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Abstract: Universal, predictive attractor patterns configured by Lyapunov exponents (LEs) as a
function of the control parameter are shown to characterize periodic windows in chaos just as in
attractors, using a coherent model of the laser with injected signal. One such predictive pattern,
the symmetric-like bubble, foretells of an imminent bifurcation. With a slight decrease in the gain
parameter, we find the symmetric-like bubble changes to a curved trajectory of two equal LEs in
one attractor, while an increase in the gain reverses this process in another attractor. We generalize
the power-shift method for accessing coexisting attractors or periodic windows by augmenting
the technique with an interim parameter shift that optimizes attractor retrieval. We choose the
gain as our parameter to interim shift. When interim gain-shift results are compared with LE
patterns for a specific gain, we find critical points on the LE spectra where the attractor is unlikely
to survive the gain shift. Noise and lag effects obscure the power shift minimally for large domain
attractors. Small domain attractors are less accessible. The power-shift method in conjunction with
the interim parameter shift is attractive because it can be experimentally applied without significant
or long-lasting modifications to the experimental system.

Keywords: nonlinear system; coexisting attractors; control methods; multistability; Lyapunov
exponents; optically driven laser

1. Introduction

The influential research in optical bistability (OB) by Bonifacio and Lugiato [1,2]
undergirds the many investigations of the active counterpart of OB, the laser with injected
signal (LIS). The LIS system is well-studied and covers a broad range of active systems,
including CO2, diode [3–5], and quantum dot lasers [6,7]. It is replete with interesting
dynamics from chaos to coexisting attractors [8–10]. Intriguing glimpses into self-similarity
are reported in References [11–13]. Some, if not all, of these characteristics can be found in
a wide variety of other models and nonlinear systems [14–17].

Nonlinear dissipative systems have challenged the imagination since the late 1970s
with their potential, unique dynamic features and chaotic behavior [18–22]. The discovery
of multistability energized innovative approaches such as feedback loops. Experimentally,
Gibbs et al. [23] found that delayed feedback could induce multiple coexisting attractors
in an electro-optical bistable device. Coexisting attractors with subharmonic output fre-
quencies were experimentally observed in a modulated CO2 laser by Arecchi et al. [24].
Later, bifurcation diagrams of a modulated CO2 laser assisted the experiment; these di-
agrams were made by sweeping one of the control parameters in an attempt to find
bistability [25–28]. However, the continuous changes of the control parameter limited
which attractors could be isolated because of hysteresis effects. Theoretical contributions
by Meucci et al. [29] used stepwise changes in a modulated frequency to cause switching
between two coexisting attractors in a multistable system.

System control was studied further by Ott, Grebogi, and Yorke [30] and Pyragas [31]
who set about controlling chaos using feedback methods that did not require, a priori,
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analytical knowledge of the system dynamics. The approach was limited because the
feedback loop altered the state variables or system parameters. In 2014, Li and Sprott
used amplitude control to detect multistability and coexisting attractors [32]. Later, an
offset-boosting-based approach was developed as well for the identification of multistable
dynamical systems [33]. Burton et al. [34] developed a power-shift method that changed
only the control parameter of the system to transition from one attractor to another. How-
ever, the method requires some trial and error. A way to avoid this process may exist in the
traditional theoretical tools, for example, the analysis of Lyapunov exponents (LEs), which
is discussed further in Section 4.2.1.

Lyapunov exponents are able to identify spectral patterns of Hopf bifurcations, period-
doubling episodes, tori, and chaos [10,35]. In 2015 Bandy et al. [36] reported that globally
analyzed Lyapunov exponents could be used to identify attractor coexistence by comparing
forward and backward global scans of the LEs. Lyapunov spectra also predicted the
trends of the fundamental frequencies of the output signal of the individual attractors.
Structural patterns in the Lyapunov spectra were observed, but the pattern formation was
not correlated with the dynamic behavior of the attractor. Later, these specific LE patterns
were discovered to predict bifurcation sequences, imminent bifurcations, and common
borders of the attractor domains [37]. An imminent bifurcation predicts that by slightly
changing a system parameter, one LE pattern changes into another signifying a bifurcation
in the system.

Herein, we report further findings of pattern formations that predict imminent po-
tential changes in the dynamics provided the gain parameter is modified slightly. We
identify the correlation between these LE configurations and the different values of the
gain parameter. Specifically, we see an attractor with a curved trajectory of two equal
LEs that appears to be benign with respect to its dynamic behavior. A slight increase in
the gain produces a symmetric-like bubble whose potential dynamic characteristic is an
established pattern identified in Reference [37]. Also, by slightly decreasing the gain of
the system, a symmetric-like bubble known to exist in another attractor changes to the
curved trajectory of two-equal LEs, just the reverse of the previous attractor event. Because
these two cases represent two different attractors with two different modifications to the
gain, what appears to be obvious now, are in fact, new universal pattern constructs with
identifiable dynamic connections, albeit future system dynamics.

We also report findings that describe a method for discovering the ideal base attractor
used in power shifting the LIS system. We examine the location of the ideal shift and explore
correlations with the apexes of the LE bubbles in an attractor’s LE spectra. The experimental
conditions of the power shift are developed by including noise on the frequency of the
injected signal and a linear ramp on the amplitude of the injected signal. Finally, we create
a generic counterpart to the power shift, called the interim parameter shift, in which a
system parameter is temporarily modulated to transition to attractors, i.e., to systematically
access coexisting attractors and windows in chaos. The interim parameter shift results are
compared with the LEs to check for correlations between the reliability and the stability of
the system.

2. Model and Methods
2.1. Laser with Injected Signal Model

The laser with injected signal is a semi-classical theory that is based on a homo-
geneously broadened 2-level atom. The atoms and the cavity frequencies, ωa and ωc,
respectively, are tuned usually to one another at ωa = ωc and, in the absence of the external
signal, produce a stable laser output with a carrier frequency ωa. By injecting into the cavity
a continuous wave beam at frequency ω0 6=ωa, the potential for competition is established
between the driving field and the laser oscillator. At resonance and low input-signal levels,
beat patterns with frequencies close to |ωa − ω0| appear because of a simple mixing
of the 2 fields, and thus, the laser acts as the local oscillator. At a high external signal
amplitude, the laser is predicted to stably lock to the injected field and produce a constant
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output intensity, known as injection locking with a carrier frequency ω0. Between these
2 limits, complicated and interesting nonlinear phenomena appear and, contingent on
the system parameters, there are still many unexplained dynamic events. For example,
the output signal can display coexisting incommensurate frequencies [35] or as many as
3 different commensurate frequencies for the same driving field by using slightly different
initial conditions [8,10,36].

The laser with injected signal is based on the Maxwell-Bloch equations and defined
by the customary single-mode, non-resonant unidirectional ring laser. It is a coherent
model designed to approach most closely the conditions of spatial uniformity; the chosen
parameters are intermediate to the conditions of Class B [38] and Class C [39] lasers. The
representative nonlinear equations are as follows:

∂X
∂τ

= −κ̃

[(
1− i

Φ
κ̃

)
X−Y + 2CP

]
, (1)

∂P
∂τ

= −
(

1 + i∆̃
)

P + XD, (2)

∂D
∂τ

= −γ̃

[
1
2
(XP∗ + X∗P) + D + 1

]
, (3)

where Y is real and positive for definiteness (the system control parameter) and is pro-
portional to the incident field amplitude; X and P are the complex field and polarization
amplitudes; D is the real population difference, where negative numbers represent the
excited states. We chose to study the equations as 5 real differential equations. The
system parameters are the small-signal atomic gain C, the scaled cavity relaxation rate
κ̃ = κ/γ⊥, the scaled population decay rate γ̃ = γ‖/γ⊥, the scaled cavity mistuning param-
eter Φ = (ω0 − ωc)/γ⊥, and the scaled atomic detuning from the injected-signal carrier
∆̃ = (ωa – ω0)/γ⊥. γ‖ is the relaxation rate of the population inversion and γ⊥ is the
polarization relaxation rate. The time τ is measured in units of the polarization relaxation
time γ⊥

−1. The system parameters are C = 3, ∆̃ = 0.5, κ̃ = 0.1, γ̃ = 0.01, Φ/κ̃ = −0.5. If
Equations (1) and (2) are written in terms of their real and imaginary components, then
these equations can be written as real first-order differential equations; adding the real
population difference makes a total of 5 real equations which we use to study the nonlinear
LIS system. The numerical routine used to solve these equations was the NDSolve function
in Mathematica, using the “StiffnessSwitching” method.

In steady state, the output field amplitudes are triple valued with respect to the
injected signal, with a domain of instability of 0 < Y < 2.17; the entire lower branch of the
tripled-value-curve is unstable.

2.2. Lyapunov Exponents

Lyapunov exponents are theoretical spectra used to study nonlinear dynamics and
mathematical maps. They describe the average growth or decay of infinitesimal pertur-
bations to an n-dimensional system orbit and are invariant with respect to their pattern
formations and respective domains. In physics, there is universal agreement that even
one positive LE predicts chaotic dynamics or fractal geometry [40–42]. In this study, the
largest three LEs of the 5 available are the dominant contributors to the universal attractor
pattern formations described by Bandy et al. [37]. The 2 lowest LEs are not represented
here; however for completeness, we note that they are more negative than the others and
are always equal for this set of parameters, see Figure 13b and Figure 16b in Reference [36].
The LE order may be different for pattern formation in other nonlinear systems, but the
same universal attractor patterns are evident. By attractor pattern formation we mean a
universally defined visual arrangement of the LEs as a function of the control parameter.
We calculate LEs from a modified form of the Benettin method [43] as applied in the
Appendix of Reference [35].
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Attractor domains are calculated as an adiabatic scan of the injected signal, so that
once located on the attractor, small steps of the control parameter can be taken successively
to hold the system on the attractor until it no longer exists. See Reference [36] for details.
The scan step size provides the precision for the LE spectral features within the attractor
domain. In this study, the details of the system dynamics being explored provide the
guidelines for the injected-signal step size. Fourier transforms, Poincarè maps, phase-space
portraits, bifurcation diagrams, and temporal plots are the supporting theoretical tools
used to confirm the dynamics predicted by the various LE patterns.

Probing nonlinear behavior and multistability, whether in a physical model or a
map, is a system-dependent exercise. We chose a single mode, coherent model of the
laser with injected signal because it is a generic archetype of the aforesaid LIS model
and because there are extensive experimental studies of similar systems. For example,
multistability was observed in 1982 by Arecchi et al. [24] using a loss-modulated CO2 laser;
they experimentally established proof-of-existence of coexisting attractors, sparking a new
era of LIS research. The LIS studies herein were influenced profoundly by their results.
Research varies from exploring system nonlinearities [8,10] to examining intertwined
studies of nonlinearities and coexisting attractors [35,36]. In 1985, investigations [35]
unearthed many strange looking global LE patterns which, at the time, were considered
mysterious if not bizarre spectra. By 2015, these strange looking LE formations (patterns)
were no longer considered random prattle. They were found to be significant universal
configurations that predicted the dynamic behavior of LIS and other nonlinear systems.
The LE formations are known to predict: (i) the domains of coexisting attractors (see
Figure 13 of Reference [36]), (ii) a universal attractor boundary, and (iii) characteristic
dynamic behaviors (both current and imminent) that are best understood in the context of
2-parameter (“shrimp”) diagrams in Reference [13].

Figure 1 represents a schematic of attractor and window domains for the parameters
under consideration. Attractor and window dynamics are included as a function of the
injected signal. Each attractor is graphed by the position of its relative characteristic
frequency and its domain of activity. The information summarized in Figure 1 is calculated
using both LEs and traditional theoretical tools as stated above. Each attractor and window
domain is identified by name; attractor 1 (AI) to attractor 8 (AVIII) and periodic windows
WI and WII, and their dynamic features. They are named in the order in which they
were discovered. Figure 1 is especially useful when one tries to understand the relative
positioning of the coexisting attractors; it is also an instant visual of their general dynamics.
AI and AII have special distinction from the other attractors in that they appear to be the
scaffolding upon which other attractors coexist, except for AVII and AVIII which coexist
with chaos. WI and WII interrupt chaos. AI brings LIS to life for low values of the injected
signal, while AII has the largest attractor domain and guides the system into injection
locking. Note, that some Y values label period-doubling episodes: for example, in AI and
AII there is a 2n period-doubling sequence and in AVII a 5 × 2n doubling sequence. The
transition from 6P to 12P identified in AIV refers to the two dominant limit cycles of a
period-doubling sequence, 6 × 2n into chaos. The callouts for AI, AIV, AII, AVII, and AVIII
magnify some details of the attractor dynamics. For example, inverse bifurcation sequences
are identified in the callouts AII and AVII.

Different theoretical tools provide information about an attractor or window dynamics
and that includes chaos, but it is the exploration of the LEs as a function of the system’s
control parameter that reveals the detailed, universally predictive information about each
attractor [37] or window. In addition, the study of LE patterns leads ultimately to under-
standing how an attractor can be accessed reliably under experimental conditions without
changing the parameters of the system itself. It is called a power shift [34].
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Figure 1. Schematic of the global behavior of LIS is shown for parameters C = 3, Δ  = 0.5, κ  = 0.1, 
γ  = 0.01, Φ/κ  = −0.5. 1P, 2P, etc. denote limit cycles; AI-AVIII are individual attractors and WI 
and WII are periodic windows in chaos; C is chaos; vertical arrows represent attractor transitions. 
The hashed rectangle (in yellow) indicates the Y domain where AII, AIII, and AV coexist. The as-
terisk * indicates the transition from AVI to AII at Y = 1.948.  
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other spectral patterns indicates the beginning and ending of each attractor’s existence 
[37]. That is, as the injected signal is either increased or decreased, the point of the attrac-
tor’s origin or demise is a pair of zero LEs. In between these two extremes, the attractor’s 
spectral pattern evolves as the dynamics dictate. Figure 2a displays each attractor via its 
LE pattern in the context of the total unstable LIS domain for this set of parameters. In 
Figure 2b–d individual LE attractor domains are displayed corresponding to A, B, and C 
in Figure 2a. Each exhibits the characteristic boundary of converging and diverging Lya-
punov spectra and the signature zero pair of LEs. The 8 known attractors are color coded 
as follows: AI is burnt orange, AII is red, AIII is green, AIV is purple, AV is blue, AVI is 
yellow, AVII is gray, and AVIII is pink. 

Figure 1. Schematic of the global behavior of LIS is shown for parameters C = 3, ∆̃ = 0.5, κ̃ = 0.1,
γ̃ = 0.01, Φ/κ̃ = −0.5. 1P, 2P, etc. denote limit cycles; AI-AVIII are individual attractors and WI and
WII are periodic windows in chaos; C is chaos; vertical arrows represent attractor transitions. The
hashed rectangle (in yellow) indicates the Y domain where AII, AIII, and AV coexist. The asterisk
* indicates the transition from AVI to AII at Y = 1.948.

2.2.1. Generic Attractor Characteristics

To date, we have identified the following generic attractor characteristics that are
predicted by LEs. A common attractor LE spectral boundary outlines the borders of each of
the attractor and window domains. A 2-zero LEs’ signature that is common to several other
spectral patterns indicates the beginning and ending of each attractor’s existence [37]. That
is, as the injected signal is either increased or decreased, the point of the attractor’s origin
or demise is a pair of zero LEs. In between these two extremes, the attractor’s spectral
pattern evolves as the dynamics dictate. Figure 2a displays each attractor via its LE pattern
in the context of the total unstable LIS domain for this set of parameters. In Figure 2b–d
individual LE attractor domains are displayed corresponding to A, B, and C in Figure 2a.
Each exhibits the characteristic boundary of converging and diverging Lyapunov spectra
and the signature zero pair of LEs. The 8 known attractors are color coded as follows: AI is
burnt orange, AII is red, AIII is green, AIV is purple, AV is blue, AVI is yellow, AVII is gray,
and AVIII is pink.

A cluster of asymmetric LE bubbles along with their signature zero-pair LEs’ at their
apexes represent a forward (in AVII and AVIII) or backward bifurcation sequence, (in AIV);
how the sequencing evolves can be interesting. See results in Section 3.1. Figure 2a displays
one symmetric bubble in AIII, but this characteristic pattern indicates a different type of
dynamics other than the asymmetric bubbles. The following discussion elaborates on
symmetric-like LE bubbles.
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The symmetric-like bubble emerges as a Lyapunov spectral pattern that predicts im-

minent changes in the dynamics when a parameter is modified slightly. The bubble has 
an apex located near its center that is not a zero LE. We suspect this apex has something 
to do with the probability of transitioning dynamics when one of the parameters of the 
system is changed. There is more discussion on this in Section 4.3. The function of the 
symmetric-like bubble becomes clearer when linked to the studies of Bonatto et al. [12,13] 
and Mandel and Erneux [44]. The symmetric-like bubble is now understood to be the fore-
runner to an imminent bifurcation in the system dynamics, when one of the parameters, 
such as the gain, is changed. To examine the effects of changing the gain on the attractor 
dynamics, we collect the LEs associated with “corkscrew” attractors: AIII, AV, and AVI 
and discuss further in Section 3.1. 
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Figure 2. (a) Global view of 3 attractor domains using the first 3 LEs as a function of the injected field Y, AII coexists with
AIII, AV, and AVI (domains D, E, and F respectively); Chaos coexists with AVII and AVIII (domains B and C, respectively);
and AI coexists with AIV (domain A). (b) is AIV, (c) is AVII, and (d) is AVIII.

2.2.2. Symmetric-like LE Bubbles

The symmetric-like bubble emerges as a Lyapunov spectral pattern that predicts
imminent changes in the dynamics when a parameter is modified slightly. The bubble has
an apex located near its center that is not a zero LE. We suspect this apex has something
to do with the probability of transitioning dynamics when one of the parameters of the
system is changed. There is more discussion on this in Section 4.3. The function of the
symmetric-like bubble becomes clearer when linked to the studies of Bonatto et al. [12,13]
and Mandel and Erneux [44]. The symmetric-like bubble is now understood to be the
forerunner to an imminent bifurcation in the system dynamics, when one of the parameters,
such as the gain, is changed. To examine the effects of changing the gain on the attractor
dynamics, we collect the LEs associated with “corkscrew” attractors: AIII, AV, and AVI and
discuss further in Section 3.1.

2.2.3. Window Characteristics Predicted by Lyapunov Exponents

In Figure 3 we present 2 unique LE profiles of windows in chaos, WI and WII, that
are graphed within their domains as a function of Y. The 2-color scheme in each graph
of WI and WII is the result of forward (black) and backward (red) scans of their domains.
Note, that the backward scan is not an exact replica of the forward scan. Since these scans
are executed adiabatically, the accuracy of landing on WI or WII is imperfect. That is, we
believe, the backward scan follows the chaotic trajectories temporarily because the accuracy
of the calculations is insufficient to acquire WI and WII at their demise.
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It is easy to see that as a function of the control parameter Y, the 2 windows of Figure 3
possess asymmetric bubble patterns. The significance of these results is that windows can
be identified using LEs in the same way that attractors are identified. Further, the discovery
of the windows in this study was made using the power-shift method [34], as described in
Appendix A. By dividing the range ∆Y into 1001 segments and evolving for T = 20,000τ at
Y = 1.229 we found WI and at Y = 1.2575 we found WII.

2.3. Power Shifting to Access Attractors or Windows
2.3.1. A Theoretical Example of Power Shifting

The power-shift (PS) method requires a nonlinear system with an independent control
parameter. Power shifting is a type of incremental perturbation of the control parameter
with the result of either accessing known or discovering new attractors (or windows). The
method employs specific timings to steer the dynamic trajectory from one known attractor
to another that may even coexist.

The power-shift method works in the laser with injected signal by changing the input
signal Y at specific points on a known stable limit cycle. In Figure 4a there are 2 sets of limit
cycles of known attractors superimposed on each other. The magenta x on base AVI (period
four limit cycle in green) marks the position where the injected signal is down shifted from
Y0 = 1.96 to YPS = 1.84. The system trajectory jumps from base AVI to resultant AV (period
three limit cycle in blue). In Figure 4b for a different location on base AVI, again marked
by a magenta x, we show that the system trajectory moves off base AVI to resultant AII
using the same down shift values from Y0 = 1.96 to YPS = 1.84. Note, AV and AII coexist at
Y = 1.84.

2.3.2. Power-Shift Base Attractor Optimization

In this investigation we use the power-shift method to collect the statistics associated
with the successful access of a desired attractor. We initialize the system on the base attractor
for 1 control parameter value Y0 and power shift to YPS while at different locations on the
limit cycle uniformly distributed in time. For convenience, we set 1 point on the limit cycle
as the reference point. An obvious choice for the reference point is the time associated with
the attractor’s peak-output power. Next, select any location on the limit cycle as the time
after the peak (TAP). We observe to which attractor each TAP evolves. Finally, select a new
Y0 usually in increments of ∆Y0 = 0.01 and repeat the investigation for the same power
shift, YPS. The results are tabulated across the domain of the base attractor and evaluated
for the largest tranche (or time intervals) of TAPs that accesses the desired attractor, or it
might be said, for the most efficient Y0 of the base attractor domain.



Appl. Sci. 2021, 11, 9905 8 of 18Appl. Sci. 2021, 11, 9905 8 of 18 
 

  
(a) (b) 

Figure 4. The axes are Re|X|, Im|X|, and D. The magenta x marks the power shift location, the base attractor AVI. (a) 
Down shift from AVI (in green) at Y0 = 1.96 to AV (in blue) at YPS = 1.84. (b) Down shift from AVI (in green) at Y0 = 1.96 to 
AII (in blue) at YPS = 1.84. 

2.3.2. Power-Shift Base Attractor Optimization 
In this investigation we use the power-shift method to collect the statistics associated 

with the successful access of a desired attractor. We initialize the system on the base at-
tractor for 1 control parameter value Y0 and power shift to YPS while at different locations 
on the limit cycle uniformly distributed in time. For convenience, we set 1 point on the 
limit cycle as the reference point. An obvious choice for the reference point is the time 
associated with the attractor’s peak-output power. Next, select any location on the limit 
cycle as the time after the peak (TAP). We observe to which attractor each TAP evolves. 
Finally, select a new Y0 usually in increments of ΔY0 = 0.01 and repeat the investigation 
for the same power shift, YPS. The results are tabulated across the domain of the base at-
tractor and evaluated for the largest tranche (or time intervals) of TAPs that accesses the 
desired attractor, or it might be said, for the most efficient Y0 of the base attractor domain. 

An experimentalist might choose to time the power shift at the middle of the tranche, 
because it gives the largest allowable margin of error for a successful power shift. In the 
following discussion we include noise and ramp the injected signal. 

2.3.3. Power Shift with Noise and Ramped Injected Signal 
The power-shift method can be altered theoretically by applying noise to the injected 

signal frequency at regular intervals in time with an amplitude range simulating experi-
mental conditions more accurately. We add noise with amplitude 0.015 to the injected 
signal frequency every 0.4τ using the RandomReal function in Mathematica. The addition 
of noise in the injected signal frequency does modify slightly the system parameters Δ  
and Φ to comport with the model. The change is insignificant. 

The second modification of the power-shift method’s experiment is to apply a linear 
ramp to the power-shift amplitude instead of the Heaviside function initially used. In ex-
periment, an actual laser does not instantaneously reach its new power. To simulate the 
lag effect, we select power shifts of the type Y(τ,TAP) = Y0 + slope(τ-TAP), slope = (YPS- 
Y0)/Tlag. See Section 3.2.1 for the results of the data collection. 

  

Figure 4. The axes are Re|X|, Im|X|, and D. The magenta x marks the power shift location, the base attractor AVI. (a) Down
shift from AVI (in green) at Y0 = 1.96 to AV (in blue) at YPS = 1.84. (b) Down shift from AVI (in green) at Y0 = 1.96 to AII (in
blue) at YPS = 1.84.

An experimentalist might choose to time the power shift at the middle of the tranche,
because it gives the largest allowable margin of error for a successful power shift. In the
following discussion we include noise and ramp the injected signal.

2.3.3. Power Shift with Noise and Ramped Injected Signal

The power-shift method can be altered theoretically by applying noise to the injected
signal frequency at regular intervals in time with an amplitude range simulating exper-
imental conditions more accurately. We add noise with amplitude 0.015 to the injected
signal frequency every 0.4τ using the RandomReal function in Mathematica. The addition
of noise in the injected signal frequency does modify slightly the system parameters ∆̃ and
Φ to comport with the model. The change is insignificant.

The second modification of the power-shift method’s experiment is to apply a linear
ramp to the power-shift amplitude instead of the Heaviside function initially used. In exper-
iment, an actual laser does not instantaneously reach its new power. To simulate the lag ef-
fect, we select power shifts of the type Y(τ,TAP) = Y0 + slope(τ-TAP), slope = (YPS − Y0)/Tlag.
See Section 3.2.1 for the results of the data collection.

2.3.4. Interim Parameter (Gain) Shift

The interim parameter (gain-)shift functions in the following way: Start on a limit
cycle and abruptly change the value of the gain for a certain amount of time and then
shift it back to its original value. This may result in accessing a different attractor. For
our study, we select the gain parameter, because it is convenient and works well as an
experimental adjustable. To interim gain shift, we begin at the peak electric field output as
the initial condition at t = 0 and allow the system to evolve along the limit cycle until we
reach the desired TAP. At that point, we slightly change the gain from its original value to
its new value. After an arbitrary t = 10,000τ we shift the gain back to its original value and
record the trajectory’s evolution to the resultant attractor. For this study we chose to shift
through AIII’s domain; we record different TAP tranches on the limit cycle and determine
the statistical distribution resulting from the gain shift. This gives the percentage chance
the system leaves its original (base) attractor. See Section 3.3 for results.
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3. Results
3.1. Gain Changes on Lyapunov Exponent Patterns

In Figure 5a–c we calculate the LEs of AIII using different gains (C values), one value
lower than C = 3.0 and the other value larger. The LE pattern, Figure 5a, at a lower value
of C = 2.7 no longer exhibits a symmetric-like bubble; it is replaced by a curved trajectory
of two equal LEs. A change to a higher value of C = 3.1 shows the LE replacement as the
expected asymmetric bubble in Figure 5c, described in Reference [37]. The LE patterns
of AIII at C = 2.7 resemble the LE patterns of AV and AVI at the standard (canonical)
C = 3.0. Because of their resemblance, we then explored the LEs for AV and AVI to inspect
their evolutionary LE pattern changes when C increases from 3.0, to 3.1 and 3.2 for AV,
and C increases from 3.0, to 3.2, 3.25, 3.3, and 3.35 for AVI. The results are shown in
Figures 5d–f and 6, respectively.
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3.2. Power Shift
3.2.1. Optimized Base Attractor for Power Shift

We demonstrate optimized power–shift conditions for a base attractor in Figure 7.
Figure 7a plots the largest tranches (time intervals) that transition to AV as a function of
Y in AIII’s domain when power shifted to YPS = 1.84; the domain is divided into steps of
∆Y0 = 0.01. We find the power shift at Yo=1.63 has the largest tranche for transitioning to
the desired AV. Figure 7b uses the same conditions as Figure 7a except the power shift
changes to YPS = 1.96 to access the desired AVI. This optimization scheme can be achieved
for any valid set of base and goal attractors.
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Figure 7. The plot for the largest time interval for each Y0 value in AIII which when power shifted to Yps = 1.84 (a) or
YPS = 1.96 (b) takes the system to AV (a) or AVI (b), respectively. Y0 = 1.63 has the largest tranche for YPS = 1.84. Y0 = 1.72
has the largest tranche for YPS = 1.96.

Figure 8a shows results beginning on base AIII at Y0 = 1.63 and power shifted to
YPS = 1.84 every 1τ along the period of motion. The resultant attractors, AV or AII, are
recorded. The blue and red segments illustrate along the temporal period, 163.551τ, the
system’s viable tranches where either AV or AII can be found, respectively. In Figure 8b we
show the results beginning on base AIII at Y0 = 1.72 and power shifted to YPS = 1.96 for
every 1τ. The resultant attractors, AVI or AII, are recorded. Note, at the end of one period
is the beginning of the other, so we can combine the points on both ends to configure the
total tranche size. In this case we had 101 contiguous points in a single period of AIII
going to the desired AV in Figure 8a and 55 contiguous points going to the desired AVI in
Figure 8b.
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3.2.2. Addition of Noise

Figure 9 shows the result of adding noise to the system for the same conditions as in
Figure 8a. Two example results are shown using identical conditions except for different
randomly generated noise.
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every 0.4τ with an amplitude range of ±0.0015. (a) Run 1 and (b) Run 2. Note, intermittent access to AII on the shoulder of
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3.2.3. Linear Ramp on Injected Signal

In Figure 10 we modify the power-shift method with a time lag, Tlag = 15, at Y0 = 1.63
for base AIII with the YPS = 1.84 to simulate experimental conditions. Graphing two periods
of the motion dramatizes the range of the tranche that goes to AV using a linear ramp.
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for this shift, there is a high percentage of AIII surviving with some intermittencies when 
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Figure 10. Power-shift method applying a linear ramp with Tlag = 15, Y0 = 1.63 for base AIII with
YPS = 1.84. The blue X marks the center of the largest time interval which power shift to AV. Two
periods are displayed for clarity.

3.2.4. Linear Ramp and Noise Included

Figure 11 illustrates the result of adding both a linear ramp with Tlag = 15 and noise as
in Figure 8a to the power-shift method. We see similar results in the studies without lag.
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Figure 11. Power-shift method applying a linear ramp with Tlag = 15 and noise with ampli-
tude = ±0.0015, Y0 = 1.63 for base AIII with the YPS = 1.84.

3.3. Interim Gain-Shift Results

Figure 12 illustrates the results of an interim gain shift lasting for 10,000τ by plotting
the percent chance AIII survives the shift from C = 3.0 to C = 3.1 as a function of Y. Clearly
for this shift, there is a high percentage of AIII surviving with some intermittencies when
Y ≥ 1.64. No experimental complications are addressed in this study.
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4. Discussion
4.1. Gain Change Effects on LE Patterns

Gain parameter changes clearly affect LE patterns because they alter the parameters
of the system. As discussed in Section 3.1 and shown in Figure 5a, the gain is decreased
from the canonical C = 3.0 to C = 2.7; here the symmetric-like bubble is eliminated leaving
a pattern similarly matching the canonical AV and AVI. In Figure 5b,c the gain is increased
from C = 3.0 to C = 3.1, respectively. Due to this slight increase, a symmetric-like bubble
changes to an asymmetric bubble supporting the hypothesis that symmetric-like bubbles
represent an imminent bifurcation in the system. In Figure 5d–f the gain parameter
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increases from the canonical C = 3.0 to C = 3.2, where there is a first transition to a symmetric-
like bubble, and second to an asymmetric bubble, confirming the thesis that symmetric-like
bubbles are predictors of an imminent bifurcation provided there is a small change to one
parameter of the system. Note, this result is consistent with the studies in References [13,44]
who confirm these types of dynamic changes. It is interesting that a new symmetric-like
bubble emerges in Figure 6d forecasting the bifurcation shown in Figure 6e.

4.2. Power Shift
4.2.1. Optimized Power Shift

We find AIII has the largest tranche of points that transition to AV at Y0 = 1.63 when
power shifted to YPS = 1.84. For accessing AVI, we find AIII’s largest tranche is at Y0 = 1.72
when power shifted to YPS = 1.96. The largest tranche going to AVI is close to the peak of
the symmetric-like LE bubble in AIII. The results for accessing AVI, however, also support
the theory because the largest tranche is located only ∆Y = 0.005 from the apex. The results
for AV, however, do not support the hypothesis that the apex of the symmetric-like bubble
is the ideal value from which to power shift, because the largest tranche exists at a much
lower value of Y.

The location of the largest tranches for each attractor can be tabulated theoretically
to create a “roadmap” of the system describing the most effective way to access every
attractor solely through power shifting. See Appendix B, Table A1, as an example.

4.2.2. Effects of Noise

As expected, noise induces some changes indicated by the intermittent transitions to
AII in Figure 9, where the tranche of AV dominates without noise, as shown in Figure 8a. At
this level of noise, we can say that the power-shift method is still viable. However, because
of the intermittencies to AII, it may take multiple tries to access the desired attractor. Note,
AIV, AVII, and AVIII are all small domain attractors which are difficult generally to access.
Preliminary tests show noise will most likely prevent any access to these three attractors.
Clearly AIII, AV, and AVI have larger domains and survive small amounts of noise. AIII,
which has the largest domain of AV and AVI, survives a greater noise amplitude.

4.2.3. Effects of a Ramp on the Injected Signal

We compare the power-shift method with and without the linear ramp on the control
parameter. In Figure 13 we show the resulting attractor vs. TAP. The blue dots represent
the stepwise injected signal at Y0 = 1.63 for base AIII with the YPS = 1.84, i.e., with no Tlag.
The orange xs represent the linear ramp with Tlag = 15τ. The orange xs show that the effect
of the ramp is minimal. In fact, access to AV is improved by 2.65%. There is a shift to the
left by the orange xs suggesting that a power shift should be conducted slightly earlier to
compensate for the lag effects that may appear. Looking at the main tranche we see the
orange xs fall off 7τ earlier than the blue dots and also returns 11τ earlier, giving us a net
time increase of 4τ. This shows that a slight lag in the power shift might help instead of
hinder access.

4.3. Gain Shift versus Symmetric-like Bubble

Originally, we believed that the apex of the symmetric-like bubble might be the ideal
place to gain shift due to it having greater instability. However, the data shown in Figure 14
tells a different story. The system shows an instability at a location that seems to not
match with the LEs. The dip at Y = 1.721 does not line up exactly with the apex of the
symmetric-like bubble, instead, it is slightly to the right.
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gain shift results. The right ordinate displays the percentage of times that AIII survives the gain shift.

When we instead superimpose the gain shift with the LEs for C = 3.1 in Figure 15, we
see a dip where the asymmetric bubble reaches its apex, the signatory two-zero LEs.

This tells us that, when the parameter shifts, we must consider the stability of the
attractor at both the original parameter value and the shifted value. In other words, when
the gain-shift method is applied, one needs to consider the attractor’s stability at both gains.
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with the gain-shift results. The right ordinate displays the percentage that AIII survives the gain shift.

5. Conclusions

By power shifting, we can discover windows and access many attractors reliably even
with noise on the frequency and a linear ramp on the injected signal amplitude of LIS. We
select a base attractor which enhances the power shift’s reliability of accessing a desired
attractor. Using the modified power-shift technique with the interim parameter shift,
we expand access to attractors by temporarily modulating the gain (parameter), in this
case. The power-shift method in conjunction with the interim parameter shift is attractive
because it can be experimentally applied without significant or long-lasting modifications
to the experimental system itself. When gain-shift results are compared to the LE patterns
for a specific gain, we find critical points of the spectra where the attractor is unlikely to
survive the gain shift. Noise and lag effects obscure the power-shift technique minimally
for large domain attractors. Small domain attractors are inaccessible. Experimentally, we
believe that the enhanced power-shift method, which enables an experimentalist to both
discover and access coexisting attractors, is appealing because this provides flexibility to
move from one type of system dynamics to another. By varying other system parameters,
this method could facilitate, for example, a mapping of the dynamical states in parameters
space of frequency detuning [7].

The Lyapunov exponents continue to herald system dynamics, attractor and window
domains, and the level of instability associated with the various patterns. We know, for
example, that every attractor has a unique LE pattern that is choreographed by the subtle
variations of the attractor dynamics and are circumscribed by converging and diverging
LE spectral patterns including the signature two-zero LEs at the origin and demise of
the attractor [37]. We understand symmetric-like and asymmetric bubbles as imminent
bifurcations and existing bifurcations, respectively. These results reiterate the universality
of the LEs spectra patterns. There are still unknown patterns observed in other nonlinear
systems which need to be defined that may or may not be associated with the LIS systems,
but what we do know, is that the Lyapunov spectra has many mysteries yet to be discovered.

The power-shift method, along with the interim gain shift, is an answer to the question
of how to access individual attractors stably and accurately even under experimental
conditions. Identifying the dominance of one attractor over another in the same system and
understanding the conditions that might change this dominance remains an open issue.
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Appendix A

We describe the procedure to discover attractors and windows using the power-shift
method:

1. Create m identical sequences of input signal amplitudes by dividing the domain
∆Y into n equally spaced Y values and then randomize the order of each sequence.
This creates multiple, completely arbitrary sequences of the same number set, Yj

i
(I =1, 2, ..., n), (j = 1, 2, . . . , m);

2. Power shift through the domain of the first random sequence of ∆Y. To do this, begin
the process at Y1

1, evolve the system for T units of time to stabilize the trajectory on a
specific orbit (an attractor’s characteristic phase space);

3. Record the final conditions of the laser variables and control parameter;
4. Repeat steps 2 and 3 until all m sequences are recorded;
5. Reorder all m sequences and compare the dynamics found at each input power, any

discrepancies imply coexistence

Appendix B

Table A1 summarizes the results of the power-shift method without noise or a linear
ramp added to the injected signal. This table provides a way to access the known attractor
in LIS solely power shifting.

We discuss the results of the study of the power- shift method without noise by starting
with the two simplest goal attractors, AI and AII. There is no coexisting attractor for AI
and only one attractor (AIV) with a narrow domain of existence coexists with AII for the
region 1.275 < Y < 1.6. One can select any base attractor (AI-AVIII) using any Y0 and TAP,
then power shift at YPS ≤ 1 to access AI and the power shift at YPS = 1.54 to access AII.

Table A1. LIS Attractor Access Via a Power Shift YPS.

Goal Attractor Base Attractor Base Period (τ) Y0 YPS TAP ± Leeway

AI Any Any
AII Any Any 1.54 Any
AIII AII 108.025 1.51 * 1.8 8 ± 52
AIV AI 63.132 0.854 1.114 3 ± 4
AV AIII 163.551 1.63 * 1.84 151 ± 50
AVI AIII 158.396 1.72 * 1.96 154 ± 27

AVII AIII 156.964 1.8 1.269 138 ± 2

* Y0 optimized using the method performed in Figure 7.
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