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Abstract: Anomaly detection is an active research area within the machine learning and scene un-
derstanding fields. Despite the ambiguous definition, anomaly detection is considered an outlier
detection in a given data based on normality constraints. The biggest problem in real-world anomaly
detection applications is the high bias of the available data due to the class imbalance, meaning a
limited amount of all possible anomalous and normal samples, thus making supervised learning
model use difficult. This paper introduces an unsupervised and adversarially trained anomaly model
with a unique encoder–decoder structure to address this issue. The proposed model distinguishes
different age groups of people—namely child, adult, and elderly—from surveillance camera data in
Busan, Republic of Korea. The proposed model has three major parts: a parallel-pipeline encoder
with a conventional convolutional neural network and a dilated-convolutional neural network. The
latent space vectors created at the end of both networks are concatenated. While the convolutional
pipeline extracts local features, the dilated convolutional pipeline extracts the global features from
the same input image. Concatenation of these features is sent as the input into the decoder, which
has partial skip-connection elements from both pipelines. This, along with the concatenated fea-
ture vector, improves feature diversity. The input image is reconstructed from the feature vector
through the stacked transpose convolution layers. Afterward, both the original input image and the
corresponding reconstructed image are sent into the discriminator and are distinguished as real or
fake. The image reconstruction loss and its corresponding latent space loss are considered for the
training of the model and the adversarial Wasserstein loss. Only normal-designated class images are
used during the training. The hypothesis is that if the model is trained with normal class images,
then during the inference, the construction loss will be minimal. On the other hand, if the untrained
anomalous class images are input through the model, the reconstruction loss value will be very
high. This method is applied to distinguish different age clusters of people using unsupervised
training. The proposed model outperforms the benchmark models in both the qualitative and the
quantitative measurements.

Keywords: anomaly detection; computer vision; surveillance; deep learning; generative adversarial
networks

1. Introduction

Anomaly detection is an essential study field in visual image understanding. It is
defined as an unexpected pattern recognition that is significantly different from the rest
of the data. Some of the significant challenges include imbalanced data distribution, the
difficulty of a generalizable feature extractor, variance in anomaly situations, and various
environmental conditions in the data. There has been a massive surge in the availability of
publicly available real-world datasets following recent trends. However, in most of these
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datasets, the class imbalance towards normal classes and lack of abnormal classes means
these datasets lack diversity and are not capable of efficiently training supervised detection
models [1]. In addition, labeling the data is a labor-intensive and costly endeavor. Deep
learning models require large amounts of data for optimal performance, and the developed
systems may have only a limited utility and sub-optimal generalization [2]. Under such
cases, unsupervised anomaly detection has become the standard approach to such data
distribution modeling. In such scenarios, the model is trained only with normal-designated
class images to capture the data distribution. Afterward, the inference is performed with
both normal and abnormal images to detect the deviation from the learned distribution of
the normal data.

Various approaches have been proposed [3–5] for different domains for anomaly
detection [6–8]. It is generally assumed that abnormal cases differ in higher and lower
dimensional space, making the latent space a vital part of anomaly detection. Recent studies
propose generative adversarial networks (GANs) [9] for anomaly detection due to their
efficient mapping of the data distribution of both high-dimensional and low-dimensional
features [10].

Public space is defined as a place that is open and accessible to people, including
roads, public squares, parks, and beaches. Creating safer public spaces requires actions
such as enhancing the security level against public security threats. Unemployment and
different pathologies usually cause crime and economic inequality [11]. An increase in
the population also increases this threat caused by anonymity and weaker interpersonal
ties [12]. It is crucial to reduce the rate of urban crime to make these public spaces safer,
mainly focusing on the “crime triangle”—place, victim, and the perpetrator [13]. The
location can also have effects on impeding the crime or facilitating it.

Video surveillance cameras have become a prominent part of public spaces. Surveil-
lance cameras are given an increased allocated budget all over the world. For example,
three-quarters of the Home Office budget was allocated to surveillance-related projects
from 1996 to 1998 in Great Britain [14]. In the last decade, cities in the United States have
also done substantial development projects using surveillance data, 87% for areas with
250,000 or more [15].

Violence against children is defined as all forms of violence against people under
18. This act may come from parents, caregivers, peers, or strangers. It includes physical,
sexual, and emotional violence as well as witnessing the violence. An estimated 1 billion
children have experienced any form of violence aged 2–17 years [16]. This indicates that
population-based surveillance of violence against the most vulnerable of the society, the
children, and ordinary people is essential to target prevention and is endorsed in the United
Nations 2030 Sustainable Development Agenda.

In this paper, an unsupervised anomaly detection model for different age groups of
people, namely child, adults, and elderly, is proposed to achieve this goal. The proposed
model has a parallel pipeline feature extractor, a conventional cascading convolutional
neural network (CNN), and a cascading dilated convolutional neural network (DCN) with
a dilation rate of two. At the end of both pipelines, the extracted features in the shape
of fully connected layers are concatenated and then become the input for the generator,
where it is used to reconstruct the original input image. The generator has partial-skip
connections in a UNet-fashion [17] from both the CNN and the DCN pipeline, which allows
the information from the shallow layers to propagate more efficiently to deeper layers [18]
to alleviate the vanishing gradient problem, and the mode collapse [19]. Afterward, both
the input image and the reconstructed output image are sent to a discriminator to be
distinguished as real or fake. The discriminator’s latent vector also learns the reconstructed
normal input’s latent space in the proposed scheme. The motivation to combine two
sub-networks comes from the dilated convolution’s capability to extract global features
without increasing the computational cost [20,21], and the combination of both the local
and the global features improves the performance of the model as it was previously applied
in the field of machine learning by concatenating the extracted local and global features
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which are then subsequently trained with traditional machine learning classifiers such as
SVM [22,23]. In other words, the proposed scheme applies the same philosophy into a deep
learning model by having both sub-networks extract these features automatically and then
concatenate them as a result of the training. Moreover, as a part of the ablation study of the
parallel encoder, supervised training is performed with a Softmax layer with three nodes
added to the end of the concatenated feature vector to perform supervised classification.

To sum up, in this paper, an unsupervised anomaly detection model for age classes
(child, adult, elderly) using surveillance image data is introduced. There are no unsu-
pervised anomaly detection models for age detection with only full-body images to the
authors’ best knowledge. The majority of the models are supervised and are based on
facial features [24]. The deep learning model proposed in this paper is the extended and
improved version of the previous work introduced in [25]. The multi-class normality
scheme is applied where a single class in the dataset is designated to be the abnormal
class, and the remaining classes are designated to be the normal class. The proposed
model performs better than the authors’ previous work and all the benchmark models
qualitatively and quantitatively.

2. Related Work

Starting with AlexNet’s [26] superior performance in The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) against conventional methods, deep learning models
have also created a new spark of interest in anomaly detection. With broad real-world
applicable areas such as video surveillance [5], and biomedical engineering [4], a large
number of papers have been published using anomaly detection [27]. The proposed model
in this paper also follows recent reconstruction-based trends.

An influential model proposed by Schlegl et al. [4] uses adversarial training. In the
paper, it is hypothesized that the latent vector of the GAN represents the data distribution.
However, the authors initially train a generator and a discriminator with only normal
images to achieve this. Afterward, using the frozen weights of the pre-trained generator
and discriminator, they remap to the latent vector by optimizing the model based on its
latent vector. The model shows an anomaly by showing a high anomaly score during
the testing, a significantly better score than previous works. The main drawback of this
proposal is the computational complexity due to the two-stage approach, and latent vector
remapping is computationally costly. Following this work, Zenati et al. [28] use BiGAN [29],
applying joint training to map the data distribution from the image and the latent space.
Akcay et al. [10] propose an autoencoder (GANomaly) with an additional encoder added
to the decoder’s end to train this autoencoder and the discriminator jointly. Afterward,
Akcay et al. [30] propose an additional anomaly detection model with skip-connections
trained jointly with the discriminator.

Human age in the literature is generally classified into four major categories: child
(0–12 years), adolescent (13–18), adult (19–59), and senior adult (60 and above) [31]. Most
of the age group classification approaches are either gait-based [31] or focus facial fea-
tures [32]. These approaches range from using support vector machines [33] to complex
CNN architectures [34]. However, the major issue with these approaches is that the choice
of the dataset is labeled. These approaches have minimal use for real-time surveillance
usage. External conditions such as lighting, image quality, positioning of the pedestrians,
occlusion through other people, and other objects often cause less-than-ideal scenarios.
The proposed model is trained to distinguish the abnormal and normal images and jointly
minimize the distance between their latent vector representations.

As reconstruction-based approaches [4,10,28,30] show promising results in anomaly
detection; a solution to this problem is the proposed unsupervised anomaly detection
approach, where the input data does not have a label. Surveillance camera footage captured
from regions in the Republic of Korea is used to train the proposed model. The pedestrians
observed in the surveillance cameras are selectively cropped and are manually labeled with
age classes, namely, the child, adult, and elderly. A total of 80% of the normal classes in a
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cluster to learn the data distribution of these classes is used for training. For comparison,
the remaining 20% of the normal class images and an equal amount of corresponding
anomalous class images are input through the model. An anomaly score is obtained for
each image. The abnormal image’s deviation from the normal distribution is shown in its
anomaly score compared with normal images, and this is used to detect outlier cases.

3. Proposed Model

The proposed model is built with two primary components: the generator (G) and
the discriminator (D) as shown in Figure 1. The generator includes an encoder with two
cascading parallel sub-networks, a conventional convolutional pipeline (CNN), and a
dilated convolutional pipeline (DCN) with a dilation factor of two. Both pipelines are
four layers deep. Each layer uses 3× 3 convolutional filters, followed by a rectified linear
unit (ReLU) activation function, a batch normalization operation [35], and a max-pooling
operation for spatial dimension reduction. This also means that the computational cost is
identical between both the CNN and DCN (dilation rate has no effect on the computational
complexity). The reasoning behind the parallel DCN is that the dilated convolutions
increase the receptive field of the network while keeping the number of coefficients the
same as its conventional counterpart, causing it to capture more global features [36]. The
latent space vector created by the concatenation of the features obtained from CNN and
DCN becomes the input of the decoder part of the generator. The four layer-deep up-
sampling layers also concatenate the skip-connections from CNN and DCN to enable
multi-scale capturing of the image space with high capability [37]. In the scenario of
replacing the DCN with a CNN with 5× 5 convolutions, the computational cost would
increase 2.78 times due to the massive increase in the number of trainable parameters
(from 387,840 trainable parameters to 1,077,334 trainable parameters). Moreover, 3× 3
convolutions are highly optimized for modern computing libraries on GPU and CPU.
Winograd algorithm [38] which is designed specifically for 3× 3 convolutions with stride
1, is well supported by libraries like cuDNN [39].

The generator reconstructs a corresponding image x̂ from the input image x such that
G : x → z where x ∈ R(w×h×c) and z ∈ Rd. The input image is sent through both CNN and
DCN, and at the end of each network, the feature vectors are concatenated into the latent
space vector z.

The discriminator (D) is comprised of a four-layer cascading CNN that is responsible
for predicting the correct class (i.e., real or fake) based on the features of the input image.
Its structure is identical to the CNN sub-network in the generator, with 3× 3 convolutional
filters, ReLU activation, and a batch normalization operation. At the end of the fully
connected layer, there is a prediction layer that classifies normal images x and correspond-
ing reconstructed images x̂. When adversarially trained, the discriminator improves its
capability to predict until the convergence is reached. A Softmax layer is also added at the
end of the concatenated feature vector as an individual classification layer as an ablation
study of the model. In this ablation study, the parallel feature extracting encoder is trained
in a supervised method with the labeled dataset.

The dataset is split into the training set Dtr containing N normal images where
Dtr = {x1, . . . , xN}, and a test set Dte of A normal and abnormal images combined
Dte = {(x̂1, y1), . . . , {x̂A, yA} where yA ∈ [0, 1] denoting normal and abnormal classes,
respectively. The main task is to train the model f on Dtr and perform inference on Dte. In
an ideal scenario, the size of the training set should be much larger than the testing set.
Training helps the model map the dataset distribution in all vector spaces, causing it to
learn both higher and lower-level features distinctly different from abnormal samples.



Appl. Sci. 2021, 11, 9904 5 of 15

8

16

32
64

128
64

32
16

8
16
32
64

32

64
128

256
512

512

1024

32
64

128
256

64× 160× 3

x̂

64× 160× 3

x

D(x, x̂)

f (·)
Real
Fake1

3

Conv. + ReLU + Batch Norm.

Dilated conv.+ ReLU + Batch Norm.

Max-pooling

Fully-connected layer

ReLU + Transpose conv. + Batch Norm.

Skip-connections concatenation layer

Classification layer (Softmax or Sigmoid)

Conv. skip connections

Dilated conv. skip connections

512

32

64
128 256

child elderly adult

Figure 1. The proposed model architecture. The input image x size is 64× 160× 3 for both the encoder and the discriminator
D(x, x̂). Encoder architecture has two sub-networks: a conventional CNN and a dilated convolutional CNN (DCN). Both
CNN and DCN have 3× 3 convolutional layers, with DCN having a dilation factor of two. At the end of both networks,
the latent vectors are concatenated and become the input of the generator where the input image x is reconstructed as x̂
through the transpose convolution layers. In addition, a Softmax layer is added to this latent vector for the ablation test.
When the parallel encoder is trained with the labeled data, classification is performed in this layer. Partial skip-connections
from CNN and DCN into the generator model alleviate the vanishing gradient and the mode collapse phenomenons
observed in deep learning models. Afterward, both the input image and the reconstructed images are sent through the
discriminator. The images are classified as either real or fake in the sigmoid layer (with one node). The fully connected layer
of the discriminator f (·) is utilized for anomaly detection during the inference. Each input image, whether it belongs to a
normal-designated class or an anomaly-designated class, results in a reconstruction score, based on Equation (6).

The task of the training is to capture and map the distribution of the training set Dtr
in both the image space and the latent vector space. It is hypothesized that defining an
anomaly score A(.) should yield minimal scores for normal samples used in training but
higher scores for abnormal samples that the model is not trained with. A higher anomaly
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score A(x) would indicate the sample x is from an abnormal class with respect to the data
distribution learned by f from Dtr.

Three loss functions have been implemented to train the proposed model. Each of the
loss functions has its weighting in the training objective.

1. Contextual Loss: L1 normalization between the input image x and the corresponding
reconstructed image x̂ is applied to learn the image distribution. This causes the
model to generate contextually similar images from normal samples. The loss is
defined as:

Lcontext = Ex∼px |x− x̂|1. (1)

2. Adversarial Loss: Wasserstein loss proposed in [40] is applied to improve the recon-
struction performance for normal image x during training. This loss is helpful for the
generator to reconstruct an image x̂ from the input image x as realistic as possible
while helping the discriminator to classify real or fake (generated) samples. It is
defined as:

W(q, p) = min
D

max
D∈D

Ex∼Pr [D(x)]− Ex̂∼Pg [D(x̂)] (2)

where D is the set of 1-Lipshitz functions and Pg is the model distribution defined by
x̂ = G(z), z ∼ P(z). The discriminator in WGAN is sometimes called a critic since it is
not explicitly trained to classify; it minimizes the value function with respect to the
generator parameters, W(Pr,Pg).

3. Latent Loss: The L2 loss is used to reconstruct the latent representations for the input
x and the corresponding reconstruction x̂. This ensures the network is sufficiently
trained to produce contextually meaningful latent representations for normal samples.
The final feature vector layer of the discriminator is used to obtain the features of the
input image z = f (x) and for the reconstructed image, ẑ = f (x̂). The loss becomes:

Llatent = Ex∼px | f (x)− f (x̂)|2. (3)

The total loss for the model becomes the weighted sum of all the losses:

Ltotal = λcontextLcontext + λadvLadv + λlatentLlatent. (4)

where λ is the weighting parameter to assign the importance of individual losses. The
optimal weighting in this study is done via a grid search operation. The optimal values for
the weights can be seen in Figure 2.

Figure 2. Loss function range search results for reconstruction loss, adversarial loss, and the latent
loss. The model shows optimal performance with the parameters λcontext = 50, λadv = 5, and
λlatent = 1. The most important weighting parameter is found to be the λcontext.
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4. Experimental Environment and Results
4.1. The Dataset

The dataset is obtained from various surveillance footage in the city of Busan Citizen’s
Park, the Republic of Korea, with the permission of the Electronics and Telecommunication
Research Institute (ETRI). Conventionally placed surveillance cameras (on top of metal
poles) capture multiple areas. The full-body profile of each person is visible without
undesired high-angle views. Furthermore, a ground-truth tool is made to crop and extract
the pedestrians from multiple images. All of the images in the dataset have the same
external conditions, such as lighting and the time of day. The total number of images in the
dataset and the class-specific numbers can be seen in Table 1. The dataset split is arranged
for multi-class normality, where a single class in the dataset is chosen to be the anomaly,
and the rest of the classes are assigned as the normal class.

Table 1. The dataset information about the total number of images for each class.

Classes Number of Images

Elderly 2809
Adult 4477
Child 1922
Total 9208

Only full-body images without any occlusion or truncation are used to generate the
dataset. However, the distance of pedestrians in raw images from surveillance cameras
varies significantly due to their relative position against the camera; the smallest image
has 24× 38× 3 resolution (farthest pedestrian), and the largest image having 278× 432× 3
(closest pedestrian). These images are resized to the arithmetic mean resolution found in
the dataset, which is found to be 64× 160× 3. A set of example images in the dataset can
be seen in Figure 3. The dataset is split between the anomaly cluster and normal cluster for
each specific case, which are child anomaly vs. adult + elderly normal, adult anomaly vs.
child + elderly normal, and elderly anomaly vs. child + elderly normal. During the training
phase, the model is only trained with 80% of the normal-designated class. The remaining
20% of the normal-designated class and the anomaly class with an equal number of images
are used during the testing phase. For instance, the proposed model is initially trained with
80% of the adult + elderly. The remaining 20% of images and the equal number of images
from the anomalous class, child, are used for the inference. The detailed information about
the train-test split can be found in Table 2.

Table 2. The train-test split of the dataset. A total of 80% of two normal-designated class images are used in a cluster
during the training without labels, and the remaining 20% of each normal-designated class, as well as the equal-numbered
anomaly-designated class images, are used during the inference. Anomaly-designated class images are not used during
the training.

Train Test

Cases
Adult Child Elderly Total Adult Child Elderly Total

Anomaly (Child) vs. Normal (Adult + Elderly) 2247 - 3581 5828 562 1458 896 2916
Anomaly (Adult) vs. Normal (Child + Elderly) - 1537 3581 5118 1281 385 896 2562
Anomaly (Elderly) vs. Normal (Adult + Child) 2247 1537 - 3784 562 385 947 1894
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(a)

(b)

(c)

Figure 3. Example images from each class in the dataset: (a) Adult class, (b) Child class, and
(c) Elderly class. It should be noted that in each class, there are also images of pedestrians moving
in different directions (front-facing, back-facing, side-facing) and with different lighting conditions.
Variation in the distance of pedestrians against the camera causes many images to have less-than-ideal
quality, which should be taken into consideration in real-life applications.

4.2. Model Training

Modern anomaly detection models such as Skip-GANomaly [30], and AnoGAN [4]
train the model on the majority of the normal-designated dataset and then run inference
on the remaining normal data along with the unseen anomaly data. As a result, normal
sample images are expected to have a low reconstruction loss, and their latent vectors will
have similar characteristics. However, abnormal sample images are expected to fail in both
cases since these images are from a class with which the model has not been trained.

Root Mean Square Propagation (RMSProp) optimization function with γ = 0.9, η =
0.001 parameters are used for the model training. Three separate loss functions with
specific weighting, shown in Section 3, are applied. Optimal loss weighting is found
to be λcontext = 50, λlatent = 1, λadv = 5 after a grid search shown in Figure 2. Model
is trained for 50 epochs until the convergence was achieved. The batch size is taken as
128. Implementation of the system is done using TensorFlow [41] (Python 3.6.9, CUDA
10.0, cuDNN 7.3). The training is done on two NVIDIA P5000 GPUs. The anomaly score
introduced in [29] gives a proper indication that the input image is considered real or fake,
which is given in Equation (5) below:

A(x̂) = (1− λ) · R(x̂) + λ · L(x̂) (5)
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where R(x̂) is the reconstruction loss calculating the similarity between the real input image
and the generated image based on Equation (1), and L(x̂) is the latent representation loss
calculating the difference between the real input image and the reconstructed image based
on Equation (3). λ is the weighting parameter of the importance of each of the functions.
In this study, λ = 0.2 is employed by default.

The next step is calculating the anomaly score for each inference image x̂ in the test
set Dte and assign an anomaly score A such that A = {Ai : A(x̂), x ∈ Dte}. Following the
method proposed in [10], feature scaling (min-max normalization) is applied to A to scale
the obtained scores within the range [0, 1]. The updated anomaly score then becomes:

A′(x̂) =
A(x̂)−min(A)

max(A)−min(A)
(6)

After obtaining the A′(x̂), for the entire test set, the obtained vectors are used to plot the
anomaly score shown in Figure 4.

4.3. Experimental Results

The initial performance test of the proposed model, the ablation study, and the bench-
mark models (previously proposed anomaly detection model [25], Skip-GANomaly [30],
GANomaly [10], EGBAD [28], and AnoGAN [4] is done by calculating the area under the
curve (AUC) of the receiver operating characteristics (ROC). AUC is a function created us-
ing true-positive rates (TPR) and false-positive rates (FPR) with different threshold values
during the inference process. The results for all the models can be seen in Table 3.

Table 3. The results for the area under the curve (AUC) of receiver operating characteristics (ROC) of the proposed model,
the previously proposed model for Alzheimer’s disease anomaly detection, the ablation study of the single convolutional
pipeline as well as the single dilated convolutional pipeline, Skip-GANomaly, GANomaly, EGBAD, and AnoGAN.

Normal Anomaly Proposed
Model

Conv.
Only

D. Conv.
Only

Previous
Model [25]

Skip-GANomaly
[30]

GANomaly
[10]

EGBAD
[28]

AnoGAN
[4]

Adult + Elderly Child 88.45 82.36 75.84 85.07 83.34 80.45 79.63 78.57
Child + Adult Elderly 83.43 81.66 73.01 80.44 79.32 78.82 76.16 74.53

Child + Elderly Adult 84.16 80.72 71.58 82.89 81.25 80.01 75.34 73.42

A qualitative evaluation metric called Frechet Inception Distance (FID) [42] is calcu-
lated for the proposed model and the benchmark models. This method is designed to
evaluate the generated image quality by calculating the distance of feature vectors between
the real image and the corresponding reconstructed image. This estimation is done using
the Inception-v3 [43] image classification model. The conditional class probability and the
confidence score of each image are combined. This is shown as:

FID = |µr − µg|2 + Tr(∑
r
+∑

g
−2(∑

r
∑

r
∑
g

)−1/2) (7)

where Xr ∼ N(µr, ∑r) and Xg ∼ N(µg, ∑g) are 2048-dimensional final average pooling
activations (which is the default layer selected in this study) for real input images and
the corresponding generated images. If both images are identical, the score should be 0.
Although a lower score means better performance, an acceptable value for unsupervised
learning is generally not known. In this study, a total of 500 constructed images from all
three classes (adult, child, and elderly) are compared with their real counterparts, and
an average FID score for all classes is obtained. The FID score comparison between the
proposed model and the benchmark models can be seen in Table 4.



Appl. Sci. 2021, 11, 9904 10 of 15

(a) The histogram of the normal (adult + child) and anomaly (elderly) scores for the test dataset.

(b) The histogram of the normal (adult + elderly) and anomaly (child) scores for the test dataset.

(c) The histogram of the normal (adult + child), and abnormal (elderly) scores for the test dataset

Figure 4. Anomaly scores for three different cases. The normalization of the anomaly value for each
image of the test dataset forms a normal distribution in the histogram. It is expected that the normal
inference images will form a normal distribution closer to zero, and the abnormal inference images
will form a normal distribution closer to one.
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Table 4. FID score comparison for three different classes (Adult, Child, and Elderly) for the benchmark
models, the proposed model, and the ablation study of the proposed model. Note that a lower score
generally means better performance.

Models Adult Child Elderly

EGBAD [28] 20.334 21.510 19.817
AnoGAN [4] 19.439 20.145 18.056
GANomaly [10] 15.310 16.481 14.006
Skip-GANomaly [30] 8.365 9.931 6.480
Previous Model [25] 6.942 7.418 6.569
Ablation Conv. 8.621 10.015 6.714
Ablation Dilated Conv. 13.148 14.210 11.729
Proposed Model 5.128 6.332 4.765

The third performance metric used for inference is classification accuracy. To achieve
this, the parallel encoder network using both the CNN and the DCN has a Softmax layer
(three nodes representing the three classes), added to the end of its feature vector, and
supervised training is performed. For this training, stochastic gradient descent (SGD) with
lambda decay and Nesterov momentum with the initial learning rate 10−2 is used for the
proposed model and the benchmark models. Both the proposed model and the benchmark
models are trained for 40 epochs. The benchmark models such as DenseNet-169 [44],
Inception-v4 [45], ResNet-101 [46], and VGG19 [47] are compared with the proposed
model’s classification accuracy. The classification results can be seen in Table 5.

Table 5. The classification accuracy results for the proposed model, the ablation study (convolutional pipeline-only, and dilated
convolutional pipeline-only), and the benchmark classification models including DenseNet-169, Inception-v4 , ResNet-101 , and
VGG19.

Classes Full Model Conv. Only D. Conv. Only DenseNet-169
[44]

Inception-v4
[45]

ResNet-101
[46] VGG19 [47]

Adult 89.91 83.34 78.38 87.46 86.51 83.45 82.20
Elderly 90.24 81.52 76.23 87.90 82.43 81.98 80.71
Child 86.80 84.27 77.56 84.53 80.92 80.26 78.43

To investigate the superior classification accuracy of the parallel feature extractor,
different methods are investigated. One of the ways to explain this phenomenon is by
investigating the class activation maps of the trained model during the inference. The
following steps are taken during the inference:

1. Test data images are input into the parallel model, and the activation maps from each
layer of sub-networks and the parallel model are obtained separately.

2. Probability density function (PDF) of each activation map is calculated, and the mean
PDF is generated for both the CNN, DCN, and the parallel model.

3. Entropy is calculated from the average PDF for three separate modules (CNN, DCN,
and the parallel model).

Entropy is considered a measure of randomness or uncertainty in an image, meaning
the higher the entropy, the more complex the unpredictability [48]. According to Table 6,
the parallel model has the lowest entropy for three classes, followed by the CNN and
followed by the DCN. These values directly correspond to the corresponding model’s
classification performance of the specific class.
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Table 6. Entropy values of the class activation maps (CAMs) from CNN and DCN modules and the
parallel model. The entropy values and the classification accuracy have a correlation on classification
accuracy, caused by the unpredictability, which can be seen in Table 5.

Classes CNN DCN Parallel Model

Adult 2.43782 2.82346 1.61425
Elderly 2.37259 2.90523 1.59523
Child 2.50224 2.91293 1.63562

Anomaly score comparison between three cases (normal-elderly vs. anomaly-child +
adult, normal-child vs. anomaly-adult+elderly, normal-adult vs. anomaly-child+elderly)
can be seen in Figure 4. Looking at the difference between the distributions between the
normal and the abnormal cases, the proposed model is highly capable of distinguishing
during the single-class anomaly detection inference.

5. Conclusions

In this study, an unsupervised, encoder-decoder model that is adversarially trained
with skip-connections for age classification from CCTV data is proposed. The CNN sub-
network of the proposed model extracts local features, and the DCN sub-network extracts
global features of the input image. The potency of the parallel model is explained through
the ablation study of the entropy images of sub-networks. The Latent vectors of these
sub-networks are concatenated and become the input of the decoder, where the input
image is reconstructed through transpose convolution. Both CNN and DCN networks have
skip connections with the decoder-counterpart, assisting in the vanishing gradient problem.
Afterward, the reconstructed image and the input image are input into the discriminator,
where they are classified as real or fake. In the unsupervised training scheme, the model
is trained with only normal-designated classes without labels. During the inference, the
normal-designated classes and the anomaly-designated class is sent through the model,
and the AUC and anomaly scores are calculated. The proposed model achieves up to 5%
higher AUC score, 2% higher classification accuracy when fine-tuned, and an average
of 1.568 lower FID score for three classes (child, adult, and elderly) than the next-best
benchmark model. For future works, various methods for improving the proposed deep
learning model will be investigated.
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