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Abstract: Mobile Edge Computing and Communication (MECC) can be deployed in close proximity
with sensing devices and act as middleware between cloud and local networks. The health and
fitness movement has become extremely popular recently. Endurance activities, such as marathons,
triathlons, and cycling have also grown in popularity. However, with more people participating
in these activities, more accidents and injuries occur—ranging from heat stroke, to heart attacks,
shock, or hypoxia. All physical training activities include a risk of injury and accidents. Therefore,
any research that offers a means of reducing injury risk will significantly contribute to the personal
fitness field. Moreover, with the growing popularity of wearable devices and the rise of the MECC,
the development and application of wearable devices that can connect to the MECC has become
widespread, producing many new innovations. Although many wearable devices, such as wrist
straps and smart watches, are available and able to detect individual physiological data, they cannot
monitor the human body in a state of motion. Therefore, this study proposes a set of monitoring
parameters for a novel wearable device connected to the MECC based on fitness management to
assist fitness trainers in effective prompted strength training, and to offer timely warnings in the
event of an injury risk. The data collected by the monitoring device using fuzzy theory include
risk factor, body temperature, heart rate, and blood oxygen concentration. The proposed system
can display in real-time the current physiological state of a wearer/user. The introduction of this
device will hopefully enable trainers to immediately and effectively control and monitor the intensity
of a training session, while increasing training safety, and offer crucial and immediate diagnostic
information so that the correct treatment can be applied without delay in the event of injury.

Keywords: MECC; wearable device; Internet of Things; fitness; fuzzy theory

1. Introduction

In recent years, sport activities have become popular among the general public, and
intense training in sports is no longer exclusively undertaken by professional sportsper-
sons. Although professionals have the benefit of having the best coaching staff, others do
not, resulting in sports injuries and accidents caused by excessive exercise and improper
training [1]. Ref. [1] suggested that the same parameters of exercise (intensity, duration,
and frequency) that determine the positive fitness and health effects of physical training
also appear to influence the risk of injuries. In addition, some studies of runners and
other physically active groups have consistently demonstrated that greater duration and
frequency of exercise are associated with higher risks of injury. Given that each body or the
degree of feeling in an environment vary, training can be quantified using units, such as

Appl. Sci. 2021, 11, 9976. https://doi.org/10.3390/app11219976 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2289-5709
https://orcid.org/0000-0002-5758-4516
https://orcid.org/0000-0002-8360-5819
https://orcid.org/0000-0003-0261-2513
https://doi.org/10.3390/app11219976
https://doi.org/10.3390/app11219976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11219976
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11219976?type=check_update&version=3


Appl. Sci. 2021, 11, 9976 2 of 22

mathematics and monitoring [2], mastering training methods, intensity, and so on. The
main motivation of this research is the proposal of a novel monitoring system that allows a
trainer to make appropriate adjustments to these measures to avoid training injuries.

The human body is a complex biological system where each organ has interrelated
activities. A person undertaking training experiences a unique combination of internal–
external factors according to the intensity of that training [3]. Trainers may have “a feel” for
determining workout intensity, which is the product of training and experience. However,
this feeling can never provide a sufficiently accurate understanding of how a trainee’s
body is reacting to the workout intensity to predict and prevent injury [4]. Injury risk
in sports is not affected by a single factor, but is the product of a combination of factors,
such as body temperature, heartbeat, blood oxygen level, changes in temperature, and
humidity in the environment. All of these factors [4] may combine in such a way as to
cause dangerous physiological changes in the human body, resulting in injury. We have
the following statements.

1. Each sensor can only make state judgments based on the range of sensing values,
and it is not possible to know the physical state of the subject only by a single sensor.
In this paper, the measured value of each sensor is converted into a state, and the
Fuzzy theory is used to comprehensively evaluate the physical fitness. A single state
of badness may not cause the body harm, but many states of badness may cause the
body harm, and real-time physical fitness can provide subject with a way to predict
and prevent injuries.

2. The proposed method of this paper is different from using simple or non-physiological
data (such as accelerometer and GPS) to determine training load [4,5]. This paper
proposes a number of physiological data to measure physical fitness which could
understand the subject’s fatigue and prevent injuries in real time.

3. The Rating of Perceived Exertion (RPE) allows participants to use their own feelings
during exercise (heartbeat, breathing, perspiration, muscle fatigue, etc.) to estimate
the intensity of exercise. The PRE method must be evaluated after exercise, such as
the Session-RPE method which is evaluated by the subject’s subjective judgment [6].
Therefore, it is different from the real-time monitoring and evaluation method pro-
posed in this paper.

The wearable device consists of many sensors such as accelerometer, hear rate sensor,
blood pressure sensors, etc. The accelerometer sensors can help the user to count steps
or estimate daily energy. However, the accelerometer sensors have low accuracy at low
velocity [7,8] and if the user is in an emergency situation, the accelerometer sensors cannot
detect the danger as a physical signal. All commercial wearable devices have adopted
the accelerometer sensor as the major measuring physical signal sensors, so that they
cannot provide efficient data in an emergency situation. The most significant physical
emergency situation is always with cardiovascular risk. If the wearable device can detect
the cardiovascular risk factor [9], it is important for trainer to avoid unnecessary training.
The factors of cardiovascular risk, such as monitoring heart rate or blood pressure, can
help to predict the abnormal cardiovascular statement. Moreover, the body temperature
of the trainer is also an important factor to measure health. Therefore, our study wants to
focus on heart rate and temperature to design a wearable device detecting the trainer’s
physiological state to prevent an abnormal situation.

This paper proposes an evaluation method of the physical fitness, which uses physio-
logical information such as risk factors, body temperature, heart rate, and blood oxygen
concentration to evaluate physical fitness. The evaluated value of the physical fitness is a
comprehensive evaluation value of physiological information, so it has no direct correlation
with the medical/training needs of the solution.

1. Everyone can get an evaluation value of physical fitness through this system, and
there is no limit to the special users. The experimental results of this paper are used to
prove that during exercise, the evaluation value of physical fitness reacts to the actual
physical fitness changes.
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2. The evaluation value of physical fitness is a response to the change in real physical
fitness. It can be seen from the experimental results that the physical fitness changes
before, during, and after exercise are indeed correctly reflected in the evaluation value
of physical fitness.

3. This system is connected to the user’s mobile phone via WiFi, and connected to the
Internet via the 4G network in the user’s mobile phone. Therefore, users can save
their exercise process data as long as they have a 4G network.

This system is connected to the user’s mobile phone via WiFi, and connected to the
Internet via the 4G network in the user’s mobile phone. Therefore, users can save their
exercise process data as long as they have a 4G network. On the other hand, our system
adopted the fuzzy theory that consists of two stages: prediction and update. We predict
the heart rate if the signal loss occurs in the system, and it will alarm automatically in
prediction mode. These functions can support the trainer in an emergency situation. The
training environment does not always have good network quality, owing to cellular base
station disappearance, so the off-line communication function can support the transmit
message without cellular signal. Because the signal will be lost, the heart rate must be
predicted to avoid a dangerous situation. We also surveyed wearable devices for moun-
taineering activity, studied over five years as shown in Table 1. Reference [10] suggested
a cloud-based emergency response and SOS system for trainers when they encounter
danger. Reference [11] proposed a trainer-assisted wearable device and emergency res-
cue system architecture which comprises a wearable device. Reference [12] presented an
in-ear pulse oximeter mountaineering system for continuous measurement of vital signs.
These mountaineering wearable devices did not have off-line communication mode and
health prediction.

Table 1. The commercial wearable devices.

Heart Rate Temperature Emergency Call With
Smartphone

Off-Line
Communication Mode

Health
Prediction

[10] True True True True False False

[11] True True True True False False

[12] True False False False False False

Our system True True True False True True

The hardware of this paper is the prototype of the product. According to current
technology, it is not difficult to commercialize the hardware, and the power supply part
can also be reduced considerably.

Available wearable devices can be designed for the integration of various physiolog-
ical factors in training and are suitable for interactive applications among many people.
Thus, the research design of this study is based on Mobile Edge Computing [13] and
Communication (MECC). The main purpose of the proposed fitness training device is to
effectively assist trainers with physical fitness training, including a real-time understanding
of a trainee’s physiological state and potential injury risk based on the intensity of the
training and environmental factors. When an abnormality is detected, the device will
immediately warn the trainer and provide diagnostic and environmental information so
that trainers can observe the status of all players at any time or those of immediate medical
interest. This study constructs a communication network for the proposed device, using
a 4G mobile network connecting servers to the cloud and sorting through the data in a
cloud server. Therefore, a trainer can have access to the medical status of all players on a
team in real-time during any training session. This network is achieved by utilizing fuzzy
theory to show the physiological state of trainees. The main purpose of this device is to
effectively support the trainer in managing the intensity of a player’s fitness training by
monitoring the risk factor, body temperature, heart rate, and blood oxygen levels, including
environmental factors.
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2. Related Works

The system proposed integrates a wearable device and the MECC. This section will
discuss related literature and describe the development of today’s wearable devices.

There are many types of wearable devices, including glasses type, watch type, wear-
able type, etc., and currently mainstream commercialized products are mainly smart
watches and smart bracelets. The purpose of a smart bracelet is similar to that of a smart
watch. It mainly focuses on collecting health information, such as recording calories
burned, walking or running distance, recording sleep status, etc., or with reminding func-
tions such as alarm clock, time, weather, and finding mobile phones. In addition to the
above-mentioned functions, the smart watch also has diversified functions such as calling,
photographing, recording, and mobile payment. As smart watches require low power
consumption and compact appearance, smart watches usually emphasize the battery, panel
and sensing functions, so the price is usually more expensive.

Whether watches or bracelets, what kind of benefits do these wearable devices provide
to people’s lives? The main demands of such mobile devices are nothing more than
health protection and medical care. From the perspective of wearable devices, there
are already smart bracelets, watches, etc. that demand personal independent health
management. There are also some auxiliary medical devices designed for medical and
nursing needs, which are usually used in telemedicine and remote monitoring. Doctors
can track the patient’s condition and patients can be treated at home and are assisted in
their early recovery.

It is understood that the wearable devices currently used in medical treatment include
implantable wearable medical devices such as brain nerve stimulators, gastric stimulators,
cardiac defibrillators/electric shock devices, insulin syringes, etc.; there are also wearable
devices such as personal emergency rescue devices such as pedometer, health bracelet,
wearable defibrillator, and OK bounce chest/heart rate monitoring patch, etc.

It is worth observing that consumer-grade products, such as smart watches and health
bracelets are quite popular now. They are mostly used by professional or amateur athletes,
office workers in leisure and fitness, etc., and they are still personally independent in use.
Health management uses Edge computing and Big data as a platform for Wearable IoT data
analysis, and can provide knowledge solutions to several wearable device issues [14,15].
We have provided a comprehensive survey and classification of commercially available
wearables and research prototypes.

• Wearable Device

A wearable device is simple and easy to use, has low power consumption, and
miniaturizes its basic functions. It can be worn on the body, offering wearers convenient
features and interaction, in addition to the benefits of network applications equipment [16].
Wearable devices can be worn daily with little to no inconvenience, further embedding and
integrating wearable technology into people’s lives [17,18].

• Mobile Edge Computing and Communication

The MECC is known as the third wave of the information revolution, following
computers and the Internet. It was first proposed in 2009 by Kevin Ashton, director of the
Massachusetts Institute of Technology’s Auto-ID Center [19]. “Things” refer to connected
devices, including firmware, communication devices, and information platforms relating
to connected devices [20]. Things generally connect via a wireless network because MECC
may contain 500 megabytes of objects. Devices monitoring a person’s physiological state
can connect to the Internet, monitoring a user’s environment through the MECC. The
proposed system can be centrally managed and controlled. The goal of the MECC is to
enable everything around us to access the Internet or connect via wireless remote terminals
and link all future smart items, including furniture, cars, appliances, and so on. All things
can transmit data and be controlled over the Internet [21].

The present study proposes an MECC wearable device system. The device can
monitor the physiological state of the human body. It measures individual heart rate,
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body temperature, blood oxygen concentration, and risk factor in the environment and can
determine the most suitable training intensity for an individual. The sensor can monitor
each individual state, and measures the body’s tolerance by using fuzzy theorem. This
chapter introduces the measurement methods.

• Risk Factor Index

Risk factor is determined according to the Second Military General Hospital and the
National Army Education and Training Service Implementation Guidelines [22]. We have
survived studies between health and body temperature [23–27]. Typically, the circadian
rhythm can be detected by the body temperature [23,24]. Furthermore, the body tempera-
ture rhythm can also be noticed with health problems like breathlessness [25]. Therefore,
we can observe the body temperature rhythm to detect the breathlessness situation, and
our system can also detect body temperature without detecting the breathing rate. Heart
rate managing heart output is a major element in thermoregulation. Therefore, heart rate
measurements influence metabolic rate [27]. By measuring changes in temperature and
humidity in the environment, risk factor determines the possible impact on the human
body in the current environment. The measurement formula is “outdoor temperature (◦C)
+ outdoor relative humidity (%) × 0.1,” and the calculated coefficient is divided into safe
(<30), attention (30–35), warning (35–40), and danger (>40). During exercise, the human
body temperature will rise. If the ambient temperature is the same as the body temperature,
dissipating heat will be almost impossible. Therefore, the ambient temperature is most
comfortable below the body temperature. If heat cannot be dissipated, the body will be un-
comfortable. According to research, the most comfortable sports environment temperature
is 24–26 ◦C, and the best performance environment temperature is 26 ◦C. Therefore, it is
important that the risk factor posed by environmental temperature is clearly understood.
Table 2 illustrates the risk factor measurement method and the preventative measures to be
taken for each state.

Table 2. Risk factor index for body and external temperature [3].

Heatstroke Risk Factor Measurement Method

Formula: Risk Factor=Outdoor Temperature(◦C) + (Relative Humidity× 0.1)

Risk Factor Situation Prevention Focus

<30 Safety Normal daily routine

30–35 Note Water supplement

35–40 Warning Water supplement and avoid intense sports

>40 Adjustment Change clothing or location

• Body Temperature

Body temperature refers to the internal temperature of the human body. The average
normal body temperature is approximately 35.4–37.4 ◦C. Body temperature is kept constant
by temperature regulation, which is controlled by the hypothalamus. However, many
factors affect body temperature, such as day–night cycle, age, disease, and movement
at the time. Excessive body temperature can lead to organ failure and lesions, leading
to local fatigue [28]. Generally speaking, body temperature will gradually rise when
exercising, and the degree of the body temperature ascent is related to the intensity of
training. If the heat regulating mechanisms fail or immediate cooling is not possible, the
body temperature will rise beyond a safe level. A body core temperature above 40 ◦C is
considered dangerous overheating [3] as shown in Table 3. This temperature rise is the
result of muscles producing more heat than sweat, with blood flow dissipating. The heat
generated during strenuous exercise is 15–20 times that of the body at rest. If no heat
dissipates, then the body temperature can be increased by 1 ◦C every 5 min. Sustained
overheating can cause heat exhaustion. If timely cooling is not provided, the situation will
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be life-threatening and will have a high mortality rate. Table 2 shows the possible effects of
body temperature on the human body (for example, adult male and female).

Table 3. Effect of body temperature on the human body [3].

Body Temperature (◦C) Human Body State Possible Danger

35–37.4 Normal body temperature No

37.4–39.5 Exercise or fever Fatigue, vasodilation

40–42 Heat dissipation is out of
regulation, body is overheated

Overheating causes rapid breakdown of
proteins, leading to death

• Heart Rate

Heart rate may reflect stimulation by body movement. Maximum heart rate is an
appropriate indicator of exercise intensity. The average heart rate is calculated as shown
in the following formula, and the average heartbeat of a person is important. However,
heart rate can increase as a result of long-term exercise in the training process [3], and is
affected by age and resting heart rate. The most common heartbeat sensors [29] today are
the hand-clip and ear-clip types. In the proposed device design, the ear-clip type is more
suitable. Thus, this study uses an ear-clip heart-rate sensor to measure the heart rate of the
subject, as shown in Figure 1. Most commercial wearable devices for measuring HR/HRV
require the user to rest and wait for one minute to generate the HR signal. However, the
ear clip sensor does not need the user to rest and it can detect HR signal immediately. For
our proposed system, it is easy to cause undetectable conditions, so we chose to use the ear
clip sensor.

Figure 1. Ear-clip heart-rate sensor.

The heart rate is measured first when a wearer is at rest. Through the heart-rate
calculation, factors like age or physical state can be eliminated [3]. Then, the physical
state of a player can be correctly determined using heart rate. This indicator can help
make appropriate training adjustments, including rest and balance for the current training
intensity [3].

Step 1: 220 − age = maximum heart rate
Step 2: Reserve heart rate = maximum heart rate − resting heart rate
Step 3: Target heart rate = resting heart rate + (reserve heart rate × exercise level)

Subjects of different ages have different heartbeat indicators, and exceeding the heart-
beat indicated for a specific age is dangerous. Table 4 shows the heartbeat index and the
highest safe-heart rate for persons aged 20–70 years old.

Heart rate is the most easily acquired physiological information. When heart rate is
monitored during exercise, it can reflect the strengths and weaknesses of cardio-respiratory
function [30]. During exercise, the heart rate can be improved according to a range of
indicators, such as age. A heart-rate target range should be 75% of the body’s highest heart
rate. Age is also an important heartbeat indicator. This factor is related to monitoring a
subject’s evaluated physiological condition, and the general center jump is between 50%
and 80%, as shown in Figure 2.



Appl. Sci. 2021, 11, 9976 7 of 22

Table 4. Safe heart-rate indicators and maximum heart rates for persons aged 20–70 years old.

Age Safe Heart-Rate Indicators Maximum Heart Rate

20 100–150/min 200/min
25 98–146/min 195/min
30 95–142/min 190/min
35 93–138/min 185/min
40 90–135/min 180/min
45 88–131/min 175/min
50 85–127/min 170/min
55 83–123/min 165/min
60 80–120/min 160/min
65 78–116/min 155/min
70 75–113/min 150/min

Figure 2. Effect of training on heart rate [31].

A user first enters the MediaTek Cloud Sandbox (MCS) platform to pre-enter their age
and resting heart rate. The user presses a button on the proposed device to obtain their
current health status. Using the heart-rate calculation, different ages or physical states can
be excluded. The system can then correctly determine the physical status of the user.

The physical fitness index proposed in this paper will be calculated and evaluated on
the device and sent back to the cloud server via the Internet. Therefore, when the system
has poor network connectivity, the system can still use HR predictions to evaluate physical
fitness index, but on-board computing is still required.

• Blood Oxygen Concentration

The human body requires oxygen to function, and the circulatory system ensures that
blood carrying oxygen is carried to each part of the body. Blood oxygen concentration
(SpO2) refers to the amount of oxygen bound to hemoglobin (HbO2) in the blood as a
percentage of capacity. The body acquires oxygen via the respiratory system, and monitors
the oxygen carrying capacity of hemoglobin (Hb) in the blood [32–36]. Oxygen saturation
should generally be no less than 94%, as SpO2 < 90% indicates a state of hypoxemia,
that is, a standard tissue cell metabolism in hypoxic state. A severe hypoxic condition
(SpO2 < 80%) can cause lactic acid buildup, indicative of insufficient mitochondrial oxy-
genation. The resulting decrease in synthesis of ATP produces myocardial depression
leading to bradycardia. Organs, such as the brain and heart, may be damaged as a result.
The SpO2 value can be regarded as an important indicator of ventricular fibrillation ar-
rhythmia and cardiac arrest [37]. SpO2 is the percentage of oxygen saturation or amount in
the blood. The amount of oxygen in the blood tends to remain relatively stable even during
exercise and sleep. Generally speaking, the blood oxygen concentration of a normal person
should be kept above 94% (95–100%). If it is below 94%, clinically appropriate oxygen will
be given to maintain sufficient blood oxygen concentration. Special attention should be
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paid. If the blood oxygen is lower than 90%, seek medical attention is as soon as possible.
The reason why SpO2 is used in this paper is that the sensors currently on the market are
relatively easy to obtain.

3. The Proposed Method: Physical Fitness Training Device

The physical fitness training management device developed in this research includes a
physical fitness training management and cloud network management platform. Figure 3
shows the architecture of the device. The physical fitness training management aspect is
mainly responsible for measurement. The sensed physiological data is uploaded to the
cloud using the 4G network management platform. The fitness management device consists
of a central processing module and sensing modules, such as a temperature sensing module,
a risk factor module, and a heartbeat sensing module, as shown in Figure 4. The central
processing module is responsible for receiving the temperature data from the sensing
module, sensing the heartbeat information, and measuring the risk factor. The device then
uses a radio transmission module to upload the data to the cloud network management
platform. When the device determines that the test subject is in an abnormal condition, a
warning signal and notification will be sent by the cloud management system to the trainer
and wearer. This paper proposes to use the IoT to return user physical indicators. Since the
5G “Internet of Things” technology is not yet mature, we propose a method of transmission
via the 4G network of the mobile phone. The reason why the mobile phone is not returned
is that when the 5G technology matures in the future, this device can operate independently
without a mobile phone. On the other hand, under multi-person management, it is more
suitable to return data to the server for integrated management.

Figure 3. Architecture of the proposed device.

This device only measures and evaluates physical fitness data in objective view, and
does not discuss physical and/or mental stress in response to changing exercise conditions.
Excessive physical training can cause coma or shock. We hope to avoid such situations
through this device. Although there are some wearable devices already available in the
market can monitor the wearer’s body temperature and can send appropriate notifications.
However, none of these devices can integrate the measured information and give a physical
fitness index, which is also one of the most important contributions of this paper. Physical
fitness index is when the body’s ability to adapt to the external environment can be regarded
as the body’s comprehensive ability to adapt to life, exercise, and the environment (for
example, temperature, climate change or viruses, etc.). It contains two aspects, general
quality (the state of physical health) and specific quality (specific physical abilities required
to perform a certain occupation or sport). In addition to being competent for daily work,
there is also spare time to enjoy leisure, and the physical fitness and ability to cope with
sudden changes and stress. Therefore, good physical fitness usually requires correct
balanced nutrition, exercise, diet management, and adequate sleep and rest.
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Figure 4. Fitness management device schematic.

• Central Processing Module

This study used a LinkIt Smart 7688 Duo development platform as the central pro-
cessing module. This platform was designed mainly for networking wearable devices. The
chip used had 32 MB of flash memory and 128 MB of DDR2 RAM. The chip’s pin design
and the expansion board are easy to integrate directly into a product. This study used the
Arduino IDE platform, and uploads were performed using the 7688 LinkIt Smart platform.

The MediaTek LinkIt ™ Smart 7688 Duo is powered by the OpenWrt Linux and a
580 MHz MIPS processor and is with an ATMega32U4 Arduino microcontroller. With
on-board WiFi support, this device truly provides everything needed to quickly prototype
IoT devices and applications all on one small and affordable board. We used this device to
implement our system prototype and the firmware coding is easy to build in other embed-
ded kits. Its advantage is that it has a built-in wifi module to facilitate the development of
IoT related applications.

This chip uses an MT7688AN wireless chipset with an ATmega32U4 microcontroller
(MCU). The MT7688AN system-level chip is the core of the development platform. More-
over, this system-level chip has high performance 802.11n 1T1R Wi-Fi AP, supports up to
2 GB of RAM, and includes an SD card. It has a Wi-Fi encryption engine and various periph-
eral connection capabilities. Developers can also use the UART interface to communicate
with the MCU, as shown in Figure 5.

Figure 5. LinkIt Smart 7688 Duo Support Program List.
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• Body Temperature Sensing Module

This study used an MLX90614 module to measure a subject’s body temperature. The
Melexis MLX90614 is a non-contact infrared thermometer for temperature measurement
with an IR thermopile detector chip. The digital output of the thermometer is PWM. In the
10-bit PWM configuration, the continuous output measurement range is between −20 ◦C
and 120 ◦C. In addition, the MLX90614 has a low-noise amplifier and a powerful DSP unit
for high precision and thermometer resolution. The temperature of the environment is
calculated accurately.

• Risk Factor Sensing Module

This study uses a DHT11 temperature and humidity sensor to monitor external tem-
perature and humidity for risk factor assessment. It can collect real-time humidity and
temperature data. The sensors’ simple single-chip computer bus can be used to communi-
cate directly through the calibrated digital signal output. The DHT11 uses minimal power,
and the average operating current is 0.5 mA. Upon receiving a start signal, the DH11T
response signal is received by the Arduino system platform, with a delay of 20–40 µs.

• Blood Oxygen Sensing Module

This study uses an ear-clip type MAX30100 pulse oximetry sensor. The MAX30100
sensor is a pulse oximeter heart-rate sensor. In general, this device is an optical sensor
whose measured readings come from the two LEDs emitting two wavelengths of light. The
emitted light is focused on a permeable single point to monitor the oxygenated blood in
the skin.

• Cloud Network Management Platform [38]

MCS is a free cloud-based platform, which allows fast prototyping of wearable devices
for data and device management services, focusing mainly on MECC connectivity. MCS is
presented in webpage form and provides the MCS APP for Android and iOS. It can collect
its own API data returned from the device and provide a graphical interface to display
data in the development of the page. A developer can create a prototype by collecting the
information using the MCS from the sensing elements of the device. These data channels
can be divided into the following categories: display, controller, and integrated display
controller. This type of data channel and display can store and display the data collected
by the sensing elements of the device. For example, data on temperature are uploaded
from the sensing component of the device, and the MCS will store the data in a time series
by monitoring the situation in real time. The MCS can also control the remote terminal
through the webpage. The device uses a built-in controller system to control the state of
the components within the device.

The MCS can set trigger conditions and actions. When the value returned by a
specific data channel exceeds the set range, the system will send an email or mobile phone
notification. Users can also choose whether to receive email or mobile phone notifications.
MCS supports webhook trigger, and it can enter the URL notification made. The system
will set automatic notifications when a specific condition is triggered (push phone or
email), and the notification will be sent to each user. Thus, trainers can be immediately
notified according to the set trigger conditions, and implement timely training adjustments
or medical treatment for risk management and prevention. Figure 6 shows the MCS
operating interface.

The MCS can also perform multi-person management. The multi-person management
interface can be operated by IDs of different devices, and multiple devices can be monitored
at the same time. The MCS can also control a remote terminal through the controls in the
webpage. The use of the built-in system handover command to the controller has a long
buzzer sound in long or short tones. This command allows operation management, as
shown in Figure 7.
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Figure 6. MCS system interface.

Figure 7. MCS multiplayer management interface.

4. Proposed Fuzzy Theory

This study used the fuzzy inference engine to make inferences to determine appro-
priate decisions. The fuzzy rule of this experiment was extracted from the measurement
data. The membership function parameters measured the amount of collected data to
fine-tune the membership function. These factors include the risk factor, individual body
temperature, heart rate, and blood oxygen fuzzy sets. The fuzzy rules can be linked to
infer the values of the test subject indicators, and the index coefficient is understood by the
present physiological state of the test subject. According to reference [21], we determined
the degree of risk and training benefits, as shown in Figure 8.

• Fuzzy Theory Algorithm

Fuzzy logic systems have been widely applied in many fields of scientific and academic
research on MECC devices, such as, washing machines, air-conditioners, and refrigerators.
The fuzzy system can support smart control to automatically fine-tune temperature, humid-
ity, or mechanical action. Fuzzy theory provides a logic system to deal with human logical
inference processes and can design intelligent systems to analyze semantics or descriptive
language. In the past few years, fuzzy deduction has been widely applied to various prac-
tical systems [39]. Most applications have been in consumer goods or industrial intelligent
control systems and use the rules of experience or knowledge-related information and
fuzzy control law. The propositional linguistic control is transformed into the if–then rule
form [40].

However, most inference usually follows the method presented in [41]. Inference
methods have advantages and disadvantages, and this study uses a Min–Max inference
method. The inference of fuzzy inference result is obtained by quantization. By monitoring
the data collected and then inputting fuzzy rules to obtain the calculation result, the degree
of motion of the subject or the current state of the body can be determined.
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Figure 8. Fuzzy rules.

• Fuzzy Rule Establishment

The fuzzy inference method in this study is the attribution function to obtain the
appropriate degree of each rule. The appropriateness of each rule is integrated to achieve
appropriate deduction. Even if the propositions in the rule conditions are not completely
consistent, they can be compared according to the level of consistency. The reasoning
process is performed in the following four steps: (1) fuzzification of the input variables,
(2) rule evaluation, (3) output of the aggregation rule, (4) and final inverse fuzzification [42].

The fuzzy inference method consists of determining the appropriateness of using the
membership function for each rule, and then integrating all the rules of fitness to obtain the
proper inference. Experiment outputs include the risk factor, individual temperature, heart
rate, and oxygen saturation (SpO2). Four input/output systems are decomposed into a
number of input/output systems. The fuzzy rules are based on 54 kinds of (3 × 3 × 3 × 2)
composition state. The fuzzy rules may be reduced to nine kinds of semantic fuzzy rule.

OR fuzzy operation : µA∪ B(x) = max[µA(x), µB(x)] (1)

AND fuzzy operation : µA∪ B(x) = min[µA(x),µB(x)] (2)

In summary, the inference engine in the fuzzy system will use these fuzzy rules to
make inferences to determine the decision to be taken in the next step. The fuzzy rules of
this experiment are extracted from the measured data by the physical training algorithm.
The attribution function is collected by the data. The parameters of the attribution function
are fine-tuned, such as the fuzzy coefficient, temperature, heart rate, and blood oxygen.
The fuzzy set can be associated with the fuzzy rule, and the fuzzy rule base inference is
measured, as shown in Figure 9.

Physiological states have four sets: E1 (safe), E2 (sports), E3 (dangerous), and E4
(prohibited), as shown in Figure 9.

In this experiment, the numerical range of each device for monitoring the fitness
exercise management device system contains fuzzy sets. The range of the risk factor is A1
(safe, 0–30), A2 (notification, 27–39), and A3 (dangerous, 40–60). This study adopted the
normal fuzzy normalization, taking the range of 1–0 as 26–30. A value of 1 is 100%, and 0
is 0%. For example, the risk factor input value X1 is measured as 29, then the attribution
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degree of A1 and A2 is 0.4 and 0.6, respectively. Figure 10 shows the attribution coefficient
obtained after the input of the risk factor.

Figure 9. Diagram of fuzzy rules.

Figure 10. Coefficient of the fuzzy sets.

Next, the membership function range of body temperature, heart rate, and blood
oxygen were measured. First, body temperature can safely be between about 35.4 and
37.4 ◦C. If it is more than 40 ◦C, then the subject must stop exercising and seek medical
attention. This study uses the set values for normal temperature as B1 (26–30 ◦C), moderate
temperature as B2 (27–39 ◦C), and high temperature as B3 (above 40 ◦C). Figure 11 shows a
domain of the temperature membership function set.

Heart rate is usually measured as the number of times the heart beats in 1 min.
Heart rate is automatically calculated by inputting the age and resting heart rate into the
proposed system. The heart rate is approximately 50–80% during general exercise. This
rate involves minimal sweating, and subjects are conscious of slightly heavier breathing.
Thus, the system calculates normal heart rate as C1 (20–40%), moderate as C2 (40–79%),
and excessive as C3 (80–100%), as shown in Figure 12.
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Figure 11. Fuzzy set domain of body temperature.

Figure 12. Fuzzy set of heart rate.

Pulse oximetry (SpO2) is considered abnormal if it is lower than a 94% oxygen satura-
tion. An SpO2 of less than 80% indicates severe hypoxia. This condition causes subendocar-
dial lactic acid accumulation by decreasing synthesis of ATP. When resulting in myocardial
depression, it will lead to bradycardia, which can cause ventricular fibrillation arrhythmia
and even cardiac arrest [43]. Thus, the attribution function values are defined as dangerous
D1 (SpO2 ≤ 90%) and normal D2 (SpO2 = 91–100%). If blood oxygen falls below 90%, then
the system will send a warning signal to the trainer to stop the exercise. Figure 13 shows
the blood oxygen input.

The system has four variables, namely, risk coefficient, body temperature, heart rate,
and blood oxygen. The fuzzy sets can be related to the fuzzy rules, and the physiological
state of the measured person is inferred by the fuzzy rule of the latter term. The final
output of the fuzzy system must be a clear value. The input of the inverse fuzzy process is
the output of the aggregated fuzzy set. The output is a single value. This study uses the
most common centroid method. This method lies along the vertical line of the polymer-
ization divided into two equal parts: the centroid of gravity (COG) of the mathematical
equation [20], as follows:

COG =

∫ b

a
µA ( x )x bx∫ b

a
µA ( x ) bx

=
∑b

a µA( x ) x

∑b
a µA( x )

(3)
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Figure 13. Set for blood oxygenation.

5. Experimental Result

The proposed device was further equipped with a commercial power supply, a LED
light, a warning buzzer, and an oxygen concentration sensor, as shown in Figure 14.

Figure 14. Fitness training machine model management system.

The test environment was a 3000 m run. The testing user was a 33-year-old adult
man with a resting heart rate of 70 beats/min. The experiment explored the benefits of the
device in a practical environment. First, the user entered his resting heart rate and age on
the cloud platform, as shown in Figure 15.
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Figure 15. Heart rate and age of the subject.

The respective risk factor, body temperature, heart rate, and SpO2 sensing data were
summarized, and the physical state of the subject was shown, as in Figure 16. It can be
seen from the Figure 16d that exercise has no obvious effect on the change of blood oxygen
value. The reason is that the change of blood oxygen value must be under high-intensity
continuous exercise to have a chance to change drastically. Figure 17 shows a complete
exercise cycle, and the changes in the first, middle, and late stages of exercise can be seen
from the changes in physical fitness index.

Figure 16. Cont.
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Figure 16. Respective sensing data: (a) risk factor, (b) body temperature, (c) heart rate, (d) SpO2,
(e) physical indicators.
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Figure 17. Physical indicator monitoring records.

When we collect experimental data, we also record the physiological responses of the
subjects. When designing the membership functions of the fuzzy theory, we use manual
to fine-tune the results close to the true reflections, so as to determine the membership
function of the fuzzy theory.

The actual machine test has four sensors, and this study used fuzzy calculus to
determine the physical indicators during exercise, as shown in Figure 17. From the analysis
of the monitoring records and comparison with different values, the subject is at rest before
1.09, whereas he is in an exercise state from 4.0–5.57. This result is a reasonable scope of
movement. The degree of exercise loading can be found in the degree of difference between
rest and exercise. The subsequent gradual recovery will slow the heartbeat and lower body
temperature more than the recovery. The slow walk from the value of the running state is
obvious. The physical fitness indicators vary with the development of different sport states.

Figure 16d shows that exercise has no obvious effect on the change of blood oxygen
value. The reason is that the change of blood oxygen value must be under high-intensity
continuous exercise to have a chance to change drastically. We obtain real-time actual
data from the sensor, and calculate the risk factor through the chip, as shown in Figure 16.
The respective sensing data from Figure 16 used fuzzy calculus to determine the physical
indicators in Figure 17. The acquisition and calculation of this information is done in real
time on the device.

The fuzzy output value is defined as the physical fitness index. In the case of this
experiment, the present physical index was determined using the values measured by the
proposed device. Table 5 shows the results of the physical fitness management device
measuring the physical fitness index, and the analyzed results obtained during exercise.

Table 5. Physical fitness status table.

Physical Index State of the Human Body

0–1.9 Safe state

2.0–3.5 Walking, warm-up exercise

3.6–4.5 Cycling, early jogging, feeling hot

4.6–5.4 Sweating, gasping, discomfort

5.5–6.8 Running for more than 10 min, profuse sweating, fatigue

6.9–7.9 Sprinting, weightlifting, shortness of breath, mild muscle soreness

8–8.7 Difficulty in breathing, chest tightness, high body temperature, inability to perspire

8.9–10 Heat phlegm, heart disease, organ failure
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In order to test the differences in physical index between different ages, we found
three subjects of different age groups to test the stability of physical fitness indicators. The
20-person experiment refers to the test of the mountain environment and verifies to the
accuracy of the system. We first tested our system by three users, their ages are 24, 45, and
62. The age ranges are youth, middle age, and old age and for fair testing comparison,
they were tested under 3000 m in the same environment—the results are shown in the
Table 6. Our proposed system with three other testers were under resting heart rates of 68,
75, and 70 beats/min, respectively. The average physical index of the experiment result is
5.6. Table 7 shows their physical index.

Table 6. Three testers’ experiment result.

Tester Years Old Resting Heart Rate Physical Index

1 24 68 5.2

2 45 75 5.8

3 62 70 6

Table 7. Experiment results of 20 users.

Testers Evaluated Heart Rate Real Heart Rate Evaluated Body
Temperature (◦C)

Real Body
Temperature (◦C)

User 1 121 115 36.6 36.6

User 2 130 125 36.5 36.5

User 3 114 113 36.6 36.6

User 4 118 120 36.6 36.6

User 5 130 118 36.4 36.4

User 6 105 112 36.6 36.6

User 7 125 119 36.2 36.2

User 8 109 110 36.2 36.2

User 9 116 119 36.4 36.4

User 10 128 115 36.4 36.4

User 11 115 111 36.7 36.7

User 12 112 109 36.4 36.4

User 13 125 128 36.7 36.7

User 14 120 122 36.7 36.7

User 15 126 124 36.5 36.5

User 16 118 115 36.4 36.4

User 17 117 119 36.5 36.5

User 18 129 132 36.6 36.6

User 19 125 122 36.5 36.5

User 20 123 124 36.6 36.6

p-value of homogeneity
of variance 0.546 1

Two sample t-test 0.426 1

The experiment indicated that the proposed system satisfied its purpose and function
demands of the initial studies and was able to monitor the physiological state of the test
subject and the exercise intensity through the wearable device. For example, if the exercise
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intensity was between 5 and 6, a trainer could choose different modes of exercise or time to
manage a subject’s physical status to achieve effective exercise.

Our system was tested by the 20 users. These users are autonomous in mountaineering
without any “controlled”, in order to reflect the most real data. The 20 users’ ages are
between 18–30. The testing environment of the mountain (Taiwu Mountain of Quemoy) is a
total of 253 m, and each user’s exercise time is 90 min. The average errors in heart rate and
body temperature are 1.7 and 0 ◦C, respectively. We also adopted the statistical hypothesis
testing for evaluating our testing data. First, we utilized the variance analysis to test if the
variance is different or not. The p-value of homogeneity of variance is 0.546, and it is larger
than 0.05. It is defined as no significant difference. Then, we also did the two-sample t-test
based on equal variance to test mean value difference. After doing the two-sample t-test,
the p-value was 0.426 and larger than 0.05. Therefore, there is no significant difference.
However, the average heart rate error is 1.7, but our system is stable according to statistical
hypothesis testing shown in Table 7. In this paper, the data of the subjects collected at
the beginning is used to establish the membership functions of the fuzzy theory. When
designing the membership functions of the fuzzy theory, we use manual to fine-tune the
results close to the true reflections, so as to determine the membership function of the fuzzy
theory. In order to test the differences in physical index between different ages, we found
three subjects of different age groups to test the stability of physical fitness indicators. The
20-person experiment refers to the test of the mountain environment and verifies to the
accuracy of the system. In the system test, these subjects are autonomous in mountaineering
without any “controlled”, in order to reflect the most real data. This device is designed to
integrate the physical fitness data of the subject and propose a physical fitness index for
evaluation. The information shared regarding safe HR and HR target range do not need to
be discussed in this paper. On the other hand, the membership functions of fuzzy theory
will also convert HR into a corresponding membership value.

We have used smart watch and smart phone for synchronization validation, but some
sensors will differ due to different wearing positions, but they do not affect the calculation
results of relative physical indicators.

6. Conclusions

The health benefits of exercise are unquestionable, but training accidents or injuries
are unavoidable. More than 90% of sport-related deaths are caused by heart or respiratory
problems, or heatstroke. Many athletes experience fatigue during strenuous exercise, which
can cause myocardial hypoxia and sudden death. In fact, any exercise that reaches a certain
intensity may cause heart problems, especially in those who have cardiovascular diseases.
Unfortunately, most people who die while exercising are unaware of their heart-related
problems. If such problems are identified early, then the chances of severe injury or death
during exercise can be reduced.

Heart rate estimation with a low-cost device is a popular research application. The
use of pulse HR monitoring during physical exercise is difficult, because the accurate
heart rate measurement by the heart rate motion artifacts (MAs) is hard to achieve. The
pulse heart rate is embedded with a low-cost heart rate device. Nevertheless, it is difficult
to measure the presence of motion artifacts in monitoring during physical exercise. We
proposed a predicted approach denoising the HR measurement smoothly. Our study can
improve better accuracy in terms of heart rate estimation. Therefore, the novelty of our
system is to adopt the fuzzy theory to predict heart rate more accurately with a low-cost
heart rate device. From experimental results obtained in this study, the human body was
found to have its own timely warnings for imminent injury during exercise, such as fatigue.
Moreover, new technology allows the instantaneous interaction of wearable devices and
network cloud systems. Hence, this technology makes monitoring a subject during exercise
for any warning signs of imminent injury possible, allowing trainers or users to make
appropriate adjustments to their exercise and offering accurate physiological data so that
timely treatment can be applied in the case of an injury. The proposed device monitors
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the risk factor, heartbeat, blood oxygen level, and body temperature in the environment,
and uses fuzzy theory to calculate the various states of the human body. However, the
authors believe that future work should explore connecting the device to home monitoring
and medical system applications. The human body is extremely complex, and future work
should include other factors to be monitored, such as blood pressure, blood sugar, and
GPS. This research is aimed at broadening the scope of applications and functions offered
by wearable medical messaging systems.
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