98.13% 99.83% 96.33%
ResNet152 96.67% 96.67% 97.60% 99.60% 93.43%

MobileNetV2 96.33% 94.97% 96.07% 99.30% 91.63%
DenseNet201 96.33% 97.17% 96.73% 99.57% 93.87%

InceptionResNetV2 96.77% 96.67% 97.17% 98.50% 94.73%
EfficientNetB7 97.57% 95.67% 96.20% 99.57% 95.83%
NasNetMobile 97.40% 95.47% 97.17% 99.50% 95.50%

Table 8. Classification results of normal, pneumonia and COVID-19 using cropped lungs and
11 CNNs with Oversampling (Approach 4).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 98.63% 97.57% 98.23% 99.90% 97.47%
InceptionV3 96.27% 97.57% 96.43% 99.53% 93.43%

VGG-16 96.27% 96.20% 96.83% 99.37% 93.73%
VGG-19 92.93% 94.20% 95.00% 98.70% 88.77%

ResNet50 97.77% 97.27% 97.70% 99.63% 96.17%
ResNet152 97.37% 97.77% 97.73% 99.77% 95.43%

MobileNetV2 97.90% 96.10% 97.40% 99.77% 95.83%
DenseNet201 98.20% 98.07% 97.23% 99.77% 97.27%

InceptionResNetV2 98.67% 98.17% 98.23% 99.90% 97.63%
EfficientNetB7 89.03% 90.00% 92.07% 98.97% 84.90%
NasNetMobile 97.80% 98.03% 99.83% 99.83% 96.17%
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Table 9. Classification results of normal, pneumonia and COVID-19 using the cropped lungs and
11 CNNs with Hybrid sampling (Approach 5).

Deep CNNs Accuracy Sensitivity Specificity AUC F-Measure

XceptionNet 97.36% 97.86% 97.70% 99.63% 95.80%
InceptionV3 93.23% 95.86% 94.70% 99.60% 86.40%

VGG-16 95.93% 95.23% 96.37% 99.03% 92.43%
VGG-19 95.97% 96.13% 96.63% 99.30% 93.30%

ResNet50 93.63% 94.30% 94.67% 99.00% 90.90%
ResNet152 93.60% 90.37% 91.70% 94.90% 89.50%

MobileNetV2 97.23% 98.33% 95.43% 99.67% 94.63%
DenseNet201 95.80% 96.43% 97.07% 99.70% 93.73%

InceptionResNetV2 92.23% 92.40% 93.83% 96.47% 83.73%
EfficientNetB7 93.03% 92.93% 94.83% 99.67% 88.50%
NasNetMobile 96.67% 97.40% 97.43% 99.77% 94.63%

Table 10. Ensemble of top five models from each approach using majority soft voting and hard voting.

Deep CNNs Voting Strategy Accuracy Sensitivity Specificity AUC F-Measure

Ensemble of
Approach 0

Soft Voting 97.93% 98.43% 98.40% 99.90% 96.70%
Hard Voting 96.63% 97.97% 98.44% N/A 96.62%

Ensemble of
Approach 1

Soft Voting 99.03% 98.97% 99.20% 99.97% 98.23%
Hard Voting 98.35% 98.66% 99.11% N/A 97.88%

Ensemble of
Approach 2

Soft Voting 99.23% 99.27% 99.27% 99.97% 98.30%
Hard Voting 98.84% 99.05% 99.38% N/A 98.41%

Ensemble of
Approach 3

Soft Voting 98.00% 98.17% 98.37% 99.87% 96.53%
Hard Voting 96.53% 97.63% 98.33% N/A 96.13%

Ensemble of
Approach 4

Soft Voting 99.17% 98.87% 98.80% 99.93% 98.57%
Hard Voting 98.61% 98.28% 98.90% N/A 98.43%

Ensemble of
Approach 5

Soft Voting 98.00% 99.33% 95.93% 99.90% 96.63%
Hard Voting 98.75% 98.41% 99.07% N/A 98.59%
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Table 11. False-negative of COVID-19 (misclassification of COVID-19 CXRs as normal and pneumonia).

Methods False-Negative of COVID-19

Ensemble of CNNs with normal loss 14
Ensemble of CNNs with weighted loss 8

Ensemble of CNNs with image augmentation 8
Ensemble of CNNs with undersampling 7
Ensemble of CNNs with oversampling 9

Ensemble of CNNs with hybrid sampling 3
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Table 12. Previous studies vs. our proposed study.

Authors Classification Methods Classification Strategy Data Performance

Hemdan et al. [10] COVIDX-Net using six CNNs Binary classification of
normal and COVID-19

COVID-19: 25
Normal: 25

F-Measure
81% (normal)
91% (COVID-19)

Sahlol et al. [11]

Hybrid of InceptionNet as a
feature extractor and Marine
Predator as a feature
selection method

Binary classification
between COVID-19
and Normal

COVID-19: 200
Normal: 1675 Accuracy 98.7%

COVID-19: 219
Normal: 1341 Accuracy 99.6%

Alazab et al. [12]
VGG-16 based classification
with and without
data augmentation

Binary classification of healthy
and COVID-19

COVID-19: 70
Healthy: 28
(original dataset)

F-measure 95%

COVID-19: 500
Healthy: 500
(augmented)

F-measure 99%

Duran-Lopez et al. [13] A customized deep
learning model

Binary classification of
non-findings and COVID-19

COVID-19: 2589
Normal: 4337 Accuracy 94.43%

Khasawneh et al. [14] 2D CNN, VGG16, Mobile Nets Binary classification of
normal and COVID-19

COVID-19: 1210
Normal: 1583 Accuracy 98.7%

Wang et al. [15] A custom deep
learning algorithm

Multi-classification of
normal, COVID-19 and
pneumonia

COVID-19: 266
Normal: 8066
Pneumonia: 5526

Sensitivity 80%
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Table 12. Cont.

Authors Classification Methods Classification Strategy Data Performance

Brunese et al. [16] VGG16 based transfer learning

Two staged binary
classification:

(i) healthy and lung diseases
(ii) COVID-19 and lung

diseases

(i) Healthy: 3520
lung diseases: 3003 Accuracy 96%

(ii) COVID-19: 250
lung diseases: 2753 Accuracy 98%

Ahmed et al. [17]
A custom deep learning model
with multiple feature
extraction layers

Multi-classification of
normal, COVID-19 and
pneumonia

COVID-19: 238
Normal: 8851
Pneumonia: 6045

Accuracy 97.48%

Yoo et al. [18] Dee learning based decision
tree classifier

Step by step binary
classification:

(i) Normal and abnormal
(ii) TB or non TB
(iii) TB or COVID-19

Normal: 558
Abnormal: 558 Accuracy 98%

TB: 492
non TB: 492 Accuracy 80%

COVID-19: 142
TB: 142 Accuracy 95%

Ozturk et al. [19] Modified Darknet-19 model
Binary classification of
non-findings and COVID-19

COVID-19: 125
Normal: 500 Accuracy 98.08%

Multi classification of
normal, COVID-19 and
pneumonia

COVID-19: 125
Normal: 500
Pneumonia: 500

Accuracy 87.02%

Ben Jabra et al. [20]
16 state-of-the-art CNNs
model and ensemble of those
models using voting

Multi-classification of
normal, COVID-19, and
pneumonia

COVID-19: 237
Normal: 1338
Pneumonia: 1336

Accuracy 99.31 %

Shelke et al. [21] VGG-19, DenseNet-161 and
ResNet-18

Three-staged classification

(i) Normal, pneumonia, and
TB

(ii) COVID-19 and non
COVID-19 pneumonia

(iii) Severity Grading

Normal: 526
Pneumonia: 605
TB: 382

Accuracy 95.9%

COVID-19: 735
Pneumonia: 650 Accuracy 98.9%

Mild: 80
Medium: 80
Severe: 80

Accuracy 76%

Oh et al. [22] A patch-based ResNet18
model

Multi-classification of
normal, COVID-19,
pneumonia and TB

COVID-19: 180
Normal: 191
Pneumonia: 74
TB: 57

Sensitivity 92.5%

Rajaraman et al. [23] Ensemble of iteratively pruned
deep learning models

Multi-classification of
normal, COVID-19 and
pneumonia

COVID-19: 313
Normal: 7595
Pneumonia: 8792

Accuracy 99.01%

Bridge et al. [24]
InceptionNet with GEV
activation function

Binary classification of
non-findings and COVID-19 COVID-19: 129

Normal: 62,267
Pneumonia: 5689

AUC 82%

Multi classification of
normal, pneumonia and
COVID-19

AUC 73.1%

Nishio et al. [25]
Transfer learning of VGG-16
with a combination of data
augmentation methods

Multi-classification of healthy,
COVID-19 pneumonia, and
non-COVID-19 pneumonia

COVID-19: 215
Healthy: 500
Pneumonia: 533

Accuracy 83.6%

Our
proposed study

• Here, 11 deep learning
models with five
different techniques to
handle the imbalanced
class distribution

• Ensemble classifier of
best-performing models
using voting strategies

Multi-classification of
normal, COVID-19, and
pneumonia

COVID-19: 3616
Normal: 10,192
Pneumonia: 1345

Accuracy 99.23%
Sensitivity 99.27%
AUC 99.97
F-measure 98.3

Here, the empirical results indicate strong evidence that of the evaluated approaches,
coupling in the ensemble learning can suppress or alleviate the unbalanced class distribu-
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tion problem and provided promising results, with 99.23% accuracy and a 99.97% AUC.
However, there is more room for improvement, and some limitations, which should be
targeted in future research. Most of the fundamental limitations arise from the dataset.
The proposed models are developed and validated using the same public dataset. Charac-
teristics of our dataset may vary from that of the real-time clinical data or other datasets.
Although the proposed models achieved higher accuracy on the testing set of the related
dataset, they might not provide sustained performance when externally validate using
the data from different unrelated datasets. In this case, overfitting may have occurred in
external validation. We need to further validate and test the robustness and generalizability
of our proposed methods using the external real-time clinical data when it is publicly
available. In addition, the dataset utilized did not consist of the clinical data associated
with CXRs; therefore, it prevented us from incorporating inferential statistical analysis on
the images. Clinical data such as age and gender, and clinical symptoms such as cough and
fever could be incorporated for better diagnosis results in real practice. This will potentially
be beneficial and is the aim of our future work. Due to the lack of annotated COVID-19
biomarkers, our study could not investigate whether the indicated regions used by CNN
models are correctly associated with COVID-19 biomarkers. We could observe methods to
determine the features of COVID-19 on CXRs using Grad-CAM maps and validate them
along with medical experts. Certainly, there are many approaches yet to be explored to
tackle the unbalanced data distribution and to improve upon the results presented here.
Image augmentation methods significantly improved the prediction; therefore, our future
work will include applying advanced image augmentation methods such as GAN. Most
studies have only focused on using deep learning methods. In the future, we could exploit
the radiomics features of COVID-19 CXRs using conventional feature extraction meth-
ods and machine learning methods, which are simple and require fewer computational
resources than deep learning methods.

5. Conclusions

In this study, we proposed the automated classification of COVID-19 from normal and
pneumonia CXRs on an unbalanced dataset. The images were first preprocessed using a
median filter and CLAHE to suppress the noise and enhance the contrast. The lung regions
were then segmented using the DeepLabv3+ semantic method and subsequently cropped.
The cropped lungs were fed as inputs to deep CNN models. The dataset was heavily
unbalanced; therefore, to tackle this concern, we employed five different approaches:
(i) substituting weighted loss as the loss of CNNs; (ii) increasing the number of CXRs
for the minority class using image augmentation; (iii) undersampling; (iv) oversampling;
and (v) hybrid sampling for fine-tuning CNN models. The top five models from each
approach formed the ensemble classifier to improve the prediction performance. We
achieved the highest accuracy of 99.23% and an AUC of 99.97% using an ensemble classifier
of XceptionNet, MobileNetV2, DensetNet201, InceptionResNetV2 and NasNetMobile with
image augmentation. Finally, Grad-CAM was used to identify the indicative regions of
COVID-19 biomarkers. We envision the proposed algorithms in this study to be a step
toward the development of automated screening or triage systems to facilitate medical
experts in the diagnosis of COVID-19. The promising results of our algorithms require
further validation for robustness using real-time clinical data. As this study shows, deep
learning with image augmentation can improve COVID-19 detection accuracy; therefore,
we are keen to apply advanced image augmentation methods such as generative adversarial
networks (GAN) to obtain more synthesized CXRs. We also hope to develop integrated
algorithms of COVID-19 detection using X-rays and CT scans.
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Appendix A

A convolutional neural network (CNN) is a type of deep learning technique, specially
designed for image analysis. A CNN model learns from data directly without explicitly
extracting the manual features. The common CNN model composes of convolution layer,
activation layer, pooling layer, fully connected layer or dense layer, and other optional
layers such as regularization and normalization.

• The convolution layer is the core building block of a CNN, which is used to automati-
cally extract the features from the input image and generate the feature map using
the filters. Filters are applied to each training image at different resolutions, and the
output of each convolved image is used as the input to the next layer. In CNN model,
there are many convolutional layers that retrieve low to high-level features. Earlier
layers extract the low-level features whereas the latter layers in the networks extract
the high–level features. The output of the feature map relies on the input size, the
filter size and its striding, and padding.

• Activation functions are non-linear functions that allow the network to learn non-
linear mappings. It performs as the selection criteria to decide whether the selected
neuron will activate. Only the activated features or neurons are carried forward into
the next layer. Activation functions are usually embedded after the convolutional
layer. The most common activation functions are sigmoid, Tanh, ReLU, and softmax.

• Pooling layer aims to simplify the output by applying nonlinear downsampling. Pool-
ing can progressively reduce the spatial dimensions of the image, thereby reducing the
number of parameters and computation in a network. It reduces the output feature
map of the convolution layers by extracting important pixels and removing noise. The
output of the pooling layer depends on the filter size and stride. The most common
pooling layers used in CNN are max pooling and average pooling.

• The next-to-last layer of CNN is the fully connected layer, also known as the dense
layer. It receives all extracted features from the previous layers as the input and used
them to classify the image with the help of softmax or sigmoid function. The fully
connected layer generates the vector that contains the probabilities for each class of
any image being classified.

There are various architectures of CNN models. In this study, we employed fine-
tuning the pretrained CNN models with the transfer learning. In this case, 11 CNN
architectures: (i) InceptionV3 [35], (ii) VGG-16, (iii) VGG-19 [36], (iv) XceptionNet [33],
(v) Res-Net-50 [37], (vi) ResNet-152 [37], (vii) MobileNet [38], (viii) DenseNet201 [39],
(ix) InceptionResNetV2 [40], (x) EfficientNetB7 [41], and (xi) NasNetMobile [42] which are
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trained on ImageNet, are used as the pretrained models. Some of their properties are listed
in Table A1 and each model is detailed in the following sections.

Table A1. The properties of pretrained CNNs used in this study.

Deep CNNs Number of Layers Number of Parameters Input Size

XceptionNet 71 22,910,480 299 × 299
InceptionV3 48 23,851,784 299 × 299

VGG16 16 138,357,544 224 × 224
VGG19 19 143,667,240 224 × 224

ResNet50 50 25,636,712 224 × 224
ResNet152 152 60,419,944 224 × 224

MobileNetV2 53 3,538,984 224 × 224
DenseNet201 201 8,062,504 224 × 224

InceptionResNetV2 164 55,873,736 299 × 299
EfficientNetB7 * 66,658,687 600 × 600
NasNetMobile * 5,326,716 224 × 224

* EfficientNetB7 and NasNetMobile architectures do not consist of a linear sequence of modules.

Appendix A.1 InceptionV3

A group of researchers at Google developed the Inception architecture with the
concept of Inception module as shown in Figure A1. The convolution filter sizes of 1 × 1,
3 × 3 and 5 × 5 were used with different scales to extract the features. Inception-V3
is the third version of Inception architecture that comes with factorization. The idea of
factorizing convolution is to reduce the number of connections and parameters without
decreasing network efficiency. The first factorization is factorizing into smaller convolution
by replacing one 5 × 5 convolution with two 3 × 3 convolutions. The second factorization
is factorizing into asymmetric convolutions by replacing one 3 × 3 convolution with
one 3 × 1 convolution and one 1 × 3 convolution and re-placing one 7 × 7 convolution
with one 1 × 7 and one 7 × 1 convolution. InceptionV3 is 48-layers deep and takes the
299 × 299 pixel RGB image as the input.
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Appendix A.2 VGG-16 and VGG-19

VGG-19 and VGG-19 are introduced by the researchers at researchers at Oxford’s
Visual Geometry Group [36]. VGG nets use the fixed 224 × 224 pixel RGB image as input.
VGG nets are formed with a stacked of the convolution layers of 3 × 3 filter with a stride 1
and same padding. After every convolution layer, ReLU activation is applied. The max
pooling layers with 2 × 2 filter of stride 2 are used to reduce the dimension. It follows
this arrangement of convolution and max pool layers consistently throughout the whole
architecture. At the end of networks, two fully connected layers are placed with 4096 nodes
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and then followed by a final fully connected layer with 1000 nodes and a softmax classifier.
VGG-16 and VGG-19 have a 16-layers and 19-layers depth, respectively.

Appendix A.3 Xception

The Xception architecture is a 71-layers deep CNN that was introduced by Chollet [33].
It takes the fixed 299 × 299 pixel RGB image as input. It is a linear stack of depthwise sepa-
rable convolutions (3 × 3 filter) followed by a pointwise separable convolution (3 × 3 filter)
with residual connections (1 × 1 filter). All convolution and separable convolutions layers
are followed by batch normalization. ReLU is used as the activation function. The architec-
ture of Xception is described in Figure A2. The data first goes through the entry flow, then
through the middle flow, which is repeated eight times, and finally through the exit flow.
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Appendix A.4 ResNet50 and ResNet152

Residual Networks (ResNet) were developed by Kaiming He et al. [37] to alleviate gra-
dient vanishing and performance degradation for deeper networks. ResNet architectures
are composed of the residual blocks with the skip connection or shortcut connection which
skip one or more layers The residual blocks connect directly over the next layer to improve
the learning process. ResNet architectures are formed with the convolutional layers, pool-
ing layers, and residual blocks, and after every convolutional layer, batch normalization
and ReLU are applied. The last layers consist of an average pooling, a fully connected
layer and softmax. Figure A3 described the schematic diagram of ResNet architecture. In
this study, we used ResNet 50 and ResNet152 which are composed of 50 and 152 layers,
respectively. The number of convolutional layers and the number of training parameters
of Resnet-50 and ResNet-152 are addressed in Table A1. ResNets take the 224 × 224 pixel
RGB image as the input.
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Appendix A.5 MobileNetV2

MobileNet architectures were developed by a researched team at Google for mobile
vision application [38]. They are designed to reduce the number of layers and parameters
by replacing a full convolutional layer with two smaller layers known as a depthwise
convolution, and a pointwise convolution (1 × 1 convolution). In this study, we applied
MobileNetV2 which consists of two blocks; a residual block with a stride of 1 and a block
with a stride of 2 for downsizing, as described in Figure A4. Each block contains three
layers; 1 × 1 convolution with ReLU6, a depth-wise convolution, and 1 × 1 convolution. It
is 53 layers deep and takes the 224 × 224 pixel RGB image as the input.
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Appendix A.6 DenseNet-201

DenseNet (densely connected convolutional networks) is a network formed with
dense blocks and transition layers [39]. Figure A5 shows DenseNet architecture with three
dense blocks. Each dense block consists of the convolutional layers which are sequentially
placed and directed the connections to all subsequent layers. Each layer receives the
feature maps of all preceding layers as the input and passes its own generated feature
maps to all subsequent layers. The transition layers are the layers between two adjacent
blocks and reduce the size of the feature maps using convolution and pooling. In this
study, we applied DenseNet-201 which has 201 layers of depth. DenseNet-201 takes the
224 × 224 pixel RGB image.
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Appendix A.7 InceptionResNetV2

InceptionResNetV2 architecture integrates the Inception network and residual net-
work [40]. This hybrid architecture is 164 layers deep and takes the 299 × 299 pixel RGB
image as the input.

Appendix A.8 EfficientNetB7

EfficientNets are a list of AutoML based CNNs [41]. The compound scaling method is
introduced to scale up the baseline CNN model to any target resource constraints, while
maintaining model efficiency. It can uniformly scale all dimensions of depth, width, and
resolution using the compound coefficient. Initially, AutoML is used to build the baseline
net (EfficientB0) which is based on the inverted bottleneck residual blocks along with the
squeeze-and-excitation blocks. Then, the baseline net can be scaled up to EfficientNetB1-B7
using the compound scaling method.

Appendix A.9 NasNetMobile

NasNet stands for Neural Architecture Search Network and was introduced by
Google [42]. It is designed for finding the best CNN architecture by searching the best
combination of parameters of the given search space of filter sizes, output channels, strides,
number of layers, etc. It initially searches for an architectural building block on a small
dataset and then transfers the block to a larger dataset. NasNet comprises of two main cells
or blocks: Normal and Reduction cell. Normal cells refer to the convolutional cells that
generate a feature map of the same dimension. Reduction cells are the convolutional cells
that generate the downsampled feature maps. The controller recurrent neural network
is used to search the structures within the normal and reduction via two hidden states.
In this study, we utilized the NasNetmobile which is suitable for mobile GPUs as well.
NasNetMobile takes the 224 × 224 pixel RGB image as the input.
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