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Featured Application: The consistency between the weight of each factor and the actual situation
should be further studied.

Abstract: Oil and gas pipelines are part of long-distance transportation projects which pass through
areas with complex geological conditions and which are prone to geological disasters. Geological
disasters significantly affect the safety of pipeline operations. Therefore, it is essential to conduct
geological disaster risk assessments in areas along pipelines to ensure efficient pipeline operation,
and to provide theoretical support for early warning and forecasting of geological disasters. In this
study, the pipeline routes of the Sichuan-Chongqing and Western Hubei management offices of the
Sichuan-East Gas Transmission Project were studied. Seven topographic factors—surface elevation,
topographic slope, topographic aspect, plane curvature, stratum lithology, rainfall, and vegetation
coverage index—were superimposed using the laying method with a total of eight evaluation
indicators. The quantitative relationships between the factors and geological disasters were obtained
using the geographic information system (GIS) and weight of evidence (WOE). The backpropagation
neural network (BP) was optimised using a genetic algorithm (GA) to obtain the weight of each
evaluation index. The quantified index was then utilized to identify the geological hazard risk zone
along the pipeline. The results showed that the laying method, stratum lithology, and normalised
difference vegetation index were the factors influencing hazards.

Keywords: oil and gas pipelines; hazard zone; GIS; GA; BP; WOE

1. Introduction

The oil and gas pipelines in China have undergone 17 years of large-scale construction;
they were completed and the first west–east gas transmission pipeline was ready for
operation in 2014. By the end of 2020, the total length of the pipelines reached 144,000 km,
ranking fourth in the world (Figure 1). According to incomplete statistics, 2100 hidden
danger points of geological hazards threatening pipeline safety have been discovered in
the main oil and gas pipelines currently in service or under construction, of which 600
landslides accounted for nearly 30% of the hazards [1].

Unlike roads and railways, oil and gas pipelines transport flammable and explosive
materials; therefore, if an accident occurs, the consequences are often more serious. For
example, on 26 May 2013, the natural gas pipeline in the Yanggutang section of the Chishan
Township of Xiangtan broke and ignited, causing minor injuries to two people. On 20 July
2016, the pipeline at the Enshi Yuanjiwan tunnel exit of the Sichuan natural gas pipeline
to the east was broken by a landslide, resulting in a natural gas explosion; two people
died and three were injured. In addition, an area of 39.65 m2 was severely burned. On
2 July 2017, the highway slope of the China–Myanmar natural gas pipeline in Qinglong
County, Guizhou province, collapsed and slid due to continuous rainfall which broke

Appl. Sci. 2021, 11, 9919. https://doi.org/10.3390/app11219919 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11219919
https://doi.org/10.3390/app11219919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11219919
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11219919?type=check_update&version=1


Appl. Sci. 2021, 11, 9919 2 of 18

the gas pipeline buried along the slope, resulting in gas leakage, a combustion, and an
explosion. This event resulted in one death, 23 injuries, and the direct economic loss of
21.45 million yuan. To minimise the damage to oil and gas pipelines caused by landslides
and other geological disasters, scientific and effective methods must be used to conduct
risk assessments along pipelines, and to provide a theoretical basis for the detection and
early warning of damage to oil and gas pipelines.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 19 
 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

 
Figure 1. Pipeline mileage and growth rate in 2013–2021. 
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two people died and three were injured. In addition, an area of 39.65 m2 was severely 
burned. On July 2nd, 2017, the highway slope of the China–Myanmar natural gas pipeline 
in Qinglong County, Guizhou province, collapsed and slid due to continuous rainfall 
which broke the gas pipeline buried along the slope, resulting in gas leakage, a combus-
tion, and an explosion. This event resulted in one death, 23 injuries, and the direct eco-
nomic loss of 21.45 million yuan. To minimise the damage to oil and gas pipelines caused 
by landslides and other geological disasters, scientific and effective methods must be used 
to conduct risk assessments along pipelines, and to provide a theoretical basis for the de-
tection and early warning of damage to oil and gas pipelines.  

In recent years, many scholars have conducted research on pipeline stress and strain, 
limit state [2–5], monitoring, and early warning [6,7] during landslides; most of them fo-
cusing on pipeline stress analysis without considering the mechanical behaviour of differ-
ent laying methods through quantitative analyses in pipeline risk assessments. Pipeline 
risk assessments include two aspects: a vulnerability assessment of geological hazards 
along the pipeline and a vulnerability assessment of the pipeline.  

Risk assessments are affected by many factors; however, the dimensions, magni-
tudes, and evaluation indicators of each factor are different. To determine the accuracy of 
the final assessment combination, it is essential to understand the influence of the organic 
combination of each factor quantitatively reflected in the risk assessment. There are two 
primary methods for determining pipeline risk evaluation indicators: one is based on ex-
pert ratings and system safety theory [8–10], and the other is based on membership func-
tions and fuzzy mathematics [11,12]. Methods of pipeline risk assessments can also be 
divided into two categories: evaluation through a simple qualitative method [13,14] and 
a semi-quantitative evaluation using a computer [15–20]. Although semi-quantitative 
evaluations can improve the subjective nature of qualitative evaluations, each factor’s 
weight is primarily based on the analytic hierarchy process, which is influenced by human 
subjectivity. The weight of evidence (WOE)– genetic algorithm (GA)– backpropagation 
(BP) model is an information evaluation method supplemented by a BP neural network 
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In recent years, many scholars have conducted research on pipeline stress and strain,
limit state [2–5], monitoring, and early warning [6,7] during landslides; most of them focus-
ing on pipeline stress analysis without considering the mechanical behaviour of different
laying methods through quantitative analyses in pipeline risk assessments. Pipeline risk
assessments include two aspects: a vulnerability assessment of geological hazards along
the pipeline and a vulnerability assessment of the pipeline.

Risk assessments are affected by many factors; however, the dimensions, magnitudes,
and evaluation indicators of each factor are different. To determine the accuracy of the
final assessment combination, it is essential to understand the influence of the organic
combination of each factor quantitatively reflected in the risk assessment. There are two
primary methods for determining pipeline risk evaluation indicators: one is based on
expert ratings and system safety theory [8–10], and the other is based on membership
functions and fuzzy mathematics [11,12]. Methods of pipeline risk assessments can also
be divided into two categories: evaluation through a simple qualitative method [13,14]
and a semi-quantitative evaluation using a computer [15–20]. Although semi-quantitative
evaluations can improve the subjective nature of qualitative evaluations, each factor’s
weight is primarily based on the analytic hierarchy process, which is influenced by human
subjectivity. The weight of evidence (WOE)—genetic algorithm (GA)—backpropagation
(BP) model is an information evaluation method supplemented by a BP neural network
optimised by a GA, which can eliminate the influence of subjectivity on the weight of each
factor, ensuring more objective evaluation results. In this study, the Sichuan-East Gas to
Sichuan-Chongqing and Western Hubei pipeline route was considered as the research
subject. Based on the survey data of on-site geological disasters, the WOE model was used
to assess the danger along the pipeline, and then the BP neural network was employed
to study the weight of each factor. Finally, based on the geographic information system
(GIS), a geological disaster risk zoning map was obtained along the pipeline. The receiver
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operating characteristic (ROC) curve was utilized to verify the reliability of the model and
to provide reference information for other long distance pipelines.

2. WOE-GA-BP Model
2.1. Evidence Weight Method

The WOE law, a method based on Bayesian probability statistics [21], was first ap-
plied in medical diagnoses. During the 1990s, geologists Bonham-Carter et al. [22] and
Ahterberg et al. [23] applied this method to mineral resource prediction. This method can
avoid the subjective influence of weight factor assignment to a certain extent and considers
the positive and negative weights of the index factors [24]. The calculation formula is
as follows:
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where P is the probability of a certain event, P{B/L} is the probability of event B under the
condition that the L event occurs, B is the evaluation unit of the landslide in the secondary
factor, B is the evaluation unit without landslides in the secondary factor, L represents the
evaluation unit with landslides in the study area, and L represents the evaluation unit
with no landslides in the study area. Npix1 represents the number of area grids in which
landslides occurred within the second-level factor, Npix2 represents the number of area
grids in which landslides occurred outside the second-level factor, Npix3 represents the
number of grids in which landslides did not occur within the second-level factor, and Npix4
represents the second-level factor. N is the number of grids in which no landslides occurred
outside of the factor.

P{B/L}/P{B/L} represents the sufficient rate of landslide occurrence, and P{B/L}/P{B/L}
represents the necessity of landslide rate occurrence. Wi

+ represents the probability of a
landslide under the influence of a secondary factor, which is a positive correlation weight,
and Wi

− represents the probability of a landslide that does not affect the secondary factor,
which is a negative correlation weight. When Wi

+ > 0 or Wi
− < 0, the secondary factor is

positively correlated with the occurrence of landslides. The larger the value, the stronger
the correlation with landslides, and the higher the susceptibility to landslides. When
Wi

+ < 0 or Wi
− > 0, the secondary factor is negatively correlated with the occurrence of

landslides. The greater the negative value, the weaker the correlation with landslides, and
the lower the susceptibility to landslides. Wi

+ = 0 or Wi
− = 0 indicates that this secondary

factor is independent of the occurrence of a landslide. The difference between the two
values of Wfi represents the WOE. A larger value of Wfi indicates that the promotion effect
of the secondary impact factor on the occurrence of landslides is clearer. When Wfi = 0, the
secondary factor is independent of the occurrence of landslides.
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2.2. GA-BP Neural Network

The BP neural network has excellent multi-dimensional function mapping ability and
is capable of reflecting the law of nonlinear problems [25], which can be used for pipeline
risk assessment. In previous studies, BP neural networks have mostly been utilized for
landslide risk assessments through the consideration of factors affecting landslide stability
as the input layer, and those affecting risk index as the output layer. They were employed
to predict the results based on the connection between neurons; however, the data were
insufficient [26,27]. A GA was used to optimise the weights and thresholds of the neural
network while using the network’s nonlinear mapping capabilities, and improving its
convergence speed and prediction accuracy [28]. Accordingly, the weight of each index
factor in the BP neural network can be coupled with the weight of the evidence weight
model to obtain the risk index of geological disasters along the pipeline. The GIS platform
was employed to obtain the risk zone map and perform the calculation process, as shown
in Figure 2.
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3. Overview of the Study Area and Data Sources
3.1. Overview of the Study Area

The pipeline trunk line of the study area is 660 km long and passes through multiple
stratigraphic sub-regions of Dazhou City, Chongqing City, Enshi Prefecture, and Yichang
City. Controlled by geological structures, the strata along the pipeline have complex
lithologic characteristics and diverse rock mass types. Mudstone, limestone, clastic rock,
and carbonate rock are the main rock types in this region. From west to east, it passes
through the third subsidence zone of the New Cathaysian System and central zone of
the Yangtze Quasi-platform. It belongs to a subtropical humid monsoon climate zone,
characterized by cold winters, hot summers, heavy rains in spring and autumn, high
humidity, and abundant rainfall. The average temperature is 15–17 ◦C. The landforms
along the route are river valleys, hills, and mid-mountain landforms; accompanied by
numerous geological disasters such as collapses, landslides, and unstable slopes (Figure 3).
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3.2. Data Source

Based on the geological disaster survey data along the pipeline and remote sensing
data, a regional landslide disaster database was established to analyse and map the land-
slide disaster along the pipeline. The main data included: (1) DEM data along the pipeline
to analyse basic information, such as elevation, slope, aspect, and curvature of the study
area; (2) a 1:50,000 geological map along the pipeline to advance the formation information
of the study area; (3) satellite remote sensing data along the pipeline to extract vegetation
coverage in the study area; (4) landslide survey and survey data along the pipeline along
with 91 satellite maps to determine the area and distribution of landslides.

3.3. Characteristics of Landslides in the Study Area

The survey results indicated 220 disaster points along the pipeline, including 135 unstable
slopes, 44 collapses, and 41 landslides. Landslides and unstable slopes are the main geological
disasters along the pipeline, accounting for more than 80% of the geological disasters, with
a total area of 380,000 km2. The largest and smallest landslide areas are 4.5 km2 and 19 m2

(Figure 4).
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4. Secondary Index Factor Classification and Weight Calculation

Pipeline hazard research differs from general geological hazard susceptibility research.
While considering factors affecting landslide development, the pipeline laying method
should be considered due to its significant relationship with pipeline force [29]. Based
on the on-site survey, we considered eight factors as evaluation indicators on the basis of
correlation tests: elevation, slope, aspect, ground curvature, lithology, rainfall, normalised
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difference vegetation index (NDVI), and laying methods. Second-order factors were
divided based on WOE, and the resolution of grid cells was 5 m × 5 m.

4.1. Index Factor Classification

Index factors are divided into discrete and continuous types based on the degree
of influence on the landslide. For continuous data, the factors are first discretised; for
discrete data, each grade has a clear physical significance. The degree of influence of the
secondary state of each indicating factor on landslides was evaluated by the landslide area
ratio, graded area ratio, and evidence weight [30]. The landslide area ratio is the landslide
area occurring in the secondary state of the index factor compared to the total landslide
area in the entire region, and the graded area ratio is the area of each secondary state of
the index factor compared to the total area of the index factor. The relative size of the
two ratios characterises the importance of the secondary state classification of the index
factor for landslide susceptibility [31]. If the landslide area ratio is greater than the graded
area ratio, the landslide is prone to occur within the classification of the state, which is a
rare occurrence.

4.1.1. Elevation

The development of landslides is closely related to their distribution elevation. On
the one hand, the terrain gradient is different at different elevations, which results in a
difference in the collecting capacity of surface water. On the other hand, the intensity of
human engineering activities is different in different elevation ranges, which results in a
difference in surface conditions; hence, elevation is an important factor in the landslide
disaster-inducing environment. The elevation range of the study area is 17–1937 m, of
which more than 95% of landslides are distributed in the range of 17–1500 m, with no
landslides beyond 1500 m. According to the actual distribution, the elevations are 37–500 m,
500–1000 m, 1000–1500 m, and 1500–1974 m. A total of five secondary states constitute the
number of grids in each region, number of geological hazard points in each region, and
number of grids occupied by geological hazard points (Figure 5).
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4.1.2. Slope

The slope affects surface water collection, groundwater infiltration, groundwater flow
direction, and stress distribution, and consequently, the gestation and development of
landslides. Therefore, slope is an important factor that affects the occurrence, development,
and morphological characteristics of landslides. The slope of the terrain in the study area
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ranged from 0◦ to 83◦, and landslide slope was distributed between 0◦ and 30◦, accounting
for nearly 90% of the area. The slope was discretised with a step length of 10◦, and the
landslide area ratio in each secondary state, classification area ration, and WOE were
calculated (Figure 6).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

 
Figure 5. Elevation statistical analysis results. 

4.1.2. Slope 
The slope affects surface water collection, groundwater infiltration, groundwater 

flow direction, and stress distribution, and consequently, the gestation and development 
of landslides. Therefore, slope is an important factor that affects the occurrence, develop-
ment, and morphological characteristics of landslides. The slope of the terrain in the study 
area ranged from 0° to 83°, and landslide slope was distributed between 0° and 30°, ac-
counting for nearly 90% of the area. The slope was discretised with a step length of 10°, 
and the landslide area ratio in each secondary state, classification area ration, and WOE 
were calculated (Figure 6). 

 
Figure 6. Slope statistical analysis results. 

4.1.3. Aspect 
Owing to variations in physical conditions, such as sunlight and climate on different 

slopes, the resistance to weathering and water evaporation on various slopes differ. Gen-
erally, sunny slopes and slopes affected by monsoons throughout the year are more prone 
to landslides and other geological disasters. Based on the principle of 45° area and easy 

Figure 6. Slope statistical analysis results.

4.1.3. Aspect

Owing to variations in physical conditions, such as sunlight and climate on different
slopes, the resistance to weathering and water evaporation on various slopes differ. Gener-
ally, sunny slopes and slopes affected by monsoons throughout the year are more prone
to landslides and other geological disasters. Based on the principle of 45◦ area and easy
software calculation, eight areas were utilized in this research: 0◦–45◦, 45◦–90◦, 90◦–135◦,
135◦–180◦, 180◦–225 ◦, 225◦–270◦, 270◦–315◦, and 315◦–360◦ (Figure 7).
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4.1.4. Section Curvature

Section curvature is the rate of change of the slope or aspect in a certain direction.
The magnitude of curvature reflects the undulating shape of the ground from the side
and magnitude of the slope of the ground. Under the influence of long-term physical and
chemical effects, the rock is broken down and a large amount of fragmented rock and
gravel soil accumulates on the slope’s surface. Similarly, due to internal action in the earth
(such as volcanic eruptions and earthquakes), slopes with a particular potential energy
lose their stability, causing landslides and other geological disasters. The areas of landslide
development in the distribution areas of concave and convex slopes were similar; however,
the susceptibility to landslides differed.

4.1.5. Stratum Lithology

The stratum plays an important role in landslide formation and development. How-
ever, different types of engineering geological rock groups have different degrees of influ-
ence on the formation of landslides and other geological disasters. Moreover, engineering
geological rock sets determine the type and scale of landslide characteristics. Based on the
national 1:50,000 geological map and a previous investigation, the lithology of the study
area was divided into five types: mudstone, silty mudstone, argillaceous rock, carbonate
rock, and quaternary accumulation soil, and the statistics of the lithology landslide area
ratios were evaluated, among other quantities (Figure 8).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

 
Figure 8. Lithology statistical analysis results. 

4.1.6. Rainfall 
The effects of rainfall on landslides are reflected in several aspects. First, rainwater 

penetrates into fracture surfaces or cracks due to gravity, which reduces the frictional re-
sistance between the contact surfaces. In addition, water content significantly affects the 
mechanical properties of the soil. When the sliding force is greater than the anti-sliding 
force, the slope becomes unstable. Based on the national average rainfall distribution map 
in 2018, the rainfall amounts in the study area were divided into three categories: 1000–
1200 mm, 1200–1600 mm, and >2000 mm (Figure 9). 

 
Figure 9. Rainfall statistical analysis results. 

4.1.7. NDVI 
The vegetation coverage rate significantly affects the stability of the slope. On the one 

hand, vegetation coverage reduces the ground runoff and rainwater infiltration along 
with the effects of rainfall on slope stability. On the other hand, vegetation roots can rein-
force slopes and increase slope stability. Based on Landsat8 images, the NDVI index in 
the study area was extracted in this study to elucidate its effect (Figure 10). 

Figure 8. Lithology statistical analysis results.

4.1.6. Rainfall

The effects of rainfall on landslides are reflected in several aspects. First, rainwater
penetrates into fracture surfaces or cracks due to gravity, which reduces the frictional
resistance between the contact surfaces. In addition, water content significantly affects the
mechanical properties of the soil. When the sliding force is greater than the anti-sliding
force, the slope becomes unstable. Based on the national average rainfall distribution
map in 2018, the rainfall amounts in the study area were divided into three categories:
1000–1200 mm, 1200–1600 mm, and >2000 mm (Figure 9).
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4.1.7. NDVI

The vegetation coverage rate significantly affects the stability of the slope. On the one
hand, vegetation coverage reduces the ground runoff and rainwater infiltration along with
the effects of rainfall on slope stability. On the other hand, vegetation roots can reinforce
slopes and increase slope stability. Based on Landsat8 images, the NDVI index in the study
area was extracted in this study to elucidate its effect (Figure 10).
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4.1.8. Pipe-Laying Method

Unlike in general landslide body susceptibility studies, the pipeline-laying method is
employed to study pipelines. This method significantly affects the pipeline stress condi-
tions, and the pipeline stress deformation degree directly affects the pipeline operational
safety; thus, pipeline laying is the key factor in evaluating the risk of pipelines. According to
the relationship between pipeline direction and the main sliding direction of the landslide,
the laying methods can be divided into three types: horizontal, longitudinal, and oblique.
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According to Zhang et al. [29], horizontal laying is used when the pipe laying stress is the
largest, which is a critical situation; hence, in the evaluation analysis, horizontal laying
was the highest, and vertical laying was the lowest. It can be seen from Figure 11 that the
higher the value of laying method, the greater the contribution to the risk of landslides,
which is consistent with the research results of Zhang et al. [29].
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4.2. GA-BP Model Construction Analysis Based on WOE Model
4.2.1. WOE Model

Equation (1) was used to calculate the WOE for each secondary factor (Table 1). Risk
zoning along the pipeline was performed using the ArcGis grid stacking tool (Figure 12).
A total of 273,320,894 grids were present along the pipeline, including 83,023,949 high-risk
landslide grids, 133,985,984 medium-risk grids, and 56,310,961 low-risk grids, accounting
for 30.38%, 49.02%, and 20.6% of all grids, respectively (Table 2).

4.2.2. GA-BP Model Construction and Weight Calculation

The neural network model represents a black box with nonlinear characteristics. A
single-layer neural network model can uniformly approximate any continuity function [32].
Therefore, the model was constructed using a single hidden layer based on the index factor.
The number of neurons in the input layer Ni was eight, and the number of neurons in
the output layer No, also known as risk index, was one. However, the optimal number
of hidden layers is affected by many other factors and is often difficult to determine.
According to Hecht-Nielsen [33] and Lawrence and Fredrickson [34], the recommended
upper limit of the hidden node is 2Ni + 1 and the lower limit is (Ni + No)/2. Therefore,
the number of hidden layer neurons considered in this study should be in the range of
5–17. After comparing the size of the neural network mean square error, the number
of hidden layer neurons was determined to be 15, based on which a neural network of
8–15–1 was constructed.

The sample size used to train the neural network should be neither too large nor too
small. Widrow [35] conducted a special study on the number of training samples and
proposed the ‘rule of thumb’. Baum and Haussler [36] provided a more specific range
of the number of training samples α; that is, W/γ < α < (W/γ)log(N/γ), where N is the
number of neurons and W is the number of ownership values. Therefore, the appropriate
sample size for this study was in the range of 1350–3213.
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Table 1. Index factors and Wfi.

Index Factors Index
Classification Wfi Index Factors Index

Classification Wfi

Elevation (m)

37–500 −0.345

Stratum lithology

Mudstone 0.332

500–1000 1.092 Silty mudstone −1.815

1000–1500 −1.46 Argillaceous rock 0.047

1500–1974 0.246 Carbonate rock −0.211

Slope (◦)

0–10 −0.732 Quaternary
accumulation soil −1.282

10–20 0.251

NDVI

0–43 1.379

20–30 0.514 43–85 −0.023

30–40 −0.111 85–128 −0.204

40–83 0.238 128–170 −0.038

Aspect (◦)

0–45 −0.511 170–210 −1.023

45–90 −0.149 210–250 −6.249

90–135 −0.087

Pipe laying
method

0–3375 −3.103

135–180 0.808 3375–6750 −0.199

180–225 −0.077 6750–10,125 −0.262

225–270 0.573 10,125–13,500 −0.875

270–315 −0.328 13,500–16,875 1.561

315–360 −0.828 16,875–20,250 0.588

Section curvature
>0 −0.898 20,250–23,625 1.692

<0 0.898 23,625–27,000 0.541

Rainfall (m)

1000–1200 −0.199

1200–1600 0.0716

>2000 −0.754

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

 
Figure 12. Hazard zoning map. 

4.2.2. GA-BP Model Construction and Weight Calculation 
The neural network model represents a black box with nonlinear characteristics. A 

single-layer neural network model can uniformly approximate any continuity function 
[32]. Therefore, the model was constructed using a single hidden layer based on the index 
factor. The number of neurons in the input layer Ni was eight, and the number of neurons 
in the output layer No, also known as risk index, was one. However, the optimal number 
of hidden layers is affected by many other factors and is often difficult to determine. Ac-
cording to Hecht-Nielsen [33] and Lawrence and Fredrickson [34], the recommended up-
per limit of the hidden node is 2Ni + 1 and the lower limit is (Ni + No)/2. Therefore, the 
number of hidden layer neurons considered in this study should be in the range of 5–17. 
After comparing the size of the neural network mean square error, the number of hidden 
layer neurons was determined to be 15, based on which a neural network of 8–15–1 was 
constructed. 

The sample size used to train the neural network should be neither too large nor too 
small. Widrow [35] conducted a special study on the number of training samples and pro-
posed the ‘rule of thumb’. Baum and Haussler [36] provided a more specific range of the 
number of training samples α; that is, W/γ < α < (W/γ)log(N/γ), where N is the number of 
neurons and W is the number of ownership values. Therefore, the appropriate sample size 
for this study was in the range of 1350–3213. 

In this study, we used 273,320,894 grid units and 392,572 landslide grid units in the 
area along the pipeline. A total of 1500 random landslide grids and non-landslide grids were 
selected, and a total of 3000 grids were used as training samples. Index factor attributed 
values in the grid were extracted as input-layer data, and risk index as output-layer data. 
Firstly, the BP neural network training sample (Figure 13) was used to calculate the weight 
value, which was then optimised using the GA to improve the BP neural network. Finally, 
the network was retrained (picture b) to calculate the optimised weight value (Table 3). 

Figure 12. Hazard zoning map.



Appl. Sci. 2021, 11, 9919 12 of 18

Table 2. Hazard zoning statistics table.

Hazard Zoning Number of
Grids

Proportion of
Each District

Actual Area
(km2)

Main Lithology
and Geomorphic
Characteristics

High 83,023,949 30.38% 2076
Mudstone, deep
valleys, and
steep terrain

Middle 133,985,984 49.02% 3350

Siltstone, silty
mudstone, low
mountain, and
hill landform

Low 56,310,961 20.6% 1408
Limestone, sandstone,
and low mountain
area appearance

In this study, we used 273,320,894 grid units and 392,572 landslide grid units in the area
along the pipeline. A total of 1500 random landslide grids and non-landslide grids were
selected, and a total of 3000 grids were used as training samples. Index factor attributed
values in the grid were extracted as input-layer data, and risk index as output-layer data.
Firstly, the BP neural network training sample (Figure 13) was used to calculate the weight
value, which was then optimised using the GA to improve the BP neural network. Finally,
the network was retrained (picture b) to calculate the optimised weight value (Table 3).
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Table 3. Calculated index factor weights.

Serial Number Index Factor BP Weight GA-BP Weight

1 Elevation 0.97709 0.721317

2 Slope 0.979567 0.805494

3 Aspect 1.017634 0.788956

4 Section curvature 0.986155 0.820928

5 Stratum lithology 1.031557 1.049514

6 Rainfall 0.999602 0.75175

7 NDVI 1.000239 0.962203

8 Pipe laying method 1.047163 1.02511
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Figure 13 shows that, in both the BP and GA-BP neural network cases, the R correlation
coefficient is greater than 0.95 after training, indicating that the input and output layers are
highly correlated. In addition, the value of R for the BP neural network optimised by GA
increases by nearly 0.02, indicating that the optimisation improved the BP model.

5. Slope Risk Evaluation and Accuracy Analysis
5.1. Geological Hazard Assessment

Based on the ArcGIS raster analysis tool and the WOE model evaluation, each indicator
factor can be multiplied times the weights obtained by training the BP and GA-BP models
in Table 3, and re-analysed to obtain the risk zone map.

Comparing the hazard zone results obtained by the WOE model (Figure 14), WOE-BP
model (Figure 15), and WOE-GA-BP model (Figure 16), the following conclusions can
be drawn:

(1) High and medium-risk areas are primarily distributed in the regions of argillaceous
rocks, deep valleys, and steep terrain, because the mechanical properties of argilla-
ceous rocks are weaker than those of other rocks and the steep terrain can promote
the occurrence of a slope.

(2) According to the weight calculation results, the stratum lithology, pipe laying method,
and NDVI are the main factors affecting the hazard zone. The calculation results
for the stratum lithology and NDVI weights are consistent with the knowledge of
geological experts on the weights of important controlling factors, and the calculation
results of the weights of the laying method are consistent with the analysis of the
pipeline forces performed by Zhang et al. [29].

(3) Compared to hazard zone maps obtained using the other two models, those ac-
quired by applying the WOE-BP model have a larger proportion of high-prone
areas and contain most of the historical landslide points, hence having the most
practical significance.
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5.2. Accuracy Evaluation

The area under the ROC curve (AUC) was employed as the measurement standard.
Fawcett [37] discussed the basic theories and methods of calculating the ROC curve
and AUC.

When the AUC is less than 0.7, the model evaluation accuracy is poor; meanwhile,
when the AUC is between 0.7 and 0.8, the model evaluation accuracy is medium, and
when the AUC is greater than 0.8, the model evaluation accuracy is good. In this study,
the hazard indices obtained from the three models were divided into 100 intervals from
large to small, and the occurrence frequency of historical landslides gradually decreased.
ROC curves of the three models were drawn with the total grid frequency in the study
area as the abscissa, and historical occurrence frequency within the grid as the ordinate
(Figure 17).
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According to the ROC curve, the AUCs of the three models are 76.6%(WOE Model),
79.8%(WOE-BP Model), and 80.5%(WOE-GA-BP Mod); however, only the area correspond-
ing to the WOE-GA-BP model exceeds 0.8, resulting in good evaluation accuracy, and
indicating that the predictive evaluation ability of the WOE-GA-BP model is better than
those of the WOE and WOE-BP models.
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6. Conclusions

In this study, we developed a WOE-GA-BP model to predict the occurrence of geolog-
ical disasters and prevent the damage to pipelines using the GIS at the risk site. The work
conducted in this investigation can be summarised as follows:

(1) The area along a certain gas pipeline was considered as the research object. Eight
evaluation factors, specifically, the elevation, slope, aspect, ground curvature, lithol-
ogy, rainfall, NDVI, and laying method, were selected to establish a geological hazard
risk assessment system along the pipeline. The risk assessment of the study area was
conducted based on GIS and WOE-GA-BP models. The results were consistent with
the actual situation. The AUC reached 80.5%, indicating that the WOE-GA-BP model
is an effective risk assessment and prediction model.

(2) In contrast to the risk assessment of regional landslides, we assessed laying methods
closely related to the force of the pipeline. According to the analysis of the WOE
model, the WOE for horizontal laying was 1.692, which was the largest. Meanwhile,
in the GA-BP model analysis, the weight of the laying method was approximately
1.04, indicating a positive correlation between the stress on the pipeline and risk. This
also provides suggestions for pipeline laying. In addition, we observed that during
the construction of a new line, it is necessary to pass through landslides and unstable
slope areas with vertical or diagonal paving as far as possible to reduce risk.

(3) The GA-BP model was used to calculate the weight of each index factor. The results
showed that the laying method, stratum lithology, and NDVI were the influencing
factors for risk assessment.

This is consistent with the actual distribution of landslides and unstable slopes, indi-
cating that the GA-BP model can effectively calculate the weights of index factors, avoid
subjective effects of previous calculation methods, and utilize the advantages of data
mining and machine learning.
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