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Abstract: There are different devices to increase the strength capacity of people with walking
problems. These devices can be classified into exoskeletons, orthotics, and braces. This review
aims to identify the state of the art in the design of these medical devices, based on an analysis
of patents and literature. However, there are some difficulties in processing the records due to
the lack of filters and standardization in the names, generating discrepancies between the search
engines, among others. Concerning the patents, 74 patents were analyzed using search engines
such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A
bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens
in the same period for scientific communications. The results show a trend to use the mechanical
design of exoskeletons based on articulated rigid structures and elements that provide force to move
the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements.
The United States accounts for 32% of the technological patents reviewed. The results suggest that
the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over
the years due to the worldwide growth in disability, particularly related to mobility difficulties and
technologies related to the combined use of springs and actuators.

Keywords: knee exoskeletons; lower limb exoskeleton; passive exoskeletons

1. Introduction

In recent decades, advances in the development of assistive devices have become
relevant in medicine, especially in specific areas related to people’s disabilities, increasing
its research and technological development. One of the main causes may be the worldwide
increase in the population that suffers from a disability. According to the World Health
Organization (WHO), more than 1000 million people live with some form of disability;
almost 200 million suffer considerable difficulties in their functioning. These mobility
difficulties are increased because of the aging of the population, and it will be a cause of
more significant global concern than it is now [1].

In this context, the prevalence of disability is increasing, and Mexico does not escape
this problem. According to data from the National Institute of Statistics and Geography
(INEGI), 7% of the population suffers from a disability, and 42.4% of disabilities are related
to mobility [2]. Another factor that affects the increase in the population with disabili-
ties is related to obesity. According to the Organization for Economic Cooperation and
Development (OECD) in its report “The Heavy Burden of Obesity: The Economics of
Prevention”, about 73% of the Mexican population suffers from overweight, and 34% of
people suffer from morbid obesity, which is the highest degree of obesity [3]. A great part

Appl. Sci. 2021, 11, 9990. https://doi.org/10.3390/app11219990 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5165-7094
https://orcid.org/0000-0002-4365-8537
https://orcid.org/0000-0002-5422-5593
https://doi.org/10.3390/app11219990
https://doi.org/10.3390/app11219990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11219990
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11219990?type=check_update&version=1


Appl. Sci. 2021, 11, 9990 2 of 23

of mobility problems occurs in the knee joint, which includes two degrees of freedom
(DOF), flexion-extension (x-x) and internal–external (y-y). This knee joint works essentially
in compression, supporting the weight of the body during the march [4] (see Figure 1).
These characteristics of operating under the action of gravity make people who suffer
from obesity more prone to suffer injuries to the knee joints and develop diseases such as
osteoarthritis that occur more frequently with age [5,6].
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The research and development of devices that provide solutions to mobility problems
have increased in recent decades; such is the case of the development of exoskeletons,
which have been a milestone in this area [7]. Exoskeletons can be grouped based on energy
use into powered exoskeletons and passive exoskeletons [8]. Powered exoskeletons are
systems based on an external energy source and actuators that convert electrical, pneumatic,
or hydraulic energy to mechanical work to give support and controlled movement [9–14],
whereby the rehabilitation tasks turn out to be more suitable and effective than traditional
methods. However, a limitation of these exoskeletons is that patients do not have control
of the trajectory, which challenges patients to train personalized or appropriate movement
patterns for their recovery. Passive exoskeletons do not have an external power source, so
their movement is dependent on the user. These exoskeletons consist of springs, shock
absorbers, and mechanical clutches to store energy or release energy during walking [15].
They are cheaper, less complex, and are likely to be better accepted by users.

Herr (2009) classified exoskeletons and orthotics into four categories: (a) serial limb
exoskeletons; (b) parallel limb exoskeletons for load transfer; (c) exoskeletons of parallel
extremities to increase torque, and (d) exoskeletons of parallel extremities that increase
human endurance. In the present review, the terms exoskeletons and orthotics are used
similarly, as mechanical devices of an anthropomorphic nature [16].

This work presents the method used to find refined information obtained in databases
for both patents and scientific communications. The results section presents the bibliometric
analysis of the literature and the patentometric analysis of technological surveillance.
Finally, the conclusions section shows the main metrics analyzed and the technology trend
to boost strength capability.

2. Review Methodology

The search strategy was divided into two parts: (1) obtaining patents and (2) obtaining
scientific communications, for which in both cases, the arrangement of keywords and
Boolean operators were ((knee or (lower limb)) and (exoskeletons or orthoses)). We consid-
ered a 10-year search period, that is, from 2011 to 2020 as the first filter (Filter_1). Later, the
data obtained were processed for analysis by applying three filters, which are detailed in
Sections 2.1 and 2.2.
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2.1. Patent Search

Five search engines were used (Derwent Innovation, Espacenet, Google Patents,
Patentscope, and The Lens), in which the arrangement of keywords and Boolean operators
mentioned in the previous paragraph shows a growth in the patent registration of lower
limb exoskeletons in the past decade (see Figure 2).
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Figure 2. Documents by year.

Subsequently, two other filters were used, denoted as Filter_2 and Filter_3, related
to the international patent classification (IPC) A61H3/00 and A61F5/01. These patents
belong to the group of non-surgical devices or appliances to help people walk. We applied
the filters directly in the corresponding search engine, as the goal is to determine the status
of the passive knee exoskeleton technique. Filter_3 has to do with the inclusion of the word
knee. Finally, with the results of the databases, obtained after applying the three filters, a
single record was integrated and “data cleaning” was performed using the Open Refine®

free software. Later, we disaggregated the data and performed a manual review of each
record, applying criteria to restrict and select patents of interest. This action constitutes
Filter_4.

A. Inclusion criteria:

(a) The patent belongs to a type of lower limb exoskeleton or orthosis.
(b) The patent corresponds to a component of an exoskeleton or lower limb

orthosis.
(c) The patent describes the design or manufacturing method of an exoskeleton

or lower limb orthosis.
(d) The patent can be registered in any patent office in any country.

B. Exclusion criteria:

(a) Related to other devices for members of the body other than the lower one.
(b) Related to complementary systems not related to the knee joint.
(c) Patents are found in more than one database; only the patent found in the

first database was considered to avoid duplication of information.
(d) Patents prior to 2011, considering slow progress in development and man-

agement.
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This discrimination of the fourth filter (Filter_4) is made by adding all the documents
obtained after Filter_3, resulting in 205 documents to which the inclusion and exclusion
criteria were applied, leaving only 74 documents identified with the data of the inventor,
registry office, year of publication, patent title, and registration key. Table 1 shows the
effect of reducing the records when applying each filter.

Table 1. Results of the patent search.

Search Engines Filter_1 Filter_2 Filter_3 Filter_4

Patentscope 1235 320 32

74
Google patents 1254 65 4

Espacenet 500 132 16
The Lens 3629 719 57
Derwent 2000 905 96

Total 8618 2141 205 74

2.2. Search of Scientific Communications

For the analysis of the literature, two search engines (Web of Science and The Lens)
were used, in which the disposition of keywords and Boolean operators were applied, as
well as the time period of 10 years as the filter (Filter_1). The number articles per year is
shown in Figure 3, where a growing trend is observed in the case of the Web of Science
(WoS) search engine over the entire time series, but not in the case of the data obtained
with the search engine The Lens, where a clear trend is not appreciated; this may be due to
the unified system of the search engine that gathers patents and academic documents in a
database with the ability to identify intersections between these two types of documents.
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With the data obtained from each search engine, the results of both were crossed,
applying a second filter (Filter_2) using inclusion and exclusion criteria to restrict and
select information on the topic:

A. Inclusion criteria:

(a) Related to the design of exoskeletons.
(b) Related to the type of exoskeletons and orthoses focused on the type of

application.
(c) Related to tests and evaluation metrics of exoskeletons or orthoses.
(d) Related to the exoskeletons of the lower limb or knee joint.
(e) Related to the development of exoskeletons or orthoses.
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(f) Exoskeleton manufacturing methods.

B. Exclusion criteria:

(a) Related to upper limb exoskeletons.
(b) Related to active or powered exoskeletons.
(c) Related to gait control.
(d) Related to electromyography (EMG)
(e) Duplicate registration.
(f) Articles prior to 2011.

Table 2 shows the reduction effect of the records when applying the inclusion and
exclusion criteria. A total of 63 records were obtained performing the bibliometric analysis
using R-Studio® and Bibliometrix.

Table 2. Number of documents obtained from search engines.

Search Engines Filter_1 Filter_2

The Lens 343
63Web of Science 146

Total 489 63

3. Results
3.1. Patentometric Analysis

After filtering the documents, 74 patents related to exoskeletons, orthoses, or lower
limb devices were selected; the results are shown in Table 3. The main offices from where
patents were registered are the United States (23 patents), the European office (4 patents),
the international office (23 patents), China (18 patents), Japan (3 patents), Republic of Korea
(2 patents), and Canada (1 patent). As shown in Figure 4, the United States is the country
with the highest number of patents.

Table 3. Lower limb exoskeletons and orthoses patents.

Cite Title Main Applicant Body Part Type Technology

[17] Knee Brace Hinges with Adaptive
Motion. Dj Orthopedics Llc Knee Brace Mechanical

[18] Knee-joint Hinge of Standing
Period Control Orthosis. Li Jianjun Knee Orthosis Mechanical

[19] Stretching Assisting Orthosis of
Knee Joints.

Children’s Hospital of
Chongqing Medical
University

Knee Orthosis Mechanical

[20]
Knee-powered Radian
Pulley-type Foot Drop and
Hemiplegic Gait Orthosis.

Guangdong Provincial
Work Injury
Rehabilitation

Foot Orthosis Mechanical

[21] Unlocking Adaptive Exoskeleton
Knee Joint Support Plate.

Univ Electronic Science
& Tech Ch Knee Device Mechanical

[22]
Knee Joint Load-bearing Power
Assisting Exoskeleton Device and
Working Method thereof.

Fuzhou University Knee Exoskeleton Electronic

[23]
Gait-based Wearable Flexible
Knee Joint Robot Exoskeleton
Facility.

Beijing Inst Technology Knee Exoskeleton Pneumatic

[24]
Self-driven Self-adaption Gait
Wearable Knee Joint Walking aid
Device.

Beijing Inst Technology Knee Device Mechanical
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Table 3. Cont.

Cite Title Main Applicant Body Part Type Technology

[25]
Hip and Knee Integrated Joint
Device used for Exoskeleton
Robot and Exoskeleton Robot.

Hefei Inst Physical Sci
Cas Hip-Knee Exoskeleton Electronic

[26]

Quasi-passive Knee Joint and
Ankle Joint Coupling Lower Limb
Exoskeleton and Control Method
thereof.

Univ Tsinghua Knee-Ankle Exoskeleton Mechanical

[27]
Lower Limb Exoskeleton Knee
Joint Based on Torsional Spring
Clutch.

Univ Shanghai Science &
Tech Knee Exoskeleton Mechanical

[28] Intelligent Knee Osteoarthritis
Correction Integrated Instrument.

Affiliated Hospital to
Nanchang Univ. Knee Device Mechanical

[29]
A Knee Joint Exoskeleton
Mechanism Driven by a
Connecting Rod.

Inner Mongolia Univ. of
Technology Knee Exoskeleton Electronic

[30]
Lower Limb Knee Joint and
Ankle Joint Assisting Exoskeleton
Stiffness Adjusting Device.

Jiangsu Collection M.
A.S. Knee-Ankle Device Electromechanical

[31]
Lower Extremity Exoskeleton
Heterogeneous Knee Joint based
on Parallel Elastomer.

Harbin Institute of
Technology Knee Exoskeleton Electromechanical

[32]

Lower Limb Exoskeleton
Structure Integrated with
Self-adaptive Knee Joints and
Robot.

Southern University Knee Exoskeleton Electromechanical

[33]

Wearable Lower-limb
Walking-assisting Exoskeleton
Capable of Imitating Movement
Curve of Human Knee Joint.

Hebei University of
Technology

Hip-Knee-
Ankle Exoskeleton Electronic

[34] Knee Joint Orthosis.

Shandong First Medical
Univ & Shandong
Academy of Medical
Sciences

Knee Orthosis Mechanical

[35]
Self-adaptive Variable-stiffness
In-vitro Knee Joint Device with
Intelligent Tensioning Function.

Tianjin University of
Technology Knee Exoskeleton Mechanical

[36] Knee Orthosis. Otto Bock Healthcare
Gmbh Knee Orthosis Electromechanical

[37] Joint for Knee Orthotics,
Prosthetics and Supports. Wayd Kurt Knee Orthosis Mechanical

[38] Device for Holding the Kneecap
and Knee Orthosis. Gibaud Kneecap Orthosis Mechanical

[39] Knee Orthosis Adapted for a
Prolonged Sitting Position. Millet Innovation Knee Orthosis Mechanical

[40] Single Bar Knee-ankle-foot
Orthosis. Nagasaki Kanae Kk Knee-Ankle-

Foot Orthosis Mechanical

[41] Knee Joint Mechanism of
Movement Assist Device. Honda Motor Co Ltd. Knee Mechanism Mechanical

[42] Knee Brace. United Surgical, Inc. Knee Brace Mechanical

[43]
Reciprocal Action Type Knee
Brace by Different Movement in
Medial-lateral Hinge.

Triple-C Medical
Corporation Knee Brace Mechanical

[44] Auxiliary Apparatus for Bracing
Knee.

Korea University
Research and Business
Foundation

Knee Device Mechanical

[45] Self-Adjusting Knee Brace. Nelson Ronald E. Knee Brace Mechanical
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Table 3. Cont.

Cite Title Main Applicant Body Part Type Technology

[46] Knee Ankle Foot Orthosis. The Governors of The
University of Alberta

Knee-Ankle-
foot Orthosis Mechanical

[47]
Orthotic Joint and
Knee-ankle-foot Orthotic Device
incorporating same.

Becker Orthopedic
Appliance Company Knee-Ankle Device Mechanical

[48]

Orthotic System and Method
utilizing Hydrostatic
Compression of Soft Tissue to
Unload The Knee and/or Heel up
to 100%.

Leos Alexander N. Knee-Ankle Device Mechanical

[49] Knee Brace with Adjustable
Bolster. Knecht Steven S. Knee Brace Mechanical

[50] Active Knee Orthosis. De Cortanze André Knee Orthosis Mechanical

[51] Power-Assisted Orthosis with
Hip-knee Synergy.

Case Western Reserve
University Hip-Knee Orthosis Mechanical

[52] Knee Brace with Tool-Less Length
Adjuster. Knecht Steven S. Knee Brace Mechanical

[53]
Dynamic Load Bearing Shock
Absorbing Exoskeletal Knee
Brace.

Desousa Egas
Jose-Joaquim Knee Brace Mechanical

[54] Knee Orthosis Device and
Associated Methods.

University of
Connecticut Knee Orthosis Mechanical

[55] Knee Joint Supporter. Kowa Company, Ltd. Knee Device Mechanical

[56] Method for Controlling a Knee
Orthosis.

Otto Bock Healthcare
Gmbh Knee Orthosis Electromechanical

[57] Knee Orthosis for Treatment of
Pcl Injury. Medical Alliance Knee Orthosis Mechanical

[58] Artificial Knee Joint. Fillauer Europe Ab Knee Orthosis Mechanical

[59] Adjustable Knee Brace.
Deroyal Global
Healthcare Solutions
Limited

Knee Brace Mechanical

[60] Orthopedic Knee Brace. Humphrey Jay C. Knee Brace Mechanical

[61] Method for Controlling an
Artificial Knee Joint.

Otto Bock Healthcare
Products Gmbh Knee Method Mechanical

[62] Soft Inflatable Exosuit for Knee
Rehabilitation.

Arizona Board of
Regents on Behalf of
Arizona State University;
Dignity Health

Knee Exosuit Pneumatic

[63]

Knee Joint Orthotic Device
Manufacturing Apparatus and
Knee Joint Orthotic Device
Manufacturing Method, and Knee
Joint Treatment Support
Apparatus and Knee Joint
Treatment Support Method.

CYBERDYNE Inc.;
University of Tsukuba Knee Device Electromechanical

[64]
Unpowered Wearable Walking
Assistance Knee Equipment With
Gait Self-adaptivity.

Beijing Institute of
Technology Knee exoskeleton Mechanical

[65]
Soft Knee Exoskeleton Driven by
Negative-pressure Linear
Actuator.

Beijing Institute of
Technology Knee Exoskeleton Pneumatic

[66] Actuator Unit for Knee-ankle-foot
Orthosis. Suncall Corporation Knee-Ankle-

Foot Orthosis Electromechanical

[67] Hip and Knee Actuation Systems
for Lower Limb Orthotic Devices. Ekso Bionics, Inc. Hip-Knee Orthosis Electromechanical
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Table 3. Cont.

Cite Title Main Applicant Body Part Type Technology

[68]
Knee Brace with Expandable
Members and Method of Using
the same.

Colaco Glenn Knee Brace Mechanical

[69] Controllable Passive Artificial
Knee.

The Regents Of The
University of California Knee Exoskeleton Mechanical

[70] Ankle and Knee Motorized
Orthosis.

Ospedale Pediatrico
Bambino Gesù Irccs Knee-Ankle Orthosis Electromechanical

[71]
Dynamic Force Hinge Joint for
Knee Brace and Knee Brace
Equipped therewith.

Knecht Steven S. Knee Brace Mechanical

[72] Knee Joint Orthosis Having
Offloading Function. Luo Yun Knee Orthosis Mechanical

[73] Knee Joint Orthosis. Luo Yun Knee Orthosis Mechanical
[74] Knee Joint Orthosis. Matsumoto, Hideo Knee Orthosis Mechanical

[75] Low Profile Knee Brace and
Method of using same. Djo, Llc Knee Brace Mechanical

[76] Interactive Exoskeleton Robotic
Knee System.

The Hong Kong
Polytechnic University Knee Exoskeleton Electronic

[77] Passive Power-conservative
Artificial Knee.

The Regents Of The
University of California Knee Device Mechanical

[78] Knee Joint Control Method and
Lower Extremity Orthosis.

Kawamura Gishi Co.,
Ltd.

Knee-Ankle-
Foot Orthosis Electromechanical

[79] Knee Retractor. Chang Ki Yong Knee Orthosis Mechanical
[80] Knee Joint Brace. Matsumoto Hideo Knee Brace Mechanical

[81] Stabilizing System for a Knee
Brace.

Spring Loaded
Technology
Incorporated

Knee Brace Mechanical

[82] Actuator-equipped Knee Ankle
Foot Orthosis.

Nat Univ Corp Kyoto
Inst Technology

Knee-Ankle-
Foot Orthosis Mechanical

[83] Knee Support Orthosis Adapted
to A Prolonged Seated Position. Millet Innovation knee Orthosis Mechanical

[84]

Device for Producing Knee Joint
Correction Tool, Method for
Producing Knee Joint Correction
Tool, Device for Assisting Knee
Joint Treatment, and Method for
Assisting Knee Joint Treatment.

Cyberdyne Knee Method Electromechanical

[85]
Knee Brace and System for
Custom Fabricating Knee Brace
for a User.

Laboratoire Victhom Knee Brace Mechanical

[86]
Orthosis, in Particular of the
Knee, including Deformable
Lateral Supports.

Gibaud Knee Orthosis Mechanical

[87] Limb Orthosis, in Particular Knee
Brace. Bauerfeind Ag Knee Brace Mechanical

[88]
Knee Orthosis with Helicoidal
Axis and Method of Design and
Fabrication thereof.

2330-2029 Québec Knee Orthosis Mechanical

[89]
Powered Prosthetic Knee with
Battery Recharging During
Regeneration Phase.

Oessur Iceland Ehf [Is];
Ossur Americas Knee Prosthetic Electromechanical

[90]
Joint Mechanism, Knee Joint
Assist Device, Joint Member, and
Clutch Unit.

Fujikura Kasei Co Knee Mechanism Electromechanical
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In the analysis of the patents, we found that 59 documents are related to devices for
the knee joint and 15 documents are related to devices for two or more joints in the lower
limb, as can be seen in Figure 6.
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Figure 6. Documents by lower limb joint.

Among the 74 results obtained, 29 results match with orthoses, 16 with braces, 14 with
exoskeletons, 7 with devices, 2 with mechanisms, and 1 with exo-suit and prostheses. In
addition, three results are associated with methodologies (manufacturing methods, design
methods, tests). Figure 7 shows the resulting patents and the distribution with the part of
the body of the lower limb that they cover.
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Figure 7. Description of the patents and main coverage.

From the patent data, 59 refer to patents related only to the knee joint. In 45 patents,
their predominant technology is mechanical, using cams, hinges, pivoting arms, elastic
bands, springs, and springs as the main elements to carry out the mobility of the joint. In
11 patents, the predominant technology is electromechanical–electronic using actuators,
servomotors, motors, and a combination of motor–spring with which they carry out the
movement of the device. For three patents, the technology used is pneumatic, in which the
movement of the devices is made using soft elements. Table 3 shows the selected patents,
the technology used, the type of device, and the part of the lower limb that they cover.
Figure 8 shows the technology used in the patents and the main elements with which they
carry out the mobility of the device.
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Figure 8. Type of technology used in the knee joint.

3.2. Scientometric Analysis

The following keywords were analyzed: lower limb (frequency = 12 articles), exoskele-
ton (frequency = 11 articles), knee (frequency = 9 articles), control (frequency = 5 articles),
design (frequency = 4 articles), rehabilitation (frequency = 4 articles), passive (frequency = 4
articles), joint (frequency = 3 articles), gait (frequency = 3 articles), orthosis (frequency = 2
articles), development (frequency = 2 articles), powered (frequency = 2 articles), and assis-
tance (frequency = 2 articles) (see Figure 9). From the information obtained by the scientific
documents, the characteristics of study subjects were as follows: average weight of 75 kg, a
knee torque corresponding to 95–150 Nm, and the power in the knee between 50–235 Watts
in the movement of flexion and extension.
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Regarding the authors, we find that Mohammed S. is the main author (six articles);
however, Meng W. is the most cited author in this field (see Table 4 and Figure 10).

The United States is the most productive country (14 documents), followed by the
United Kingdom (13 documents) and China (7 documents) (see Figure 11).
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Table 4. Top authors’ production over time.

Author
Year

2012 2013 2014 2015 2016 2017 2018 2019 2020

Mohhamed, S. 2 1 1 1 1
Amirat, Y. 2 1 1
Rifai, H. 1 1 1 1

Vitiello, N. 2 1 1
Agrawal, SK 1 2
Cempini, M. 1 1 1
Domingo, A. 2 1

Han, C. 1 1 1 1
Hyun, DJ 2 1
Lam, T. 2 1

Li, J. 1 1 1
Tu, X. 2 1
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Figure 11. The most productive countries in developing exoskeletons for the knee joint.

Table 5 shows the selected articles, used in the scientometric analysis used, results of
the databases and selection criteria.



Appl. Sci. 2021, 11, 9990 13 of 23

Table 5. Articles analyzed about knee exoskeletons.

Cite Main Author Title Year

[91] Heike Vallery Complementary limb motion estimation for the control of active
knee prostheses 2011

[92] Sancisi, N. A one-degree-of-freedom spherical mechanism for human knee
joint modeling 2011

[93] Jungwon Yoon An Adaptive Foot Device for Increased Gait and Postural Stability
in Lower Limb Orthoses and Exoskeletons 2011

[94] Nam, Y Calculation of Knee Joint Moment in Isometric and Isokinetic Knee
Motion 2011

[95] Akdogan, E The design and control of a therapeutic exercise robot for lower
limb rehabilitation: Physiotherabot 2011

[96] Kim, K Development of the Exoskeleton Knee Rehabilitation Robot Using
the Linear Actuator 2012

[97] Mefoued, S Toward Movement Restoration of Knee Joint Using Robust Control
of Powered Orthosis 2013

[98] Lalami, ME Output feedback control of an actuated lower limb orthosis with
bounded input 2013

[99] Thomas C. Bulea Stance-controlled knee flexion improves stimulation-driven
walking after spinal cord injury. 2013

[100] Andrew Q. Tan Evaluation of lower limb cross planar kinetic connectivity
signatures post-stroke 2014

[101] Sujay S. Galen Isometric hip and knee torque measurements as an outcome
measure in robot-assisted gait training 2014

[102] Yan, H. Design and validation of a lower limb exoskeleton employing the
recumbent cycling modality for post-stroke rehabilitation 2014

[103] Seungnam Yu Design Considerations of a Lower Limb Exoskeleton System to
Assist walking and Load-Carrying of Infantry Soldiers 2014

[104] Lukas Jaeger Brain activation associated with active and passive lower limb
stepping 2014

[105] Walid Hassani Powered orthosis for lower limb movements assistance and
rehabilitation 2014

[106] Antoinette Domingo Reliability and validity of using the Lokomat to assess lower limb
joint position sense in people with incomplete spinal cord injury 2014

[107] Kamran Shamaei Design and Evaluation of a Quasi-Passive Knee Exoskeleton for
Investigation of Motor Adaptation in Lower Extremity Joints 2014

[108] Mohammed, S Robust Control of an Actuated Orthosis for Lower Limb Movement
Restoration 2015

[109] Louis Flynn Ankle-knee prosthesis with active ankle and energy transfer 2015

[110] Meng, W. The recent development of mechanisms and control strategies for
robot-assisted lower limb rehabilitation 2015

[111] Dominic James Farris
Revisiting the mechanics and energetics of walking in individuals
with chronic hemiparesis following stroke: from individual limbs
to lower limb joints.

2015

[112] Damiano Zanotto Knee Joint Misalignment in Exoskeletons for the Lower Extremities:
Effects on User’s Gait 2015

[113] Seung-Kook Jun Smart Knee Brace Design with Parallel Coupled Compliant Plate
Mechanism and Pennate Elastic Band Spring 2015

[114] Shamaei, K Biomechanical Effects of Stiffness in Parallel with the Knee Joint
During Walking 2015

[115] Viet Anh Dung Cai
Transparency enhancement for an active knee orthosis by a
constraint-free mechanical design and a gait phase detection based
predictive control

2016

[116] Zhang, F. iLeg- A Lower Limb Rehabilitation Robot: A Proof of Concept 2016

[117] Elena Garcia An Active Knee Orthosis for the Physical Therapy of Neurological
Disorders 2016
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Table 5. Cont.

Cite Main Author Title Year

[118] Michael Windrich Active lower limb prosthetics: a systematic review of design issues
and solutions 2016

[119] Michael S. Cherry Running With an Elastic Lower Limb Exoskeleton. 2016

[120] Vouga, T EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus
Macaques. 2017

[121] Y. Feng Research on Safety and Compliance of a New Lower Limb
Rehabilitation Robot. 2017

[122] Kopitzsch, Rm.
Optimization-based analysis of push recovery during walking
motions supports the design of rigid and compliant lower limb
exoskeletons.

2017

[123] Jun Zhu Unidirectional variable stiffness hydraulic actuator for
load-carrying knee exoskeleton: 2017

[124] Ho-Jun Kim Development of a Passive Knee Mechanism for Lower Extremity
Exoskeleton Robot. 2017

[125] Santhakumar Mohan Design, development and control of a 2PRP-2PPR planar parallel
manipulator for lower limb rehabilitation therapies. 2017

[126] Zachary F. Lerner
The Effects of Exoskeleton Assisted Knee Extension on
Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in
Children with Cerebral Palsy.

2017

[127] Samuel L. Nogueira Global Kalman filter approaches to estimate absolute angles of
lower limb segments. 2017

[128] Hala Rifai Toward Lower Limbs Functional Rehabilitation Through a
Knee-Joint Exoskeleton. 2017

[129] Michael R. Tucker Design and Characterization of an Exoskeleton for Perturbing the
Knee During Gait. 2017

[130] Juan M. Castellote Evidence for Startle Effects due to Externally Induced Lower Limb
Movements: Implications in Neurorehabilitation. 2017

[131] Kosuke Kitahara Target-directed motor imagery of the lower limb enhances
event-related desynchronization. 2017

[132] Yang Liu A novel cable-pulley underactuated lower limb exoskeleton for
human load-carrying walking. 2017

[133] R.K.P.S. Ranaweera Development of A Passively Powered Knee Exoskeleton for Squat
Lifting. 2018

[134] Muhammad Aizzat Zakaria
Forward and Inverse Predictive Model for the Trajectory Tracking
Control of a Lower Limb Exoskeleton for Gait Rehabilitation: A
simulation modeling analysis.

2018

[135] Syed Faiz Ahmed Robotic Exoskeleton Control for Lower Limb Rehabilitation of Knee
Joint. 2018

[136] Ronnapee Chaichaowarat Unpowered Knee Exoskeleton Reduces Quadriceps Activity during
Cycling. 2018

[137] Bo Li Biomechanical design analysis and experiments evaluation of a
passive knee-assisting exoskeleton for weight-climbing. 2018

[138] Yosuke Eguchi Standing Mobility Device with Passive Lower Limb Exoskeleton for
Upright Locomotion. 2018

[139] Steffen Ringhof Does a Passive Unilateral Lower Limb Exoskeleton Affect Human
Static and Dynamic Balance Control? 2019

[140] Rafael Mendoza Crespo An Adaptable Human-Like Gait Pattern Generator Derived from a
Lower Limb Exoskeleton 2019

[141] Yang, Mx Development and control of a robotic lower-limb exoskeleton for
paraplegic patients 2019

[142] Zhao, Yj The control system research of the brain-controlled medical lower
limb exoskeleton 2019

[143] Christian Di Natali Design and evaluation of a soft assistive lower limb exoskeleton 2019

[144] Fangzheng Wang Design and simulation analysis of an improved wearable power
knee exoskeleton. 2019
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Table 5. Cont.

Cite Main Author Title Year

[145] Bing Chen Knee exoskeletons for gait rehabilitation and human performance
augmentation: A state-of-the-art. 2019

[146] Ho-Jun Kim Development of a Passive Modular Knee Mechanism for a Lower
Limb Exoskeleton Robot and Its Effectiveness in the Workplace 2020

[147] De La Tejera, JA Smart health: the use of a lower limb exoskeleton in patients with
sarcopenia 2020

[148] Tu Yao An Adaptive Sliding Mode Variable Admittance Control Method
for Lower Limb Rehabilitation Exoskeleton Robot 2020

[149] Lavrovsky, E. About the Operator’s Gaits in the Passive Exoskeleton of the Lower
Extremities when Using the Fixed Knee Mode 2020

[150] Libo Zhou Design of a passive lower-limb exoskeleton for walking assistance
with gravity compensation 2020

[151] Ettore Etenzi Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of
walking. 2020

[152] Chang Yihua A Lower Limb Exoskeleton Recycling Energy from Knee and Ankle
Joints to Assist Push-off 2020

[153] Wen, Y Online Reinforcement Learning Control for the Personalization of a
Robotic Knee Prosthesis 2020

4. Discussion

In this review of 74 patents and 63 scientific articles, different designs were used to
find similarities to guide and facilitate new proposals that may arise in the future. We
conclude that using a regulated and slender structure forms the basis of the construction of
the exoskeleton design for the knee joint, generally identifying two types of movement:
(a) rotation, which achieves flexion and extension of the knee, and (b) rotation and transla-
tion, which reproduce more naturally the articular movement of the knee. The design can
be scaled to active or passive exoskeletons depending on the force element that is used,
and the number of joints of the lower limb that can be included can be expanded.

On the other hand, the number of records per database does not reflect the effectiveness
of each search engine. For this research, priority was given to those who provided useful
data, such as direct links to patents, the inventor’s name, and IPC codes. However, there
are some difficulties in processing the records due to the lack of options to filter results or
IPC categories. Moreover, some applicants may be included in the name of their companies.
This is because some search engines only show the name of the applicant or owner rather
than the inventor. In some cases, there is a lack of coherence between the names of the
authors in different patents (for example, Chen shuyan and Shuyan, C.). These kinds of
inconsistencies were grouped together, but still, the results could not be entirely accurate;
the significance of this error does not affect the classification of every system.

This work is helpful to researchers and developers concerned with making proposals
more functional to patients and therapists. The patients can know in detail the solutions
existent in the market and increase confidence in the kind of device they are using or
intend to use, comprehending its operating features, which help to assimilation and adopt
medical technology.

4.1. Structural Support Elements

Based on the selected patents and scientific documentation, it is observed that the
design of exoskeletons or knee orthoses consists of a rigid structure that is fixed to the side
of the joint attached to the leg by means of elastic bands or straps. This structure can be one
or two in parallel, embracing the knee joint from the sides, constituting the main structure
in the design. Generally, it is made up of three parts: an upper part that is fixed to the leg
above the knee, a lower part fixed below the knee, and a joint axis that allows flexion and
extension of the mechanical structure of the exoskeleton (see Figure 12).
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4.2. Union Types

In patents and research articles, we find two different designs in the joint. The first
kind of design allows the flexion and extension of the exoskeleton structure through a hinge
with a single axis of rotation in the simplest and most generalized way. It provides the
exoskeleton with a movement of a degree of freedom. The second is the union through a
mobile axis, which is achieved in three ways: pivoting arms, cams, and polycentric pulleys,
providing the exoskeleton with two degrees of freedom due to the linear displacement
during the rotation that occurs when the axis moves during rotation (see Figure 13).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 23 
 

one or two in parallel, embracing the knee joint from the sides, constituting the main struc-

ture in the design. Generally, it is made up of three parts: an upper part that is fixed to the 

leg above the knee, a lower part fixed below the knee, and a joint axis that allows flexion 

and extension of the mechanical structure of the exoskeleton (see Figure 12). 

 

Figure 12. Basic governed structure of attached exoskeleton: (a) one-sided; (b) two-sided. 

4.2. Union Types 

In patents and research articles, we find two different designs in the joint. The first 

kind of design allows the flexion and extension of the exoskeleton structure through a 

hinge with a single axis of rotation in the simplest and most generalized way. It provides 

the exoskeleton with a movement of a degree of freedom. The second is the union through 

a mobile axis, which is achieved in three ways: pivoting arms, cams, and polycentric pul-

leys, providing the exoskeleton with two degrees of freedom due to the linear displace-

ment during the rotation that occurs when the axis moves during rotation (see Figure 13). 

 

Figure 13. Type of union: (a) hinge; (b) pivoting arms; (c) cam. 

4.3. Types of Force Elements Used 

The two variants in the design of the exoskeleton structure are the basis for building 

active or passive knee exoskeletons. In the first case, actuators (pneumatic/electric) are 

added to the structure that provides the force for bending and joint extension; the basic 

structure is generally with a fixed axis. The second case is by means of springs, cams, or 

Single axis of 

rotation hinge

Upper arm

Lower arm

Single axis 

of rotation

Parallel 

structure

  35 

   

a) EXOMAF V1 b) EXOMAF V2 c) EXOMAF V3 

Figura 15 a), el cual se dibujó en solidworks, despues se busco simplificar el 

diseño de las partes por geometrías más simples al igual que el mecanismo de 

muelle, con lo cual se dibujó en solidworks una actualización del modelo cambiando 

los muelles de torsión por resorte de tensión ver  

   

d) EXOMAF V1 e) EXOMAF V2 f) EXOMAF V3 

Figura 15 b), despues de esta idea se realizó un tercer modelo con el fin de 

mejorar la ubicación de los resortes e imagen del EXOMAF, como se muestra en la  

 
 

3
9
 

 

 

F
ig

u
ra

 1
6

. E
x
p

lo
s
io

n
a

d
o

 y
 e

n
s
a

m
b

le
 d

e
l E

X
O

M
A

F
. 

2
1

4

6

7

5

3

5

6

7

8

9

10

11

12

13

14

15

11

15

15

15

16

17

16

17

18

19

20

21

23

22

23

24

25

25

25

20

10

23

23

 
 

3
9

 

 

 

F
ig

u
ra

 1
6

. E
x
p

lo
s
io

n
a

d
o

 y
 e

n
s
a

m
b

le
 d

e
l E

X
O

M
A

F
. 

2
1

4

6

7

5

3

5

6

7

8

9

10

11

12

13

14

15

11

15

15

15

16

17

16

17

18

19

20

21

23

22

23

24

25

25

25

20

10

23

23

Cam plate

Pivoting arms

Axis of 

rotation hinge

Figure 13. Type of union: (a) hinge; (b) pivoting arms; (c) cam.

4.3. Types of Force Elements Used

The two variants in the design of the exoskeleton structure are the basis for building
active or passive knee exoskeletons. In the first case, actuators (pneumatic/electric) are
added to the structure that provides the force for bending and joint extension; the basic
structure is generally with a fixed axis. The second case is by means of springs, cams, or
elastic elements that are added to the design to store and release the energy obtained from
the march; the structure can be of a fixed or mobile axis (see Figure 14).
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From the documents (patent and research articles), we can determine that the designs,
on average, have a range of mobility of the structure from 0 to 120 degrees, and the
actuators, on average, provide a torque of 95 to 150 Nm and power from 50 to 235 watts.
On average, when it comes to the use of springs, they generate a force of approximately
85 N.

5. Conclusions

Exoskeletons and knee orthoses are rigid structures articulated with one or more
degrees of freedom, to which elements that provide force on the structure are attached. In
principle, they are of two types: (a) elastic components such as springs or bands, that when
deformed, store energy to later release it, and (b) electromechanical components, which
are generally based on electric motors that transform electrical energy into mechanical
energy. There are design proposals where the force is provided by a soft element actuated
pneumatically.

Although in principle, the technologies used remain the same, the trend in the design
of exoskeletons customized to the needs of users has led to the development of lighter
components and the combination of elastic elements with electromechanical elements,
generating semi-active designs which are more versatile. This review shows that the
United States is the country with the highest number of patents and scientific documents
related to exoskeletons, orthopedic devices, and knee devices. Therefore, some designs
could have been left out of this investigation.

The contribution of these results focuses on knowing, especially among therapists and
patients, the usefulness of classifying the knee exoskeletons and their relationship with
energy expenditure and comparative energy cost and gait efficiency. In addition, this work
contributes to the formulation of the design presented in Sections 4.1–4.3 as a topology
optimization for new knee orthoses.
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