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Abstract: Picking operations is the most time-consuming and laborious warehousing activity. Man-
agers have been seeking smart manufacturing methods to increase picking efficiency. Because storage
location planning profoundly affects the efficiency of picking operations, this study uses clustering
methods to propose an optimal storage location planning-based consolidated picking methodology
for driving the smart manufacturing of wireless modules. Firstly, based on the requirements of
components derived by the customer orders, this research analyzes the storage space demands for
these components. Next, this research uses the data of the received dates and the pick-up dates for
these components to calculate the average duration of stay (DoS) values. Using the DoS values and
the storage space demands, this paper executes the analysis of optimal storage location planning
to decide the optimal storage location of each component. In accordance with the optimal storage
location, this research can evaluate the similarity among the picking lists and then separately applies
hierarchical clustering and K-means clustering to formulate the optimal consolidated picking strategy.
Finally, the proposed method was verified by using the real case of company H. The result shows
that the travel time and the distance for the picking operation can be diminished drastically.

Keywords: smart manufacturing; storage location planning; hierarchical clustering; K-means clustering;
consolidated picking strategy

1. Introduction

The flourishing development of global technology, the use of artificial intelligence and
the Internet of Things, and the integration of data analysis with cloud computing have
facilitated great progress in smart manufacturing. This new trend in the technological
application and the impact of the COVID-19 pandemic have resulted in a substantial
increase in the demand for work from home. Therefore, the market has an urgent demand
for high-performance personal computers, data processing servers, 5G smartphones, high-
performance logic semiconductors, large-capacity semiconductor memory components,
and Wi-Fi modules, which stimulates the development of the electronics industry.

Despite the benefits of the increased demand for consumer electronics products,
the high frequency of old technologies being replaced with new ones in the electronics
industry and the shortness of products’ life cycles emphasize the critical importance of
supply chain management. Because every link in the supply chain must maintain very high
efficiency, warehousing is an indispensable part of the supply chain. Warehousing activities
include receiving, put-away, internal replenishment, order picking, sorting, packing, and
shipping [1]. Order picking is the process of retrieving and obtaining specific materials
from storage locations to complete customer orders and is the most time-consuming and
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laborious warehousing activity. According to De Koster et al. [2], order picking accounts
for approximately 55% of overall warehouse operating costs, which indicates the pivotal
role of order picking in warehousing activities. Therefore, warehouse managers strive to
implement correct warehouse location planning and fast, accurate order picking methods to
reduce warehouse operating costs and increase warehousing efficiency. Common methods
of optimizing order picking include picking path planning, storage zone planning, optimal
storage location planning, and batch picking. These methods are primarily used to reduce
picking distance and time. To our knowledge, past studies explored the use of picking
path planning and storage location planning separately to reduce overall picking time but
have rarely focused on the simultaneous implementation of storage location planning and
picking-list clustering to create an optimal picking-list consolidation strategy.

Storage location planning is a crucial part of warehouse operations, and an optimal
picking operation approach that lacks optimal storage location planning limits the increase
in picking efficiency. To overcome this blind spot, this study focuses on improving picking
operation performance from the perspective of storage location planning and order clus-
tering. Therefore, this study estimates the demand for component storage space by using
order forecast data given by clients to calculate the expected future quantities of required
components. Moreover, this study also uses the warehouse data to calculate the average
duration of stay (DoS) value of each component in the warehouse. If the component
has a less average duration of stay, the component should be placed near the exit of the
warehouse to reduce the travel time and distance of picking operation. Accordingly, this
study proposes the best suggestion for storage location planning. To increase the picking
efficiency, the proposed storage location planning and bill of materials are used as the basis
for picking list clustering.

Finally, this paper applies the hierarchical clustering method and the K-means cluster-
ing method to perform the analysis of picking list consolidation. After the picking capacity
of the pickers is considered, a feasible, optimal picking list consolidation strategy is created.
The warehouse management personnel can employ the analytical result to consolidate the
picking lists so as to significantly reduce the picking time and error rate, thereby reducing
manpower and the cost of picking operations.

The remaining sections are organized as follows. Related studies on Storage location
planning are reviewed in Section 2. Section 3 expounds on the proposed clustering methods
to develop an optimal storage location planning-based consolidated picking methodology.
Subsequently, in Section 4, an example of the warehouse planning for Company H’s concept
storage location planning is illustrated for the feasibility of the proposed method. Finally,
Section 5 concludes this study with a discussion of primary results and summarizes the
main academic and empirical contributions.

2. Literature Review

To address the short life cycle of electronic products, warehouse management requires
more effective storage planning methods. Storage location planning affects almost all key
warehouse performance indicators, including order picking time and costs, production rate,
shipping and inventory accuracy, and storage density [3]. The key performance indicators
in warehousing are usually related to the time or workload required for order picking [4].
Roodbergen and De Koster [5] proposed four aspects of reducing the distance and time
required for order picking activities, i.e., order picking path, warehouse partitioning
planning, storage location planning, and batch picking. Storage location planning is used
to allocate materials to the correct storage location. Appropriate storage location planning
can effectively reduce the order picking distance and time than the other three aspects [6].
Because storage location planning directly affects order picking performance. Therefore,
this iterative relationship between storage location planning and picking operations must
be considered in the design stage of warehouse planning [7]. Accordingly, the optimization
of storage location planning is the primary consideration in this study, and then picking
list clustering is performed to increase picking efficiency.
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The different methods of storage location planning are introduced, classified, and
discussed. Storage location planning ways are divided into two main types: the dedicated
storage way and the shared storage way. The dedicated storage way allocates specific
items to fixed storage locations and is more commonly implemented in manually managed
warehouses. In dedicated storage, when the inventory space for the specific items is full,
these items cannot be stored in other empty storage spaces. Therefore, to improve the
utilization of storage space, scholars proposed a shared storage way that allows any item to
be allocated to an empty storage location. Warehouses that implement the shared storage
way must be managed by a computer system to accurately track the location of the items.
The shared storage way is divided into the random storage method and the classified
storage method. When a random storage method is adopted, storage-location information
is required during the receiving and pick-up operation of items [8]. The classified storage
method is based on the logic of dedicated storage and eliminates the need for detailed and
accurate tracking of the items’ locations and other tedious tasks [9]. Thus, the classified
storage method classifies items in accordance with the appropriate standards; then, storage
locations are conveniently allocated with the random storage method. Bahrami et al. [10]
described three commonly used storage location planning policies: the haphazard storage
policy, the dedicated storage policy, and the class-based storage policy. The haphazard
storage policy can result in the longest order picking distance but requires the minimum
warehouse space. The dedicated storage policy yields the shortest order picking distance
but the lowest warehouse space utilization. If the demand for the product changes, the
optimal storage location of the product is affected, which necessitates a readjustment of the
storage location and in turn, causes substantial increases in maintenance costs. By contrast,
the average order picking distance in the class-based storage policy is between that of
the haphazard and dedicated storage policies [11]. Because class-based storage offers the
flexibility to respond to changes in classification methods and order picking frequency, it
is the widely used method in practice. The class-based storage method is a compromise
between the dedicated and haphazard storage methods. Muppani and Adil [12] noted that
in the class-based storage method, random arrangement of the locations of the materials
in each class can improve the utilization of space and shorten order picking time. Sorting
materials on the basis of turnover is the most common method of classification. Generally,
materials with a higher turnover are arranged on shelves close to the exit, whereas those
with low turnover are arranged on shelves farther from the exit. Guo and De Koster [13]
noted that despite the similarity in order picking distances between the class-based storage
method and the dedicated storage method, the storage space required by the class-based
strategy is two-thirds less than that required by the other storage method.

Moreover, the class-based storage method uses a combination of the dedicated storage
method and the random storage method to reduce tediousness in execution. Therefore, for
a system with large changes in raw materials, the class-based storage method yields a more
favorable result [14]. Accordingly, this study used the class-based storage method as the
basis for storage location planning based on the product configuration [15]. Goetschalckx
and Ratliff [16] proposed a duration-of-stay-based shared storage policy that assumes that
the arrival and departure time of each material within the planned range is known in the
beginning, and the storage location of each material is arranged on the basis of their DoS
values in the warehouse. The shorter the materials remain in the warehouse, the closer
they are placed to the exit. Because scholars have made several assumptions about DoS
that are not applicable to the real case in this research, the equations for the estimation of
DoS values have been developed that suit the problem and context of this study.

Picking operations are one of the most labor-intensive and time-consuming activi-
ties [17]. The manual picking expense accounts for about 50 percent of the total warehouse
operating cost [18]. To decrease the order picking cost, the order-batching policy is adopted
by consolidating small orders to a single large order that can be picked in a single picking
tour [19,20]. Yang et al. [21] formulated the order batch picking problem for three stor-
age locations and developed the location interval distance algorithm, location selection
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algorithm and order batching algorithm to minimize the picking distance. Glock and
Grosse [22] proposed the order picking strategies suitable for the assembly line supplied
with different items. The warehouse contains multiple zones. The shelves in each of the
zones are arranged in the shape of a U. The proposed method can reduce the average pick-
ing time for completing an order. However, it only studied a single zone of a warehouse.
Kuo et al. [23] improved the efficiency of the order picking process by a synchronized zone
order picking system. If two items often appear in the same order, they are located in two
different zones. Hence, two pickers can pick them at the same time to reduce the waiting
time of the customer. However, the method prominently raises the labor cost. To increase
the picking efficiency, Franzke et al. [17] investigated picker blocking under different order
picker-route combinations and developed an agent-based simulation model to study the
behavior of each order picker to avoid picker blocking to increase mean throughput times.
Cheng et al. [24] used the particle swarm optimization algorithm to create the best picking
plan. Moreover, the ant colony optimization algorithm minimized the sum of the traveling
distance for the joint order batching problem. Lin et al. [25] investigated the joint order
batching by classifying similar orders as the same batch for shortening the picker Manhat-
tan routing. Furthermore, this work used particle swarm optimization to determine the
optimal order batching allocation. However, these methods just are applied in a few order
products and items. De Santis et al. [26] proposed an adapted ant colony optimization
(ACO) approach to minimize the travel distance of pickers in manual warehouses. The ap-
proach can be divided into two stages. In the first stage, the Floyd–Warshall algorithm was
used to find the shortest path connecting each pair of nodes. The second stage identified
the shortest picker route by utilizing ACO. However, that approach cannot work in the
stereoscopic warehouse. In addition, the storage locations for the items are separated into
three areas. Consequently, the storage location planning does not be optimized.

3. Architecture of an Optimal Storage Location Planning Based Consolidated
Picking Methodology

This research applies the clustering methods to develop an optimal storage location
planning-based consolidated picking methodology for driving the smart manufacturing of
wireless modules. Figure 1 displays the architecture of the proposed methodology, which is
divided into three parts. The first part is the analysis of storage space demand; the second
part is the analysis of the optimal storage location planning; the third part is the analysis of
picking list consolidation strategies.

In the first part, the manufacturing orders are generated from the input data of the
customers’ orders. The bills of materials (BOM) are used to calculate the quantities of
the components at the lowest level of each order. The storage space demand of each
component can be obtained by using the above information. After the storage space
demand of each component is determined, the second part can perform the analysis of the
optimal storage location planning. In this part, the average DoS values for each component
and each component classification in the warehouse are analyzed using historical data.
The average DoS value and the storage space demand for each component classification
can be used to determine the storage location. Hence, the average DoS values serve as
the priorities of storage location planning. A shorter average DoS value indicates higher
pick-up frequency and the component classification must be placed closer to the exit; thus,
the relative position of the component classification can be determined to complete the
classification-based storage location planning. Subsequently, the detailed storage location
planning for each component is performed. Using the same concept, the average DoS value
of each component within the classification can be utilized to decide the detailed relative
location of each component. Based on the optimal storage location planning, the third part
is to assist the pickers by increasing the picking efficiency of components. This study uses
the types and amounts of the components in each picking order as the feature variables
and employs the hierarchical clustering method and the K-means clustering method to
consolidate multiple picking lists to reduce picking time. After considering the maximum
pick-up capacity for a picker, this study can find feasible picking-list consolidations. Finally,
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the performance of the feasible picking orders consolidations is compared to determine the
optimal picking-list consolidation strategy.
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3.1. Analysis of Storage Space Demand

The main purpose of the first part is to estimate storage space demands. First, the
customer orders are used as input data to generate a manufacturing order, after which the
manufacturing order is expanded using the BOM to obtain the required quantities of the
lowest-level components of each order. Next, the volume of a component is multiplied by
the number of the component to estimate the storage space required. In addition, because
of the short lifecycle of electronic products and the large fluctuations in customer demand,
electronic products’ components generally have a high turnover and low inventory rate.
Thus, this study analyzes storage space demand on the basis of the order forecast of the
most recent period, with the assumption that the storage location planning is based on a
rolling adjustment of a 7-day cycle. The storage space demands of the components could
be recalculated and reviewed every 7 days to adjust the storage space planning for the
next week.

3.2. Analysis of the Optimal Storage Location Planning

Yu et al. [16] noted that the classification-based storage method saves picking time and
decreases the demand for storage space. Therefore, the proposed optimal storage location
planning is based on the classification-based storage method. In addition, in order to decide
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the relative storage location, this research uses the DoS concept to propose the optimal
storage location planning method. Firstly, this study uses Equation (1) to calculate the
average DoS value of each component classification in the warehouse through the analysis
of historical data in the warehouse management system. The average DoS value of each
classification is served as the priority index of storage location planning. If the average
DoS value of this classification is shorter, then the storage location of the components
within this classification is closer to the exit. At the same time, the components within the
same classification are stored according to the same rule. Therefore, the DoS value of each
component in the warehouse is also calculated by using Equation (2) so as to arrange its
relative storage position in its classification area. By employing the optimal storage location
planning method, this research can reduce the time required to locate the components and
the picking distance so as to increase the picking efficiency.

The first-in-first-out (FIFO) method is used in this study. The picking up date of
the component is subtracted from the receiving date of the component to obtain the DoS
value of the component. Equation (2) can be used to calculate the average DoS value of
component K. This research uses the same concept to acquire the average DoS values of
components within the specific classification. The average DoS values of components
can be served as the priority to determine the storage location of components. Then, the
priorities are ranked on the basis of the calculated DoS values to determine the optimal
storage locations of the components in the warehouse.

CDoSe =

[
∑K

k=1 ∑I
i=1(OTe,k,i − ITe,k,i)×Qe,k,i

]
∑K

k=1 ∑I
i=1 Qe,k,i

, (1)

where CDoSe is the average DoS of component classification e, Qe,k,i is the picking-up
quantity of the ith batch of component k classification e, OTe,k,i is the picking-up date of the
ith batch of component k, and ITe,k,i is the receiving date of the ith batch of component k.

NDoSk =

[
∑I

i=1(OTk,i − ITk,i)×Qk,i

]
∑I

i=1 Qk,i
, (2)

where NDoSk is the average DoS value of component k, Qk,i is the picking-up quantity of
the ith batch of component k, OTk,i is the picking-up date of the ith batch of component k,
and ITk,i is the receiving date of the ith batch of component k.

3.3. Analysis of Picking-List Consolidation Strategy

The main goal of the picking list consolidations is to increase picking efficiency by
merging multiple picking lists. When the required components in the picking lists are
highly similar or even the same, the storage locations of the components in the warehouse
are in the similar or same storage locations. The picking lists can thus be consolidated to
reduce the picking distance and time. In this research, the hierarchical clustering method
and the k-means clustering method are used and compared to formulate an optimal
picking-list consolidation strategy, which is divided into the following steps:

Step 1: Data integration and cleaning: The customer orders of a company are collected
as the data for the cluster analysis. Because the pickers pick the components on the basis
of the lowest-level components listed in the picking lists, the products ordered by the
customers must be expanded into the required quantities of the lowest-level components
in accordance with the BOM. The types and quantities of the lowest-level components in
each order are used as the feature variables. To eliminate redundant feature variables in
the data, this study assumed that the main materials and substitute materials are placed in
the same storage location to reduce the number of feature variables.
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Step 2: Similarity calculation: The Euclidean distance between two picking lists is
used to calculate the degree of similarity between the two picking lists, as shown in (3).

D(y1,y2)
=

√√√√ J

∑
j=1

(
x1j − x2j

)2, (3)

where D(y1,y2)
is the Euclidean distance between the two picking lists, J is the picking list

containing J attribute variables, x1j is the value of the jth attribute variable of the first
picking list, and x2j is the value of the jth attribute variable of the second picking list.

The hierarchical clustering algorithm is based on the similarity between two clusters.
This study uses the average linkage method to measure the similarity degree between the
two clusters as shown in (4). The hierarchical clustering algorithm adopts the bottom-up
method. Therefore, in the beginning, each data point is considered to be a separate cluster.
Next, the hierarchical clustering algorithm uses the similarity degree to find and merge the
two closest data points to form a new cluster. The iterative steps are performed until all
data points become a cluster.

Daverage
(
Ci, Cj

)
=

1
ninj

∑
a∈Ci

∑
b∈Cj

D(a,b), (4)

where Daverage is the average linkage distance between the two clusters, Ci is the ith cluster
in the sample, ni is the number of data points in the cluster Ci, nj is the number of data
points in the cluster Cj, and D(a,b) is the distance between two data points.

By using the results of the hierarchical clustering, the appropriate cluster number
can be determined by the sum of squares within clusters. When the number of clusters
is added and the sum of squares within clusters does not have significant improvement,
the appropriate cluster number can be decided and, at the same time, used as the initial
cluster number for the K-means clustering algorithm. Based on the number of clusters, the
K-means algorithm selects the data points as the centroids of the clusters and calculates
the distances between the data points to the centroids of the clusters. Every data point
is allocated to the nearest cluster and then calculate the new centroid of each cluster. If
the centroid of a cluster is updated, then the K-means clustering algorithm searches for
the nearest cluster for each data point and updates the data points of each cluster. The
K-means clustering algorithm performs the above-mentioned steps until the centroid of
each cluster is unchanged.

Step 3: Evaluation and interpretation of clustering results: This step compares the
hierarchical clustering and K-means clustering results. Because the number of picking lists
in each cluster affects the workload of the picking tasks assigned to the pickers, whether
the number of picking lists in each cluster is evenly distributed must be considered. In
addition, this research considers the maximum pick-up capacity for each picker to find
feasible picking-list consolidations. Finally, the picking time and the picking distance of
the feasible picking-list consolidations are analyzed to formulate the optimal picking list
consolidation strategy.

4. Case Study

This study focuses on the Wi-Fi modules produced by company H. The main com-
ponents are stored on the heavy-duty shelves of the warehouse. The as-is model of the
warehouse planning for Company H is to divide the space into multiple areas on the basis
of the classifications of components under the assumption of sufficient storage space. How-
ever, in terms of the implementation of warehouse management, Company H faces some
problems. Firstly, the prearranged storage spaces are sometimes not sufficient for receiving
components; this rendered no fixed storage locations available. Moreover, because no fixed
storage location is available for the components, no detailed storage location planning and
arrangement system is used in company H’s warehouse. Thus, the storage locations might
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not have been able to accommodate the receiving quantities of components, resulting in an
incapacity to fix the shelf positions for components and subsequently forcing the on-site
pickers to compare and search for components one by one, which in turn led to increased
labor and time costs. Furthermore, when the system assigned an individual picker to
one or more picking lists, it did not consider the storage locations of the components in
the warehouse and the total load that pickers are capable of carrying. Consequently, the
distance between the locations of the components assigned to a picker could have been
far away, or the picking list could have exceeded the picker’s maximum load, requiring
multiple trips of picking to complete the picking work.

This research collected 98 customer orders of Wi-Fi modules for company H. Based
on these customer orders, manufacturing orders were generated and expanded in accor-
dance with the BOM to obtain the required quantities of the lowest-level components.
The storage space demand is planned on the basis of the number of components used.
In addition, rolling storage location planning is performed on a 7-day cycle; that is, the
quantities of components that would be purchased in the following week are reviewed
every 7 days to dynamically adjust the storage space. The proportions of different compo-
nent classifications relative to the quantities used were calculated to evaluate the storage
space for each classification of components. After the component space demand was
determined, the average DoS value of each component classification in the warehouse was
calculated to decide the optimal storage locations for different component classifications as
shown in Table 1. Each classification of components was arranged in the optimal storage
location relative to the exit on the basis of the average DoS value as shown in Figure 2.
Then, detailed storage location planning was performed for the same classifications of
components. The first-in-first-out method was used to calculate the average DoS values of
different components in the same classification. This research uses the integrated circuit
(IC) components as an example to explain how to perform the detailed storage location
planning. Table 2 shows the average DoS values of 39 IC components in the warehouse.

Based on the storage space demands and the average DoS values of various types
of IC components, the optimal detail storage location planning can be obtained as shown
in Figure 3. Figure 3 presents the perspective of a picker facing the shelves where they
stock and pick up IC components and the schematic diagram of the storage locations of
the 39 IC components in area no. 5-AC. Shelf 15 is the location closest to the exit. Because
the height of the shelf affects the convenience of picking, the components with the shortest
DoS are arranged on the first shelf, which pickers can access without an elevator. The IC
Components with long DoS values are arranged on the second and third shelves, which
require an elevator for the pickers to reach. According to the above-mentioned principles,
the optimal detail storage locations for all IC components are decided.

Table 1. DoS value and quantity used of each component classification in the warehouse.

Component Classification
(Code Name)

Proportion of Component
Classification Relative to

Quantity Used (%)

Average DoS Value
(Days)

mechanical rubber foam (5-MR) 1.20 25.63
printed circuit board (5-PP) 2.43 31.56
mechanical screws (5-MS) 0.02 32.20
integrated circuit (5-AC) 3.59 32.40
crystal oscillator (5-YS) 1.81 34.92

mechanical metal part (5-MM) 2.86 36.73
Filter (5-FR) 4.88 37.36

capacitor category (5-CC) 56.4 43.76
connector (5-CN) 3.81 45.68
inductor (5-LL) 9.64 45.97
diode (5-DD) 0.80 48.44

resistor (5-RR) 12.54 49.18
transistor (5-TR) 0.01 54.19
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Figure 3. Figure 3 presents the perspective of a picker facing the shelves where they stock 
and pick up IC components and the schematic diagram of the storage locations of the 39 
IC components in area no. 5-AC. Shelf 15 is the location closest to the exit. Because the 
height of the shelf affects the convenience of picking, the components with the shortest 

Figure 2. Optimal storage location of each component classification.

Table 2. DoS value of each IC component in the warehouse. (Unit: days).

Component No. Average DoS Value Component No. Average DoS Value

Item_AC13 3.90 Item_AC06 63.10
Item_AC17 16.68 Item_AC01 63.21
Item_AC24 23.95 Item_AC39 63.35
Item_AC22 28.48 Item_AC03 65.33
Item_AC33 30.53 Item_AC26 66.12
Item_AC09 32.97 Item_AC05 72.51
Item_AC25 38.98 Item_AC34 73.38
Item_AC32 39.49 Item_AC27 74.70
Item_AC35 40.05 Item_AC12 76.93
Item_AC21 45.25 Item_AC07 78.29
Item_AC23 45.75 Item_AC14 80.58
Item_AC38 46.57 Item_AC28 85.99
Item_AC37 46.65 Item_AC16 87.79
Item_AC11 47.96 Item_AC29 89.41
Item_AC08 51.06 Item_AC36 89.87
Item_AC02 52.85 Item_AC30 92.16
Item_AC19 55.61 Item_AC10 92.33
Item_AC04 56.31 Item_AC31 100.96
Item_AC20 60.88 Item_AC18 116.55
Item_AC15 62.38

According to the optimal storage locations of the components on the shelves, this
research performed the picking-list clustering analysis. The 98 customer orders for Wi-
Fi modules were collected and expanded in accordance with the BOM. Next, a total of
1156 types of lowest-level components, which represented the number of feature variables,
can be obtained. Because the number of feature variables was too high to clearly observe
the clustering patterns of picking lists, data extraction was performed. Components that
were seen fewer than six times were deleted among the 98 orders; and the more frequently
used and repeatedly seen components were extracted as the feature variables, resulting in
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a total of 155 feature variables. The demands for the different components in each order
were used as the values of feature variables, and the R programming language was used to
perform the hierarchical clustering analysis. The similarity between clusters was calculated
using the average linkage method and the Euclidean distance. Figure 4 presents the results
of the hierarchical clustering in the form of a tree diagram. The within-group diminishing
differences slowed down when the number of hierarchical clusters exceeded 26 as shown
in Figure 5. Therefore, the number of hierarchical clusters was 26.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15 
 

DoS are arranged on the first shelf, which pickers can access without an elevator. The IC 
Components with long DoS values are arranged on the second and third shelves, which 
require an elevator for the pickers to reach. According to the above-mentioned principles, 
the optimal detail storage locations for all IC components are decided. 

 
Figure 3. Optimal storage locations of the IC components on the shelves. 

According to the optimal storage locations of the components on the shelves, this 
research performed the picking-list clustering analysis. The 98 customer orders for Wi-Fi 
modules were collected and expanded in accordance with the BOM. Next, a total of 1156 
types of lowest-level components, which represented the number of feature variables, can 
be obtained. Because the number of feature variables was too high to clearly observe the 
clustering patterns of picking lists, data extraction was performed. Components that were 
seen fewer than six times were deleted among the 98 orders; and the more frequently used 
and repeatedly seen components were extracted as the feature variables, resulting in a 
total of 155 feature variables. The demands for the different components in each order 
were used as the values of feature variables, and the R programming language was used 
to perform the hierarchical clustering analysis. The similarity between clusters was calcu-
lated using the average linkage method and the Euclidean distance. Figure 4 presents the 
results of the hierarchical clustering in the form of a tree diagram. The within-group di-
minishing differences slowed down when the number of hierarchical clusters exceeded 
26 as shown in Figure 5. Therefore, the number of hierarchical clusters was 26. 

Figure 3. Optimal storage locations of the IC components on the shelves.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 
Figure 4. Tree diagram of the hierarchical clustering result. 

 
Figure 5. Within-group and between-group differences in cluster numbers by using hierarchical 
clustering. 

The hierarchical clustering method was then compared with the K-mean clustering 
method to determine which was more effective. Figure 6 presents the sum of the square 
broken line graph obtained by using different cluster numbers (1–30) and exhibits fluctu-
ations in within-group and between-group differences among the clusters. When the 
number of clusters was 26, the degree of within-group diminishing difference was 
53.0936, a more pronounced decline compared with when the cluster number was 23. 
Therefore, the cluster number of 26 was appropriate when the data were clustered 
through K-means clustering as shown in Table 3. The optimal cluster number of the K-
means method was the same as that of the hierarchical cluster analysis. In addition, when 
the cluster number was 26, the within-group differences of hierarchical clustering and K-
means clustering were 303.3458 and 320.0222, respectively. Although the within-group 
difference of K-means clustering was higher than that of hierarchical clustering, the slight 
difference was still within an acceptable range. Moreover, the number of orders allocated 
to each cluster through K-means clustering was more even than that allocated through 

Figure 4. Tree diagram of the hierarchical clustering result.



Appl. Sci. 2021, 11, 9895 11 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15 
 

 
Figure 4. Tree diagram of the hierarchical clustering result. 

 
Figure 5. Within-group and between-group differences in cluster numbers by using hierarchical 
clustering. 

The hierarchical clustering method was then compared with the K-mean clustering 
method to determine which was more effective. Figure 6 presents the sum of the square 
broken line graph obtained by using different cluster numbers (1–30) and exhibits fluctu-
ations in within-group and between-group differences among the clusters. When the 
number of clusters was 26, the degree of within-group diminishing difference was 
53.0936, a more pronounced decline compared with when the cluster number was 23. 
Therefore, the cluster number of 26 was appropriate when the data were clustered 
through K-means clustering as shown in Table 3. The optimal cluster number of the K-
means method was the same as that of the hierarchical cluster analysis. In addition, when 
the cluster number was 26, the within-group differences of hierarchical clustering and K-
means clustering were 303.3458 and 320.0222, respectively. Although the within-group 
difference of K-means clustering was higher than that of hierarchical clustering, the slight 
difference was still within an acceptable range. Moreover, the number of orders allocated 
to each cluster through K-means clustering was more even than that allocated through 

Figure 5. Within-group and between-group differences in cluster numbers by using hierarchical
clustering.

The hierarchical clustering method was then compared with the K-mean clustering
method to determine which was more effective. Figure 6 presents the sum of the square bro-
ken line graph obtained by using different cluster numbers (1–30) and exhibits fluctuations
in within-group and between-group differences among the clusters. When the number of
clusters was 26, the degree of within-group diminishing difference was 53.0936, a more
pronounced decline compared with when the cluster number was 23. Therefore, the cluster
number of 26 was appropriate when the data were clustered through K-means clustering
as shown in Table 3. The optimal cluster number of the K-means method was the same as
that of the hierarchical cluster analysis. In addition, when the cluster number was 26, the
within-group differences of hierarchical clustering and K-means clustering were 303.3458
and 320.0222, respectively. Although the within-group difference of K-means clustering
was higher than that of hierarchical clustering, the slight difference was still within an ac-
ceptable range. Moreover, the number of orders allocated to each cluster through K-means
clustering was more even than that allocated through hierarchical clustering when the
cluster number was 26. Thus, with K-means clustering, the initial workload assigned to
the pickers was evenly distributed and satisfied the constraint of the maximum pick-up
capacity for a picker. Therefore, the K-means clustering method is more effective than the
hierarchical clustering method, indicating that the K-means clustering method should be
used to create the picking list consolidation strategy.
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Table 3. K-means clustering result.

Clustering No. Picking-Lists No.

1 list10, list11, list71
2 list60, list61, list82, list84, list85
3 list19, list20, list21, list77, list78
4 list01, list18, list45, list51, list52, list59, list95, list96, list97
5 list07, list43, list44, list55, list56, list75
6 list79, list80
7 list27, list30
8 list46, list47
9 list62, list66, list68

10 list08, list09, list49, list50, list72, list89
11 list04, list05, list06
12 list13, list22, list73
13 list63, list64, list65, list67
14 list74, list90, list91, list92, list93, list94
15 list31, list33
16 list86, list87, list88
17 list32
18 list41, list42
19 list14, list15, list16, list81
20 list76, list98
21 list34, list35, list36, list37, list38, list39, list40
22 list23, list24, list25, list26
23 list12, list17, list83
24 list53, list54, list57, list58, list69, list70
25 list02, list03, list48
26 list28, list29

The first cluster was selected from the results. The cluster consisted of lists 10, 11,
and 71, each of which was expanded using the BOM, and the types and quantities of
components required for each order were obtained. Then, the current storage and picking
method of company H was compared with the proposed method. In company H, the
pickers located the components through the warehouse management system while picking
and spent more time searching for components in a specific area. The pickers were unable
to arrange their picking route in advance after they received the picking list, resulting
in long picking distances. Figure 2 displays the storage locations of various components
as determined by the proposed optimal storage location planning method. Figure 2 also
presents a simulated route for a picker to complete three orders based on this method.
Because the components were classified on the basis of classifications and their locations
were arranged on the basis of their average DoS values, the pickers used the optimal
storage location planning to create a path to pick the components and avoid picking errors
and moving repeatedly along a single route. Table 4 shows the total picking distances
required by the two methods. The distance the pickers walked to complete the three orders
by using company H’s method was approximately 73.6 m longer than the distance required
by the proposed method. This verified that the proposed storage location planning and the
picking list consolidation strategy increased the picking efficiency substantially.

Table 4. Comparison of picking path distance. (Unit: Meter).

Title 1 Company H’s Method Proposed Method Degree of Difference

horizontal distance 280.6 217.8 62.8
vertical distance 64 53.2 10.8

total 344.6 271 73.6
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5. Conclusions

Within the supply chain process, picking operation is the most time-consuming and
labor-intensive activity. Warehouse managers need to employ the smart manufacturing
method to boost the picking efficiency to reduce warehouse operating costs. Due to
storage location planning as a key factor affecting picking efficiency, this research firstly
applies warehouse data to calculate the average DoS values and estimate the storage space
demands by the customer orders to develop an optimal storage location planning to reduce
the time for the pickers to search and retrieve the components from the shelves. Based
on the macro-level optimal result, this research utilizes the hierarchical clustering method
and the K-means clustering method to find the picking lists with high similarity to help
warehouse managers create the best picking-list consolidation strategy for decreasing the
distances and trips traveled by pickers and increasing the picking efficiency. To validate
the feasibility and effectiveness of the proposed approach, a case study of new storage
location planning and consolidated picking process was illustrated.

To sum up, this study makes several significant contributions explained as follows. To
our knowledge, many studies have investigated picking route planning, storage location
planning, and batch picking separately and have rarely considered combining two or more
above-mentioned factors. Because storage location planning affects picking performance,
this research uses the storage space demands of the components and their DoS values in
the warehouse to optimize the storage locations of the components. In addition, this study
develops a method of calculating DoS values to ensure that they reflected the warehouse
operations of company H. Moreover, the hierarchical clustering method and the K-means
clustering method were used to effectively consolidate multiple picking lists and reduce
the number of picking trips. According to the study result, the performance of the K-
means clustering method is more effective than that of the hierarchical clustering method.
Furthermore, the proposed method used the class-based storage strategy to improve on
company H’s haphazard storage method, which was based on rules of thumb and reduced
the time required by pickers to locate components. Therefore, the optimal picking list
consolidation strategy proposed by this study enabled pickers to pick components from
multiple picking lists and decreased the number of picking trips. This study increased
pickers’ work efficiency and streamlined the picking process, and the results can provide a
practical reference for the warehouse managers in company H and other companies. For the
generalization of the proposed method, it can be generally applied to other manufacturers
with the same enterprise context with the intelligent machinery under Industry 4.0 to
enhance the efficiency and effectiveness of storage location planning and consolidated
picking. It is hoped that this work provides practical guidance for achieving a more
advanced storage location planning and consolidated picking in intelligent machinery and
Industry 4.0.
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