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Abstract: The interaction of a helicopter rotor with the ground in hover flight is addressed numerically
using a hybrid Eulerian–Lagrangian CFD model. When a helicopter takes off or lands, its wake
interferes with the ground. This interaction, depending on the height-to-rotor diameter ratio, causes
the altering of the rotor loading and performance as compared to the unconstrained case and gives
rise to the development of a complex outwash flow field in the surrounding of the helicopter. The
present study aims to characterize the interactional phenomena occurring in the early stages of the
rotor wake development and in particular the interference of the starting vortex with the ground
boundary layer and the effect of this interaction in the motion of the vortex in the rotor outwash flow.
The hybrid CFD method employed combines a standard URANS compressible finite volume solver,
the use of which is restricted to confined grids around solid bodies, and a Lagrangian approximation
of the entire flow field in which conservation equations are solved in their material form, disctretized
using particle representation of the flow quantities. The two methods are strongly coupled to each
other through an appropriate iterative scheme. The main advantage of the proposed methodology is
that it can conveniently handle complex configurations with several bodies that move independently
from one another, with affordable computational cost. In this paper, thrust coefficient predictions of
the hybrid model are compared to predictions of a free wake code and to experimental data indicating
that consistent prediction of the rotor load requires the inclusion of the ground boundary layer in the
analysis. Moreover, detailed comparisons of the rotor wake evolution predicted by the hybrid model
are presented.

Keywords: ground boundary layer; helicopter; ground effect; Eulerian-Lagrangian methods

1. Introduction

When a helicopter executes hover flight during takeoff and landing, a complex flow
field is developed in the wake of its main rotor which is affected by the blockage of the
ground. The starting vortex ring of the rotor impinges on the ground and thereafter
a so-called “ground vortex” is formed that moves outwards forming an outwash flow.
The formation and the intensity of the ground vortex depend on several parameters such
as the helicopter distance from the ground; the wind velocity and direction, if any; and the
thickness of the boundary layer on the ground. The presence of the ground near the rotor
has been known to alter the aerodynamics of the rotor In Ground Effect (IGE) as compared
to Out of Ground Effect (OGE) and gives rise to performance benefits (reduced power
consumption for a given thrust), however there are also reports of operational and handling
issues [1].

The rotor wake–ground interference has been addressed in several experimental and
numerical studies. Curtiss et al. [2] conducted IGE experiments in an in-door test rig.
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An isolated rotor was towed in a long towing shed. They measured the loads of the rotor
for different values of the advance ratio within the range 0–0.1 and for different flight
height–to-rotor diameter ratios within the range 0.23–0.45. They distinguished two wake
flow states:

(i) the re-circulation flow in which the starting vortex rolls up ahead of the rotor
disk and

(ii) the ground vortex flow in which the starting vortex rolls up below the rotor disk

while, through extensive flow visualization, they identified the conditions that favor the
development of each of them.

In the framework of HELIFLOW project, Boer et al. [3] performed wind tunnel IGE
tests during side-ward flight. The campaign took place in the large low speed facility (LLF)
of the German–Dutch wind tunnel (DNW). The rotor outwash and the position of the
ground vortex were measured via particle image velocimetry (PIV). Smaller scale wind
tunnel IGE tests were conducted by Ganesh and Komerath in the John J. Harper Low-Speed
Wind Tunnel of Georgia Institute of Technology [4] and by Nathan and Green in a low-
speed, closed-return wind tunnel with a 2.7 m wide × 2.10 m high × 4 m long, octagonal
working section [5]. Ganesh and Komerath measured the velocity in the wake using
hot-wire anemometry, which was combined with pulsed laser sheet flow visualizations
and hub-load measurements. Their objective was to characterize the unsteadiness of the
wake flow in ground effect. They measured fluctuations in the rotor inflow which were
found 5–10% higher than the ones corresponding to OGE. They attributed the fluctuations
to the ingestion of the re-circulation flow into the rotor near wake region. Nathan and
Green mimicked the relative motion of the helicopter with respect to the ground when
in forward flight, by adding a moving belt on the ground level instead of the tunnel
wind flow. This suggests that the presence of the ground boundary layer is essential for
the correct prediction of the interactional phenomena between the rotor wake and the
ground. More recently, Sugiura et al. [6] conducted IGE flight tests of the JAXA research
helicopter. Velocity measurements were taken with a LIDAR system as well as ultra sonic
anemometers and were combined with smoke visualizations. Sugiura et al. [7] used these
measured data to validate their URANS simulations. The focus of the comparison was
in forward flight cases with low advance ratios values. Cavallo et al. [8] conducted a
similar study on the rotor–ground interference using URANS simulations combined with
an actuator disk model of the rotor. Similar to the work in [7], the authors focused on
forward flight conditions with low advance ratio values and assessed the developed flow
field around the helicopter. More recently, Pasquali et al. [9] used a potential BEM solver
for investigating the aerodynamics of a hovering rotor in ground effect. In the modeling of
the ground, two approaches were followed by the authors. The first mimics the grounds
as a infinite symmetry plane (mirroring technique), and the second treats the ground as a
panel body (bounded domain method). The results in general were found to be in good
agreement with measurements. However, both methods due to their inviscid character
showed some limitations by predicting the increase in trust coefficient at Z/R = 1 with a
deviation of ≈2%.

Due to its importance, the ground effect problem was also addressed in a recent
GARTEUR action group (AG-22 [10]) within the broader scope of analyzing rotor–obstacle
interactional phenomena. Within the group, computational tools of varying fidelity and
wind tunnel experiments were employed with the aim to unravel the complex flow field
and characterize the loads of a helicopter rotor flying at low altitude, in close proximity to a
well shaped obstacle in addition to ground effect. A number of wind tunnel test campaigns
were performed as part of this action group [11,12], while one of them, was conducted in
the atmospheric flows test section of POLIMI’s wind tunnel, addressing the pure ground
effect problem.

In the present paper, numerical activities addressing the rotor–ground interference
problem are presented, part of which were contributed to this GARTEUR group. The work
was motivated by an earlier study by the authors [13] in which the loads of a hovering
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helicopter main rotor in IGE were computed using a potential free wake solver [14].
The predictions were found in very good agreement with the POLIMI measured data [12] at
altitudes higher than 1.5 rotor diameters. However, accuracy degraded as the distance from
the ground decreased. At lower altitudes the potential solver underestimated the increase
in the loads caused by ground blockage. This led to the conjecture that at low altitude
flights the displacement effect induced by the development of the ground boundary layer
which is absent in potential methods, becomes important and may explain the deviation of
the predictions. Similar observations were also made by other participants of the same
Garteur group. Schmid et al. [15] investigated the effect of the ground and of a nearby
obstacle on the loading of the rotor using the UPM panel code of DLR. He compared
results of UPM code to data from the same experimental database and he arrived at the
same conclusion, that panel codes underestimate the increase in thrust IGE at low altitude
hovering conditions by ≈2%.

Based on the above, in the present analysis a hybrid Computational Fluid Dynamics
(CFD) model is applied that can accurately predict the formation of viscous boundary
layers. The corresponding flow solver, couples a standard Eulerian finite volume solver
with a Lagrangian particle approximation [16,17]. In the Eulerian part, separate grids of
limited width are defined around every solid body, on which the flow equations in Eulerian
description are solved. In particular for the rotor–ground interaction problem different
Eulerian grids are built around the rotating blades, extending by 1.5× radius in the radial
direction and by 0.5× radius around every cross section. The blades are simulated as
rotating actuator lines. Although the existing CFD framework is capable of treating the
blades in a fully resolved manner [16], given that the present work emphasizes on the
effect of the ground boundary layer on the rotor surrounding flow, it is considered that the
simple and cost effective actuator line modeling approach is sufficient for capturing rotor
loads correctly without aggravating computational cost. A separate grid is defined on the
ground which extends 0.5× the radius above the ground level. In order to interconnect
the independent domains defined by the various grids, the entire flow is described in
Lagrangian coordinates and the corresponding flow equations are solved via particle
approximations in a fully coupled mode with the solutions within the Eulerian grids.
The Eulerian part solves the compressible flow equations in density-velocity-pressure
formulation and uses pre-conditioning at low Mach while the Lagrangian part is based on
the density-dilatation-vorticity-pressure formulation. The main advantage of the hybrid
model is that it can effectively deal with flow problems which involve several bodies,
that move independently the one from the other while the same time resolves viscous
phenomena.

2. Description of the Numerical Tools
2.1. The Eulerian Solver—MaPFlow

MaPFlow is a compressible, cell-centered finite volume CFD solver, which employs
both structured and unstructured grids. The convective fluxes are discretized using Roe’s
approximate Riemann solver [18] together with the Venkatakrishnan limiter [19], while
the viscous fluxes are discretized using a central 2nd-order scheme. Turbulence closure
includes several options; the one equation turbulence model of Spalart (SA) [20], as well as
the two equation turbulence model of Menter (k−ω SST) [21]. MaPFlow can handle both
steady and unsteady flows, the latter being an important requirement for aerodynamic tools
employed in helicopter analysis. Time integration is achieved in an implicit manner permit-
ting large CFL numbers. The unsteady calculations use a 2nd order time accurate scheme
combined with the dual time-stepping technique to facilitate convergence. Additionally,
flows in the in-compressible regime are realized using Low Mach Preconditioning [22].

Let D denote a volume of fluid and ∂D its boundary. By integrating the governing
equations over D, the following integral form is obtained:

∂

∂t

∫
D

UEdD +
∮

∂D
(Fc − Fv)dS =

∫
D

QdD (1)
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where, UE = {ρ, ρ~u, ρE}T , Fc,i = { ρ un, ρui un + ni p, ρH un}T and Fv,i = {0, nj τij, nj ui

τij}T are the convective and viscous fluxes, respectively; ρ is the fluid density; ~u is the
flow velocity; p is the pressure; E is the total internal energy; H is the total enthalpy;
←→τ denotes the viscous stress tensor; un = ~u ·~n the normal velocity; and Q the source
terms (if any).

Actuator Line Model

In the present work, the rotor blades are modeled as rotating actuator lines that
contribute the corresponding body forces to the source term Q of the previous equation.
The loading is calculated on the basis of blade element analysis along the blade span and
in conjunction with tabulated 2D polars [23]. The blade is divided in a number of elements
with a dr span-wise extent. The centers of these elements constitute the control points of
the numerical process. A lift and drag resultant body force is assigned to each actuator line
control point depending on the airfoil type, twist angle, chord length, and incoming flow
velocity. Lift and drag are calculated (as shown in Figure 1), by the following equations:

Figure 1. Velocity triangle and aerodynamic loads on a blade section. Actuator line analysis definitions.

φ = arctan
We f f ,z

We f f ,x
(2)

ae f f = φ− θt − φp (3)

L =
1
2

ρW2
e f f CL(ae f f )c∆r, D =

1
2

ρW2
e f f CD(ae f f )c∆r (4)

~fcp = L~eL + D~eD (5)

where φ is the inflow angle; θt is the local twist angle; φp is the pitch angle of the blade;
ae f f is the effective angle of attack; CL(ae f f ) and CD(ae f f ) are the lift and drag coefficient
for the specific angle of attack, respectively; ρ is the density of the fluid; We f f is the local
two dimensional inflow velocity; c is the blade element characteristic chord; ∆r is the
width of the blade element; and ~eL, ~eD are the unit vectors in the direction of lift and
drag, respectively.

The reaction of this body force and the corresponding power are then imposed as
source terms in the momentum and energy equations of the cells swept by the blades
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during their rotation. In order to avoid singularities, the body forces are distributed over a
number of neighboring cells using a 3D isotropic Gaussian distribution [24].

~fε = ~fcpηε (6)

where ηε(d) = 1
ε3
√

π3 e−
d
ε is the regularization Gaussian kernel and d = |~xcp − ~xc| is the

distance between a cell centered grid point and the control point of a blade element.

~fc = −
Ncp

∑
i=1

~fcpηε(cpi, cell) (7)

The freestream velocity vector is directly sampled on the control points of the actuator
lines [25]. The control points lie over the line of the blade bound vorticity, where blade
sectional flow effects are negligible. The velocity at the control points is estimated through a
distance and volume weighted interpolation to the computed velocities of the neighboring
cells of CFD grid using Radial Basis Functions (RBF) [26].

Even though recommended by [26], tip correction models are not frequently applied.
The reason is that as actuator lines follow the blades in their rotation, body forces are
imposed in the rotating frame. Therefore, 3D wake flow is reproduced in a more realistic
manner than in actuator disk method and consists of both the shed and the trailed vortices
released by the blades. Prerequisite of the above is that adequately fine grid resolution is
used in the vicinity of the actuator lines. With a small enough characteristic cell length of
the CFD grid (grid spacing) in the range of c

2 −
c
8 the distributed force suggested in [27]

has been found to be sufficient to resolve the tip and root vortices. In the present work,
the CFD grid spacing is chosen to be in the order of c

5 . The application of tip corrections is
only then required if the utilized grid is not as fine as suggested above. Coarser grid cab be
considered when the priority of simulations focuses only on blade loads predictions.

2.2. Lagrangian Solver—Compressible Vortex Particles Approximation

The Lagrangian solver is configured based on particle approximations. Particles are
centered at ~Zp; occupy a volume Vp; and carry volume integrals of density ρp, vorticity ~ωp,
dilatation θp, and pressure pp:

qp(~x, t) = ∑
p

Qp(t)ζε(~x− ~Zp(t)), Qp(t) =
∫

Vp(t)
q(~x, t)dV = qp(t)Vp(t) (8)

In the above, qp is any of (ρp, ~ωp, θp, pp) and, respectively, Qp is any of (mp, ~Ωp, Θp, Πp)

(e.g., ~Ωp = ~ωp Vp). Furthermore, ζε denotes a smooth approximation of the Dirac func-
tion [28].

In Lagrangian (material) coordinates, the flow equations for inviscid conditions take
the form

D/Dt



~Zp
Vp
Mp
~Ωp
Θp
Πp


=



~Up
Vp θp

0
Vp

(
(~ω · ∇)~u +∇× −∇p

ρ

)
p

Vp

(
2‖∇~u‖ −∇ · ∇p

ρ

)
p

Vp((1− γ)pθ)p


(9)

where (·)p denotes evaluation at the particle position ~Zp. The velocity vector is not explicitly
given by the above equations. Using the Helmholtz velocity decomposition it follows that

~u = ~U∞ +∇φ +∇× ~Ψ, ∇2φ = ∇ · ~u = θ, ∇2~ψ = −~ω (10)
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and therefore velocity is defined by its scalar and vector potentials, φ and ~ψ, respectively,
that are both solutions of the Poisson equation with free far field conditions. Both potentials
can be directly obtained through the Biot–Savart law; however the corresponding cost may
be prohibitively high and therefore instead the particle mesh technique is employed.

2.3. The Particle Mesh Scheme

The Particle Mesh (PM) scheme solves Equation (10) using a fast Fourier transforma-
tion (FFT) on a uniform Cartesian grid. Even though FFT methods significantly reduce
the cost of the solving Poisson equations, having a finite grid, means that boundary terms
must be calculated at the outer boundaries of the grids. Because of its convolution form,
the corresponding cost is high. In order to avoid such a cost penalization the James–Lackner
algorithm [16] is utilized.

The first step in the Particle Mesh scheme is to transform the flow information carried
by the particles into a continuous distribution. To this end, the particle quantities are
projected on the PM grid using 1D interpolation functions (see (11)). Then, the Poisson
equations are solved and the velocity at the PM grid nodes is obtained through finite
differences. Similarly the entire right hand side of (9) is calculated at the grid nodes.
The final step is to back interpolate the information from the grid notes to particle position,
using the interpolation operator (13). Finally, the Lagrangian evolution Equation (9) are
integrated in time using a 4th order Runge–Kutta scheme.

qi,j,k ≡ ProjPM(qp; Vp) =
∑p qpVpW(~xi,j,k − ~Zp)

∑p VpW(~xi,j,k − ~Zp)
(11)

where xi,j,k denoted the position of the i, j, k grid node,

W(~r) = W1(rx/h)W1(ry/h)W1(rz/h) (12)

~r = (rx, ry, rz), h denotes the grid spacing and W1 the 1D interpolation function used.
Concerning the present work a 4th order interpolation function is used which conserves
the moments up to 3rd order [29].

qp ≡ Interp(qi,j,k) = ∑
i,j,k

qi,j,kW(~xi,j,k − ~Zp) (13)

A well-known problem in particle methods is that as the particles loose their regularity,
accuracy deteriorates. A way to mitigate this inherent problem of particle methods is
remeshing. Remeshing consists of repositioning the vortex blob periodically on the PM
grid nodes. In the present work re-meshing takes place at each time-step.

2.4. The Hybrid Solver

The combination of the previously described numerical methods results in a Hybrid
Eulerian–Lagrangian solver (from hereon HoPFlow). A typical numerical setup for the
hybrid solver can be seen in Figure 2. The computational domain is decomposed in two
overlapping parts; the Eulerian one, DE, and the Lagrangian one DPM. In DE MaPFlow
CFD solver is utilized and thus wall boundary conditions on SB are handled exactly, which
particle methods have several difficulties to efficiently implement. For the Eulerian part,
boundary conditions are also needed on SE. They are provided by the Lagrangian solver.
In this way the two solvers are coupled. Because the two domains are independent and
overlapping, a correct communication between them should provide a smooth transition
from one solution to the other.

Coupling is achieved by a two way communication. The Lagrangian solver provides
on SE the boundary conditions needed for the Eulerian solver, and the Eulerian solver
provides back the effect of solid boundaries on DPM by substituting the vorticity–dilatation
distributions over its defining domain DE.
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Figure 2. The Eulerian domain DE contains the solid boundary SB. The Lagrangian domain D∞

includes DPM and and DE.

2.4.1. Communicating the Boundary Conditions on SE to the Eulerian Solver

In order to solve the Eulerian equations, the correct boundary conditions on SE must
be defined. To this end, the Lagrangian solution that is defined at the nodes of the PM
grid, is interpolated at the ghost nodes of the Eulerian grid, situated outside SE. Next,
the average over the surrounding ghost nodes indicate the flow state at the center of each
ghost cell. Finally the fluxes through SE are determined from the Riemann invariants
associated to the flow states on the two sides of SE.

2.4.2. Communicating the Presence of SB to the Lagrangian Solver

The PM grid that the Lagrangian solver is using, does not respect the solid boundaries
and therefore the presence of SB is missing. For a Lagrangian flow description based
on the θ − ~ω formulation, flow perturbations are represented by modifications in the
dilatation and vorticity fields. Assuming that the Eulerian solution in DE is correct if
the solver is given appropriate conditions at SE, then the modifications in vorticity and
dilatation due to SB are already contained in the Eulerian solution. Therefore, two steps
are taken that define the coupling procedure between the Eulerian and Lagrangian parts of
HoPFlow: (a) transform the Eulerian solution into compressible particles and (b) replace
the Lagrangian particles contained in DE by those produced in step (a) (Figure 3). As
the Eulerian solver is cell centered and does not use as primary quantities dilation and
vorticity, step (a) includes: (i) use of Green–Gauss formula in order to obtain θ and ~ω at the
grid nodes, (ii) interpolation of ρ and p from cell centers at the Eulerian grid notes, and
(iii) interpolation of the flow information from the Eulerian grid nodes at regular positions
within every cell (in the schematic, there are four particles per cell). It is important to have
good spatial density of particles, and so more than one Eulerian particles are defined per
cell. Along with space particles, surfaces ones are also generated in order to obtain the
correct solution near solid boundaries(Figure 3 right). The key difference is that surface
intensities are multiplied by the corresponding surface in order to obtain the particle
intensities. Next, space and surface particles are both projected to the PM grid in order to
obtain the Lagrangian solution.
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Figure 3. Spatial distribution of the E- particles. (Left): One E-cell is shown within a 4 × 4 stencil of
the PM grid corresponding to the M4′ projection function. There are four PE particles in the E-cell
marked as blue circles. (Right): A part close to the solid boundary is shown. On SB, surface particles
are shown as blue open circles. The middle surface particle is embedded in the M4′ stencil activated
for its projection.

3. Description of the Test Cases

Validation is carried out against measured data from a wind tunnel test campaign,
conducted at Politechnico Di Milano (Polimi) [11]. The test campaign concerns a helicopter
hovering at varying distances above the ground (pure ground effect). The helicopter rotor
is a four bladed one with diameter of 0.75 m. Blades are formed by NACA0012 un-tapered,
untwisted airfoil sections with chord length of 0.032 m. The collective pitch was set at
10 degrees, the rotational speed at 2580 RPM and the tip Mach is equal to 0.3. The test
matrix of the experiment and the simulations concern steady hover flight above the ground
at different altitudes, starting from Z/R = 1 and going up to Z/R = 4 and zero wind
(vertical sweep). Besides measured data-sets, predictions of the HoPFlow code are also
compared to results from a previous numerical study conducted with the potential free
wake solver GenUVP [13].

In the HoPFlow simulations, the blades are modeled as actuator lines embedded
in a CFD grid of 60,000 cells (see Figures 4 and 5), while the fuselage and the rotor hub
are not considered. The ground is simulated as a viscous wall over which a CFD grid
of 1,000,000 cells is defined with the a first cell height of 2 × 10−4 m (Figure 6). The
flow is considered laminar because of the moderate low velocities and Re numbers. The
selection of the numerical parameters of the grid spacing has been derived from previous
work [16,23]. The rest of the flow domain (between the rotor and the ground level) is
filled with 2,904,000 particles. The flow velocity is determined by the PM method in which
re-meshing is applied at every time step. Finally, the time step chosen corresponds to 1◦

azimuth angle.

Figure 4. CFD meshes surrounding the rotor blades. Red lines represent the blades.
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Figure 5. CFD mesh cut at a specific radial station of the blade.

Figure 6. CFD mesh around the actuator line and the ground.

4. Validation against Measurements
4.1. Hover Flight Simulations Outside the Ground Effect (OGE)

The wind tunnel test case in which the rotor hovers at Z/R = 4 is considered as
the OGE case. The measured as well as the predicted thrust values of the OGE case are
shown in Table 1. Despite their many differences, both numerical methods (HoPFlow and
GenUVP) predict well the thrust. The two prediction methods are based on the same airfoil
polars in order to calculate the loading, which explains their agreement [30].

Table 1. OGE thrust coefficient comparison of measured data against predictions (convergent values
after 10 rotor revolutions).

Measured Thrust Coefficient Predictions GenUVP Predictions HoPFlow

0.007270 0.007290 0.007285

Figure 7 shows a snapshot of the OGE flow field of the hovering rotor as computed by
HoPFlow after 10 rotor revolutions. Vectors and velocity contours are illustrated over a
vertical plane that passes through the center of the rotor. The black box in the plot indicates
the extent of the CFD grid that covers the blades. Noticeable is the continuity of the
predicted flow field, in particular in the vicinity of the CFD grid boundary, which indicates
that the coupling of the Eulerian method (solved within the CFD grid) with the Lagrangian
method (solved over the whole computational domain) is performed in a consistent manner.
Even though the actuator line model accounts for the blades as body forces that alter the
momentum balance of the free flow, the model consistently reproduces the rotor wake
flow in contrast to actuator disk method. This is mainly due to the fact the body forces are
applied in the rotating frame of the blade and not on fixed annular elements that neglect the
blades rotation as in actuator disk method. Figure 8 illustrates wake vorticity iso-surfaces
at the early stages of the wake development. The figure suggests that the actuator line
model captures the trailed vorticity released by the tips and roots of the blades. In Figure 9
the wake vorticity after 10 revolutions is shown. Trailed vorticity can still be recognized
near the blade tips. However, in this hover case, due to the low convection velocity, wake
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spirals remain closely packed and strongly interact with each other producing thus the
contracting shear layer of the far wake and the torus shape starting vortex ring. A similar
wake pattern is obtained in the Genuvp free wake simulation (not shown in the plots).

X Y

Z

Velocity Magnitude

13.6

12.7

11.9

11.1

10.2

9.4

8.5

7.7

6.9

6.0

5.2

4.4

3.5

2.7

1.8

1.0

Figure 7. Velocity magnitude and vectors of the OGE case over an axi-symmetry plane (snapshot at
the end of the 10th period).

Figure 8. Trailing tip and root vortices at an early stage of the simulation.

Figure 9. Trailing tip and root vortices after 10 rotor revolutions.

In Figure 7, wake velocities over an axi-symmetry plain are shown. The wake vortex
ring travels downstream with an average velocity of 3–4 m/s (after 10 rotor revolutions
the ring has traveled 1D downwards). This ring starts to form at the very beginning of
the simulation as a result of the interaction of the starting shed vortices emitted by the
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different blades. Moreover, the contracting jet flow that develops under the rotor disk is
also visible in the flow field plot. As expected, the rotor inflow velocity varies along the
blade span and obtains its maximum value within the range 70–95% of the rotor radius.
In this radial range, local blade thrust also obtains its maximum value. The absence of the
fuselage, hub and rotor mast, justify the hole in the flow field appearing close to the rotor
center. The absence of aerodynamic loading leads to a flow field that appears to be almost
stagnant in this region. The 1D distance of the starting vortex ring from the rotor plane and
the convergence of the wake contracted shape indicate that after 10 revolutions the rotor
loading has also converged as shown in Figure 10.

Number of Revolutions
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t 
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o
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ff
ic

ie
n

t 
[

]

0 1 2 3 4 5 6 7 8 9 10
0.005

0.01

0.015

HoPFlow OGE

Figure 10. Thrust coefficient convergence in OGE conditions. Predictions of HoPFlow.

4.2. Hover Flight Simulations in IGE Flight Conditions

In helicopter hover flight in proximity to the ground, the presence of the ground has
a significant (an important) effect on wake development. The starting ring vortex and
the jet flow developing underneath the rotor disk, after a certain time, impinge on the
ground and move outwards forming an outwash flow. The developed flow field deviates
significantly from the one of the unconstrained OGE case. In simulations, ground effect
can modeled either by solely imposing no-penetration (inviscid option) over the ground or
by also adding zero slip (viscous option). Both options end up constraining the motion of
the starting vortex, however in a different way.

Figure 11 details in terms of vorticiy contours, the evolution of the wake that the two
modeling options provide when Z/R = 1. The inviscid option is on the left while the
viscous option on the right. From top to bottom, snapshots at the end of the 1st, 2nd, 3rd,
4th, 6th, and 10th rotor revolution are shown.
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(a) 1st (b) 1st

(c) 2nd (d) 2nd

(e) 3rd (f) 3rd

(g) 4th (h) 4th

(i) 6th (j) 6th

(k) 10th (l) 10th

VorMag: 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3

Figure 11. Vorticity contour plots for the IGE case at Z/R = 1 (snapshots taken at the end of the
1st, 2nd, 3rd, 4th, 6th, and 10th rotor revolution). Inviscid ground condition (left), viscous ground
condition (right).

In the inviscid predictions, at the end of the 1st period the starting vortex ring has
formed below the edges of the rotor disk. At the end of the 2nd period, the ring moves
downwards as a result of its self-induced velocity. At the end of the 3rd period, strong
blade tip vortices are shaped and travel downstream. At this moment, the core of the
vortex ring is at Z/R = 0.58 above the ground level and at r/R = 1.18 away from the rotor
center while the ring begins to roll up. At the end of the 4th period, delimited by the strong
vortices emitted by the tips of the blades, the contracting rotor wake is now well shaped.
The vortex ring moves further down and outwards and also starts to deform (the original
circular cross section shape is now distorted) as it interacts with the ground. At the end
of the 6th period, the vortex hits the ground at a radial distance of r/R = 1.76. The cross
section of the ring is further distorted into an elliptical shape. Finally, at the end of the
10th period, the vortex travels outwards keeping the distance of its core from the ground
constant at Z/R = 0.22.

In the viscous option, the shape obtained after the end of the first period (Figure 11b
vs. Figure 11a) is very similar to that of the inviscid option. The predicted position of the
vortex ring is almost identical in the two sets (see also Table 2). However, the magnitude of
the vorticity at the tip in the viscous option is higher and so will be the loading. Higher
circulation of the vortex ring implies that also higher down-wash will develop in the wake
at the early stages of its generation. In Figure 12, the down-wash and the in-plane velocity
components over the rotor disk as obtained with the two modeling options are compared.
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Figure 12. Comparison of the vertical and in-plane velocities at the level of the rotor (Z/R = 1).
Inviscid condition on the ground (left) and viscous condition (right).

Table 2. Comparison of IGE values of vortex ring center location for hover flight at Z/R = 1.

Period [Z/R] Inviscid
Wall

[r/R] Inviscid
Wall

[Z/R] Viscous
Wall

[r/R] Viscous
Wall

1st 0.98 1.02 0.985 1.02
2nd 0.80 1.08 0.79 1.07
3rd 0.58 1.18 0.53 1.19
4th 0.45 1.34 0.39 1.41
6th 0.28 1.76 0.51 1.86

10th 0.22 2.14 0.65 2.00

Although the differences are small, the down-wash velocities (negative sign) over the
rotor disk plane are higher in the viscous case (the extent of the blue pattern is greater in
the viscous option results). Furthermore, the up-wash induced velocities are higher by the
wake outside the rotor disk area as well as the in-plane velocities within the rotor disk area.
This explains why in the viscous option, at the end of the 2nd period, both the vortex ring
and the tip vortices of the blades have traveled longer downwards distance as compared to
the inviscid case. The same happens at the end of the 3rd revolution (longer downwards
distance traveled by the wake) while in addition to the above the ground boundary layer
starts to develop. The shear in this boundary layer is caused by the wake jet flow that at
the end of the 3rd revolution impinges on the ground. The development of the boundary
layer creates a vertical displacement effect (an upwards transpiration velocity related to the
displacement thickness of the boundary layer) which affects the shape of the vortex ring.
The distortion of the vortex ring in the viscous modeling option begins earlier than in the
inviscid one (already at the end of the 3rd revolution). The reason for that is twofold: (i) the
ring in the viscous option travels downwards with a higher velocity due to higher loading
and (ii) it interacts with the boundary layer of the ground. At the end of the 4th period, the
thickness of the boundary layer has further increased while a stronger interaction with the
vortex ring is observed. The cross section of the vortex ring obtains an elliptical shape. As a
result of getting closer to the ground, its interaction with the boundary layer on the ground
gets stronger. The outer edge of the ring is closer to the edge of a thicker boundary layer as
compared to the inner edge. Transpiration velocities are therefore higher over the outer
edge of the ring and the ring appears to rotate around its axis. At the end of 6th and 10th
revolution, the vortex ring moves upwards and away from the ground as if it rebounds
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(at Z/R = 0.51 and Z/R = 0.65, respectively, see Table 2), while wake tip vortices start to
interact with the boundary layer on the ground.

Figure 13 shows the details of the flow field on an axial symmetry plane at the end
of the 6th period. The window focuses on the interaction zone of the vortex ring with
the boundary layer on the ground. As Table 2 also indicates, at this instant the vortex
core is located halfway between the ground and the rotor plane. The recirculating flow
of the vortex extends down to the ground level and interacts with the ground boundary
layer. In the close-up plot, the anti-clockwise rotating flow of the vortex ring that entrains
the boundary layer, is clear (left side of the focus window). Maximum flow velocities are
obtained below the vortex center, at a distance Z/R = 0.1− 0.15 from the ground level.
The increasing thickness of the boundary layer (right side of the plot) pushes the vortex
away from the ground, realizing the so called re-bound effect.

Figure 13. Snapshot of flow field (velocity magnitude and vectors) over an axi-symmetry plane at
Z/R = 1, when viscous wall conditions are applied (snapshot at the end of the 6th period).

The above comparison has revealed that as the distance from the ground gets smaller,
two features that can only be reproduced by taking into account viscosity become decisive:
First, the induced velocities in the wake are higher leading to higher loading and secondly,
the vortex ring rebounds from the ground pushed by the displacement generated in the
ground boundary layer.

With respect to loading, which was the initial motivation of this work, in Figure 14
the results obtained with the potential flow solver [13] are compared to measurements
indicating that at Z/R > 1.5, the agreement is very good. It also captures the “knee” of
the CT variation at Z/R = 1.7− 2.0. Below Z/R = 1.5 there is increasing deviation that
becomes maximum at Z/R = 1. At this position, predictions with HoPFlow using the
viscous option reconfirm the importance of the ground boundary layer by fully recovering
the measured value. At Z/R = 1, the IGE simulation gives normalized CT of 1.149 against
the 1.144 of the experiment (results are summarized in Table 3), while the inviscid option
gives 1.1235 which is very close to the prediction of the free wake code. In these results,
normalization is defined with respect to the OGE CT values provided in Section 4.1.
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Figure 14. Normalized thrust coefficient in IGE conditions. Comparison of predictions with GenUVP
and HoPFlow against measurements.

Table 3. Comparison of IGE values of CT/CTOGE at Z/R = 1.

Experiment Inviscid Wall Viscous Wall GenUVP

1.1441 1.1235 1.149 1.121

Comparison of the predicted CT time series of the two HoPFlow simulation options
shown in Figure 15 for the case Z/R = 1, indicates that the presence of a viscous wall gives
rise to increased thrust of the rotor already at the very beginning of the simulation while
after a number of revolutions CT converges to higher value.
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Figure 15. Rotor thrust variation in IGE condition at Z/R = 1. Comparison of HoPFlow predictions
for the inviscid wall case against the viscous wall.

5. Conclusions and Discussion

This paper addresses the near-ground hover flight and attempts to revise earlier
potential flow predictions by introducing the effect of flow viscosity in the simulation,
in particular the viscous boundary layer that develops on the ground as a result of the rotor
down-wash. The simulation environment adopted in this analysis is a hybrid Eulerian–
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Lagrangian CFD solver which can conveniently accommodate solid bodies that move
independently the one from the other. The Eulerian and Lagrangian flow solutions are
consistently coupled through properly defined boundary conditions for the Eulerian prob-
lem and an iterative scheme, in the course of which the Lagrangian solution (material
description of flow quantities over the entire flow domain) is adequately corrected.

The work aimed to (i) identify the physical mechanisms of the rotor/ground inter-
action in the presence of a viscous boundary layer on the ground, and (ii) prove that a
hybrid solver based on particles is capable of consistently predicting OGE and IGE rotor
loads. In this connection, simulations of the hybrid Eulerian–Lagrangian solver HoPFlow
have been performed for OGE and IGE (close proximity to the ground of one rotor radius)
hover flight conditions considering the ground both as an inviscid and a viscous wall.
Comparison of HoPFlow rotor thrust predictions for the OGE case and the IGE case with
the ground being modeled as an inviscid wall against predictions by the potential free
wake GenUVP code indicated an excellent agreement of the two models, which however
underestimated the measured increase in thrust by ≈2.5%. The above comparison is a
verification of HoPFlow predictions but also suggests that the modeling of the ground is of
critical importance for the correct account of the rotor ground interactional phenomena
and thereby for the accurate prediction of rotor loads in IGE conditions. Besides, the above
conclusion was experimentally confirmed by Nathan and Green [5].

HoPFlow predicted the thrust for the IGE hover case with the ground being modeled
as a viscous wall perfectly well compared to measurements. Cross-comparison of the flow
fields of the two HoPFlow IGE simulations (viscous and inviscid options) suggests that
in the presence of the ground a displacement effect is caused, driven by the boundary
layer transpiration velocities that pushes the rotor wake and the starting vortex to move
upwards. In the inviscid simulation option the starting vortex, after hitting the ground
moves parallel to it reaching after 10 rotor revolutions a minimum height of Z/R = 0.22.
In the viscous simulation option, the starting vortex moves faster downwards due to higher
wake induced velocities and as a result of its interaction with the ground boundary layer
reaches a minimum distance of Z/R = 0.51. Then bounces back to a higher height of
Z/R = 0.65.
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