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Abstract: Digital cash is a form of money that is stored digitally. Its main advantage when compared
to traditional credit or debit cards is the possibility of carrying out anonymous transactions. Diverse
digital cash paradigms have been proposed during the last decades, providing different approaches
to avoid the double-spending fraud, or features like divisibility or transferability. This paper presents
a new digital cash paradigm that includes the so-called no-valued e-coins, which are e-coins that can
be generated free of charge by customers. A vendor receiving a payment cannot distinguish whether
the received e-coin is valued or not, but the customer will receive the requested digital item only in
the former case. A straightforward application of bogus transactions involving no-valued e-coins is
the masking of consumption patterns. This new paradigm has also proven its validity in the scope of
privacy-preserving pay-by-phone parking systems, and we believe it can become a very versatile
building block in the design of privacy-preserving protocols in other areas of research. This paper
provides a formal description of the new paradigm, including the features required for each of its
components together with a formal analysis of its security.

Keywords: cryptography; digital cash; privacy

1. Introduction

The European Commission defines digital cash (also referred to as e-money or e-cash)
as a digital alternative to cash. It allows users to make cashless payments with money
stored on a card or a phone, or over the Internet.

Digital cash was first proposed in the early 1980s by Chaum [1] in a proposal based on
the newly invented blind signature cryptographic primitive. That proposal includes three
actors: the bank, the payer (the customer), and the payee (the vendor), and three protocols:
withdraw, spend, and deposit. An e-coin is a random sequence of data which has been
digitally signed by the bank. During the withdraw protocol, the payer generates a random
sequence and, after paying for it, asks the bank to digitally sign it through a blind signature
protocol. This ensures that the bank does not learn any information about the issued e-coin
so that the payer will be able to spend it anonymously in the future. An e-coin is spent by
means of a process by which the payer transmits it to the payee. Finally, when the payee
deposits an e-coin, they receive its monetary value from the bank.

Chaum’s proposal [1] is both anonymous (the identity of the payer is not revealed
during payment) and unlinkable (it is not possible to determine whether two payments
were made by the same payer or not).

A transaction using a digital currency occurs entirely digitally. This means that a
dishonest payer could store a copy of an e-coin after having spent it and then try to spend
it again in the future. This is the double-spending fraud. Two main strategies have been
proposed to cope with attempts to double-spend. In [1], upon receiving a payment, the
payee asks the bank to check that the received e-coin has not been spent before. This is an
on-line double-spending fraud prevention strategy. In the off-line alternative [2], double
spending is not checked during the payment process, but it can be detected later when the
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e-coin is deposited. In cases of double-spending, the anonymity of the double-spender is
lifted so that they can be prosecuted.

Research on digital cash systems has addressed diverse features such as e-coin divisibil-
ity, which allows a user to withdraw a coin and spend it several times by dividing its value
(up to a given limit). The first practical divisible digital cash system was proposed in [3].
That proposal is anonymous but it is possible to link several spends from a single divisible
coin. The system in [4] is divisible and unlinkable but the vendor and the bank know
which part of the coin is being spent. Hence, unlinkability is provided partially. The first
divisible and strong unlinkable e-cash system was described in [5]. A more efficient system
in terms of computational and communications cost was proposed later in [6]. Research in
the divisibility feature is still active with proposals such as [7], in which a large e-coin can
be divided into several small ones with arbitrarily integer values. The system is efficient as
both the pay and deposit procedures run in constant time. The authors of [8] provide a
formal and complete security model for divisible e-cash and study constructions based on
pseudo-random functions.

Another research line focused on digital cash systems able to deal with low value
payments, that is, micropayments [9]. These systems have been addressed by the research
community with proposals aiming to reduce the number of public key operations by
replacing them with lightweight hash computations. The Micromint system [9] can be
seen as a precursor of the widely-known proof-of-work concept in modern cryptocurrencies.
Although digital cash systems need to be efficient both in terms of computation and
communication costs, the ever increasing capacity of computers and mobile devices has
eliminated the need for so many lightweight proposals. For instance, the authors of [10]
achieve a reduced cost by using elliptic curve public key cryptography.

Transferability is the most difficult feature of paper cash to be achieved in the digital
world. Transferable digital cash systems enable the payee of a transaction to spend the
received e-coin in another transaction in which they will play the payer role. In such
systems, preventing the double-spending fraud is a hard issue since several people are
in possession of the same e-coin throughout its lifetime. The authors of [11] propose a
system in which transactions involve the participation of a verifying authority, which
checks that e-coins have not been spent before. A recent paper [12] analyzes previous
models for transferable digital coins and concludes that they are incomplete. Then, the
authors propose a new model and prove its feasibility by giving a concrete construction
and rigorous proofs that it satisfies the model.

Modern approaches to digital cash aim to avoid the need for a trusted central entity.
This is achieved through the existence of a distributed public ledger storing a record of all
the transactions. This is the case for the Bitcoin [13] or the Ethereum [14] cryptocurrencies
among many others. Distributed ledgers require the existence of a method for validating
transactions without the need to trust a central authority, namely a consensus mechanism. The
proof-of-work approach implemented by Bitcoin has been criticized due to the huge electricity
consumption it involves. The proof-of-stake alternative, adopted by Ethereum, is much more
energy efficient. The design and evaluation of alternative consensus mechanisms is an
active area of research.

Attempts to develop a full cash-like digital payment system which is both anonymous,
off-line, and secure against double-spending have been forced to include some trusted
hardware element. This is the case for the OPERA system [15], which requires a new
concept of memory called ORM (one-time-readable memory). The European Commission
has reached a similar conclusion to that mentioned in its ‘Report on digital euro’ [16], which
mentions the deployment of two systems in parallel: one based on trusted hardware that
can be off-line, anonymous, and without third-party intervention; and an account-based
on-line, which is fully software based but excludes the possibility of anonymity.

This paper provides a formal description of a new digital cash paradigm, which
enables customers (the payers) to issue no-valued e-coins. These no-valued e-coins are
indistinguishable from valued ones and can be used to conduct bogus transactions against
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the vendor (the payee). The vendor cannot determine whether the received e-coin was
valued or not while the customer receives the requested digital item only when a valued
e-coin has been spent.

This paradigm has proven its validity in the scope of pay-by-phone parking appli-
cations. In [17], a driver, after parking their car in a regulated zone, acquires tickets for
some consecutive short time intervals during which their car is expected to be parked. So
as to mask the expected parking duration, all the drivers always request the same amount
of tickets. Those tickets belonging to intervals after the expected parking duration are
paid through no-valued e-coins. An ad-hoc construction belonging to this digital cash
paradigm was presented in [17]. Nevertheless, that initial design assumed the use of a
fixed suite of cryptosystems due to restrictions in what concerns to the key-size of the
used cryptography. More precisely, the cleartexts of the cryptosystem used by the vendor
for signing the issued e-coins had to be large enough to accommodate public keys of the
cryptosystem used for encrypting the acquired digital item. The role of the mentioned
cryptosystems will be explained later in Section 4.

In this paper, we propose how the mentioned key size limitation can be eliminated.
The novel construction also avoids the need in [17] for a timestamp authority. Instead,
customers timestamp their transactions by themselves.

Section 1 has presented an introduction to digital cash systems. Section 2 briefly
reviews the cryptographic tools required in our construction. Next, Section 3 presents a
construction based on the use of OAEP (Optimal Asymmetric Encryption Padding [18]),
which allows the simulation of digital signatures over messages of arbitrary length. After
that, the novel digital cash paradigm is detailed in Section 4. Some cryptosystems providing
the required features of the new paradigm are discussed in Section 5. Section 6 is devoted
to analyzing the security of the proposal. Next, experimental results are summarized in
Section 7, while Section 8 concludes the paper.

2. Preliminaries

This section provides a brief introduction to the cryptographic primitives used by the
proposed paradigm.

2.1. Public Key Encryption

In a public key cryptosystem [19], each party is in possession of a private-public key
pair. The private key is kept secret while the public one can be made worldwide available.
A message encrypted under the public key can only be decrypted by a party in possession
of the private one.

2.2. Digital Signatures

Public key cryptography enables the computation of digital signatures [19]. Given M
(usually the hash digest of the data to be signed), the signer computes a digital signature
over M using their private key. The resulting signature is denoted as SignPK(M), and
{M, SignPK(M)} is a digest-signature tuple.

Such a tuple is validated under signer’s public key, PK. A positive validation provides
integrity, authentication and non-repudiation to the data hashed into M.

2.3. Simulatable Digital Signatures

The term simulatable is widely used in the realm of zero-knowledge proofs [20]. A sim-
ulator is an entity which, without knowing the secret, can produce a transcript that looks
like a proper interaction between a honest prover and the verifier.

In the context of digital signatures, we say a signature scheme is simulatable, when
an entity not knowing the secret key is able to produce valid digest-signature tuples. The
digest component of a simulated tuple cannot be chosen by the simulator, otherwise such
signature scheme would be forgeable. Use of a simulated tuple for authentication purposes
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further requires finding a piece of data whose digest matches the obtained one. This is
unfeasible if an appropriate one-way hash function is being used for digest computation.

2.4. Blind Signatures

Blind signatures [1] are computed through a protocol run between two parties: Alice,
who is in possession of a piece of data whose hash digest is M, and Bob who owns a
key-pair.

After running the protocol, Alice gets Bob’s signature on M, while Bob does not learn
any information about M nor about the resulting signature.

3. Message Digests for Simulatable Signatures

As it will be explained next, our digital cash paradigm requires a signature system
allowing the computation of simulated digest-signature tuples, which can be linked to
a piece of data. So as to make it possible, the one-way hash function employed in tradi-
tional digital signature schemes must be replaced with a similar function allowing some
degree of pseudo-random reversibility. In this section we propose a construction fulfilling
this requirement.

3.1. Optimal Asymmetric Encryption Padding

Optimal Asymmetric Encryption Padding (OAEP) is a procedure initially proposed
to pad the plaintext prior to its asymmetric encryption [18]. We next describe OAEP when
no plaintext-awareness is required (by setting parameter k1 of the original proposal to 0).
Let m be the bitlength of the input plaintext, and let k0 be an integer parameter. OAEP is
constructed from two of oracles,

G andH, producing m and k0 bit outputs, respectively.
The padding procedure takes as input the original plaintext M and a random k0-bit

string r:

1. Compute X = M⊕ G(r),
2. Compute Y = r⊕H(X),
3. Return (X, Y).

We will denote this process as (X, Y) = OAEPm,k0(M, r). The resulting X and Y are m
and k0 bits long, respectively. Along the paper, sub-indices m and k0 will be removed when
deemed redundant. The reverse procedure returns the original (M, r) pair from (X, Y):

1. Compute r = Y⊕H(X),
2. Compute M = X⊕ G(r),
3. Return (M, r).

We will denote the reverse process as (M, r) = OAEP−1
m,k0

(X, Y).
The following lemma states a property of OAEP, which is crucial for our construction.

Lemma 1. Given a message M and a k0-bit string Y, it is hard to find an {r, X} pair so that
(X, Y) = OAEPm,k0(M, r).

Proof. Given M and Y, one must find a bitstring r satisfying Equation (1).

Y = r⊕H(M⊕ G(r)). (1)

Since G acts as a random oracle, after choosing r, the output of G(r) is assumed
to be random so that M ⊕ G(r) is also random. Function H is also a random oracle so
that H(M⊕ G(r)) is random and so r⊕H(M⊕ G(r)) is. Hence, the probability that the
resulting random string matches Y is 2−k0 so that the expected number of trials needed for
finding such an r is 2k0 which is unfeasible if k0 is large enough. Given that r is k0 bits long,
there are exactly 2k0 candidates so that such an r may not exist.
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Another possibility is to search for an X satisfying Equation (2).

M = X⊕ G(H(X)⊕Y). (2)

In this case, an equivalent analysis can be applied leading to a 2−m success probability,
which is harder, as typically m� k0.

3.2. Plaintext Awareness

Given a random (X, Y) pair, the result of computing (M, r) = OAEP−1
m,k0

(X, Y) pro-
duces a pseudo-random output. A party performing this computation cannot determine
whether (X, Y) was generated at random or it was obtained by computing (X, Y) =
OAEPm,k0(M, r) from an input (M, r) pair. In this latter case, the creator of (X, Y) was
aware of plaintext M.

Plaintext awareness is provided by appending k1 ‘0’ bits to M before running the
OAEP process [18]. After running the OAEP reverse procedure, one must check that
the obtained message M carries k1 attached ‘0’ bits which can then be removed. This
construction provides plaintext awareness with probability 1− 2−k1 so that a large enough
value for k1 leads to a close to 1 probability.

Throughout this paper, subscript PA will be used to denote that OAEP is being used
with the plaintext awareness feature. When plaintext-awareness is provided, string X is k1
bits longer than M.

3.3. Proposed Construction

We next propose an OAEP-based construction allowing the simulation of digest-
signature tuples in such a way that the digest component of simulated tuples can be linked
to a piece of data whose length can be chosen by the simulator, but its actual value cannot.

Given an existing simulatable signature scheme, the construction is as follows:

1. Let M be the m-bit message to be signed.
2. Let l be the length of the digests signed by the signature scheme.
3. Generate a random l-bit bitstring r and compute (X, Y) = OAEPm,l(M, r).
4. Compute a digital signature over Y, namely Sign(Y).
5. Send the {X, Y, Sign(Y)} tuple to the receiver.

Such a tuple is validated as follows:

1. Validate the {Y, Sign(Y)} digest-signature tuple under signer’s public key.
2. Compute (M, r) = OAEP−1

m,l(X, Y) so as to get message M.

Note that a tuple {X, Y, Sign(Y)} can be transformed into {X′, Y, Sign(Y)} with
X′ 6= X while the signature validation still produces a positive result. In such a case,
the computation of (M′, r′) = OAEP−1

m,l(X′, Y) leads to a piece of data M′ 6= M. This is not
an issue in our construction as long as M′ cannot be chosen by the manipulating party, as
it has been stated in Lemma 1. The length of M′ corresponds to that of X′ (or it is k1 bits
shorter if plaintext-awareness has been set).

Similarly, any party can generate a simulated {Y′, Sign(Y′)} tuple for the underlying
signature scheme and then choose any X′ component. The resulting {X′, Y′, Sign(Y′)}
tuple will also result in a positive validation. As in the previous remark, this is not an issue
since the resulting M′ is obtained pseudo-randomly.

The simulatability of the proposal can be disabled by setting the plaintext aware-
ness feature to OAEP. This is because the pseudo-random piece of data M′ obtained by
simulation does not meet this feature.

4. Novel Digital Cash Paradigm Description

This section provides a detailed description of the proposed digital cash paradigm.
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4.1. Overview

Our proposal is a pre-paid digital cash paradigm. Customers acquire valued e-coins
in advance and store them in an e-wallet. They will later be spent against the vendor when
purchasing items. The paradigm is composed of two actors:

• Vendor. A vendor sells digital products online and participates in the issuance of
valued e-coins after being paid for them.

• Customers. They manage an e-wallet containing valued e-coins. These e-coins are
acquired in advance and stored until spent during a purchase procedure. Customers
can generate no-valued e-coins on their own.

No-valued e-coins can be spent against the vendor but, in such a case, the customer
will not receive any product back. No-valued e-coins enable bogus purchases aiming to
mask consumption patterns. The vendor cannot distinguish whether the e-coin involved
in a transaction was valued or not.

4.2. e-Coin Composition

Given vendor’s public key, PKV , an e-coin is a tuple of the form represented in
Equation (3). Components subindexed with S refer to a cryptographic key-pair used for
‘Signing’ a transaction. The mentioned key-pair is used by the customer to issue a signature
when the e-coin is spent. Those tuple components subindexed with R are related to a
key-pair used for ’Receiving’ the acquired digital item. Digital items are encrypted by the
vendor under public key QR before transmitting them to customers.

{vS, QS, (XS, YS), vR, QR, (XR, YR), Y, SignPKV
(Y).} (3)

All the e-coin components but the last one (SignPKV
(Y)) are always generated by

the customer. If the e-coin is valued, signature SignPKV
(Y) is computed by the vendor;

otherwise, it is simulated by the customer. Regarding the components of an e-coin,

• vS/QS is a private/public key-pair of a public key cryptosystem allowing digital
signature computation. Hence, data signed with vs can be validated under QS. QS has
been OAEPPA-encoded (with plaintext-awareness) into (XS, YS) = OAEPPA(QS, rS)
for some random rS.

• vR/QR is a private/public key-pair of a public key cryptosystem allowing data en-
cryption. Hence, data encrypted under QR can only be decrypted by providing vR.
QR has been OAEP-encoded into (XR, YR) = OAEP(QR, rR) for some random rR.

• Let Y = YS ⊕ YR. Then, {Y, SignPKV
(Y)} is a digest-signature tuple which can be

validated under PKV .

4.3. Valued e-Coin Generation

A valued e-coin is generated through a procedure in which both the customer and the
vendor do participate.

1. The customer pays the vendor the price of an e-coin.
2. The customer generates a random private key vS and the corresponding public one QS.

The customer also generates a random rS and computes (XS, YS) = OAEPPA(QS, rS).
3. The customer generates a random private key vR and the corresponding public

one QR, and computes (XR, YR) = OAEP(QR, rR) for some random rR chosen by
the customer.

4. The customer computes Y = YS ⊕YR.
5. The customer requests the vendor to compute a blind signature on Y. Let SignPKV

(Y)
be the resulting signature. Hence, {Y, SignPKV

(Y)} is a digest-signature tuple.

At the end of this process, the customer is in possession of an e-coin tuple as that
shown in Equation (3).
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4.4. No-Valued e-Coin Generation

A no-valued e-coin is generated by the customer on their own.

1. The customer generates a simulated message-signature tuple under vendor’s public
key. Let {Y, SignPKV

(Y)} be the simulated tuple.
2. The customer generates a random private key vS and the corresponding public one QS.

The customer also generates a random rS and computes (XS, YS) = OAEPPA(QS, rS).
3. The customer calculates YR = Y ⊕ YS, generates a random XR, and computes

(QR, rR) = OAEP−1(XR, YR). If QR is not a valid public key, this step is run again
taking a different XR.

At the end of this process, the customer is in possession of a partial e-coin tuple as
that shown in Equation (4).

{vS, QS, (XS, YS),∅, QR, (XR, YR), Y, SignPKV
(Y)}. (4)

The private key vR corresponding to QR is not known, and the corresponding part of
the tuple is empty (∅).

Note that we need a cryptosystem in which the probability of obtaining a valid public
key in a pseudo-random manner is relatively high (step 3). More details are given in
Section 5.3.

4.5. Spending an e-Coin

A customer wishing to acquire some product P whose price is worth the value of an
e-coin asks the vendor to engage in the following procedure:

1. The customer sends {(XS, YS), (XR, YR), SignPKV
(Y)} to the vendor together with a

digital signature SignQS
(H(CurrentTime||YS||YR)) computed with private key vS (H

is a hash function).
2. The vendor runs (QS, rS) = OAEPPA

−1(XS, YS). If the plaintext-awareness checking
is met, they check the digital signature received at the previous step under QS. In
case of failure, the e-coin is rejected.

3. The vendor computes Y = YS ⊕YR and checks that {Y, SignPKV
(Y)} is a valid digest-

signature tuple under vendor’s public key PKV .
4. The vendor checks that no e-coin with the same YS component has been spent before.

In such a case, the previously stored digital signature, which includes the time it was
spent for the first time, is returned as a proof of double spending and the transaction
is rejected. Otherwise, all the data received at step 1 is stored by the vendor.

5. The vendor computes (QR, rR) = OAEP−1(XR, YR).
6. The vendor encrypts the product P under public key QR (creating a digital envelope

if P is large) and sends the resulting ciphertext to the customer.
7. If the spent e-coin was valued, the customer decrypts the received ciphertext using

private key vR, getting P as a result. Otherwise, this step is skipped and the customer
does not get any product.

5. Cryptosystems Choice

This section provides an assessment on the features to be provided by the cryptosys-
tems chosen to implement the paradigm.

5.1. Cryptosystem for Vendor’S Key-Pair

In the described digital cash paradigm, the vendor is in possession of a key-pair
whose public key has been denoted as PKV . This key-pair is used for the generation of the
{Y, SignPKV

(Y)} digest-signature tuple. This tuple is generated differently depending on
whether the generated e-coin is valued or not. More precisely,

• If the e-coin is valued, the customer computes Y and requires the vendor to compute
a blind signature on it (Section 4.3, step 5).
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• If the e-coin is no-valued, the tuple is simulated by the customer. The vendor does not
take part in this process (Section 4.4, step 1).

Hence, the signature scheme chosen for such {Y, SignPKV
(Y)} tuples has to en-

able both:

• The computation of blind signatures.
• The generation of simulated digest-signature tuples.

Next, we discuss two feasible options.

5.1.1. RSA Signatures

Given an RSA [21] private key, d, and the corresponding public one (N, e), an RSA
digital signature over M is computed from secret key d as S = Md (mod N). The resulting
{M, S} digest-signature tuple is verified by checking whether M equals Se (mod N).

RSA blind signatures [1] can be issued through the following protocol:

1. Alice chooses a random R ∈ ZN and computes M = M · Re (mod N) and sends M
to Bob (operator · denotes the integer modular multiplication).

2. Bob computes S = Md
(mod N) and sends S to Alice.

3. Alice computes S = S · R−1 (mod N) obtaining signature S on M.

RSA digest-signature tuples can be simulated by taking a random S ∈ ZN and then
computing M = Se (mod N). In a typical signature, M is the hash digest of the piece
of data to be signed. Hence, obtaining a message signed by simulation further requires
inversion of such hash function which is unfeasible.

We can enable RSA signatures with the construction presented in Section 3.3. By
signing the Y component of an OAEP-encoded message, we allow simulated signatures
over pseudo-random pieces of data.

5.1.2. Boldyreva Signatures

Boldyreva digital signatures [22] are discrete-logarithm based and implemented over
a so-called Gap Diffie–Hellman (GDH) group. In a GDH group, the Diffie–Hellman problem
is difficult, namely, given ga and gb, computing gab is assumed to be hard. However, the
Decisional Diffie–Hellman problem is easy to solve, namely, given ga,gb, and gc, it is easy to
decide whether c = ab.

A GDH group of large prime order q has to be chosen. Let g be a generator of
such group. A private key is generated by choosing a random x ∈ {0, . . . , q− 1}. The
corresponding public key is computed as y = gx.

A digital signature over a digest M is computed as S = Mx.
A digest-signature tuple {M, S} is validated under public key y by checking whether

{M, y, S} is a GDH-tuple, that is, logg M · logg y = logg S.
This signature scheme allows the computation of blind signatures throughout the

following procedure:

1. Alice chooses r ∈ {0, . . . , q− 1} and computes M = M · gr. Then she sends M to Bob.
2. Bob computes S = Mx and sends σ back to Alice.
3. Finally, Alice computes S = S · y−r which is a digital signature over M.

Given the group generator g and a public key y (y = gx), a Boldyreva digest-signature
tuple is simulated by taking a random integer t and computing M = gt and S = yt. Tuple
{M, S} is a simulated digest-signature tuple. The construction in Section 3.3 allows us to
link simulated signatures to pseudo-random pieces of data.

5.2. Cryptosystem for e-Coin Transaction Signature

When a customer spends an e-coin (Section 4.5, step 1) they make use of the vS private
key to issue a digital signature that will be validated under QS. This {vS, QS} key-pair is
always generated through the traditional (private key first, public key next) procedure.
Hence, any cryptosystem allowing digital signature computation can be chosen.
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5.3. Cryptosystem for Product Encryption

When the customer spends an e-coin to acquire some product, the vendor encrypts it
under the QR public key included in the spent e-coin (Section 4.5, step 6). The customer
is only able to decrypt such ciphertext if they know the corresponding private key. This
public key is generated differently depending on whether the e-coin it is contained in is
valued or not.

• If the e-coin is valued, the customer generates private key vR and then the correspond-
ing public one QR (Section 4.3, step 3).

• If the e-coin is no-valued, public key QR is obtained pseudo-randomly (Section 4.4,
step 3).

Therefore, the cryptosystem for such {vR, QR} key-pairs must satisfy the following re-
quirements:

• It allows public key data encryption;
• It provides a relatively high probability of obtaining a valid public key by means of a

pseudo-random process;
• It cannot be determined whether a given public key has been generated together

with its private counterpart (Section 4.3 step 3) or through a pseudo-random pro-
cess (Section 4.4, step 3).

The RSA [21] cryptosystem would not be a suitable option since the probability that a
pseudo-random integer N is composed of two large prime factors is rather low.

We next detail two suitable public key encryption schemes.

5.3.1. ECIES

The Elliptic Curve Integrated Encryption Scheme (ECIES) [23] is an elliptic curve-
based public key encryption scheme whose security holds on the assumed intractability of
the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Such a cryptosystem is set by choosing an elliptic curve E represented as an expression
of the form shown in Equation (5):

Y2 = X3 + AX + B, (5)

with A, B being elements of a finite field F such that its set of points E(F) has a cardinality
divisible by a large prime q. An order-q point P of E(F) is also chosen. Throughout this
section, we assume q is prime.

An ECIES private key is generated by choosing a random v ∈ {0, . . . , q− 1}. The
corresponding public key is the point of E(F) computed as Q = vP.

The probability that a random point (x, y) ∈ F× F belongs to E(F) is negligible since
its components should satisfy Equation (5). Nevertheless, this drawback can be addressed
by representing elliptic curve points in compressed form. A point (x, y) ∈ E(F) can be
represented as (x, b) with b being a Boolean indicating whether y > −y. In this way, a
randomly generated compressed point (x, b) belongs to E(F) (and hence it is a public key),
if its x-component satisfies that x3 + Ax + B is a quadratic residue in F. This happens with
a close to 1/2 probability [17].

5.3.2. ElGamal

ElGamal [24] is a public key cryptosystem whose security holds on the assumed
intractability of the Discrete Logarithm Problem (DLP).

This cryptosystem is set by choosing a large prime q satisfying that p = 2q + 1 is also
prime. The cryptosystem is built on the order-q multiplicative subgroup of Z∗p. An order-q
element g is chosen during the setup.

A private key is generated by choosing a random x ∈ {0, . . . , q− 1} and the corre-
sponding public key is computed as y = gx (mod p).
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A randomly selected element from Z∗p turns out to be a public key if its order is q. This
happens exactly with a 1/2 probability since Z∗p contains exactly p− 1 = 2q elements with
q of them having the desired order.

6. Security Analysis

A digital cash system like the one presented in this paper should satisfy the following
security requirements:

1. Valued e-coins cannot be forged by malicious customers;
2. E-coins cannot be double-spent;
3. Customers cannot be falsely accused of double-spending an e-coin.

Although the vendor can be assumed to be a somehow trusted party, Req. 3 is still
needed to prevent malicious double-spenders from claiming they are being accused falsely.
The following lemmas address the fulfillment of the enumerated requirements.

Lemma 2. Valued e-coins of the proposed digital cash paradigm cannot be forged.

Proof. Let us recall that an e-coin is a tuple of the form shown in Equation (3). An e-coin
can only be spent if private key vS is known. Otherwise, the digital signature required
at step 1 of the “Spending” protocol cannot be computed. Hence, QS must be generated
together with vS, and the YS component of its OAEP encoding (with plaintext awareness) is
obtained pseudo-randomly by calling OAEPPA(QS, rS) for some random rS. Hence, the YS
component cannot be chosen by a dishonest party aiming to forge an e-coin. Note also that
the YS component of spent e-coins is checked not to be part of an already spent e-coin. In
this way, there is no point in taking the YS component of a new e-coin from an existing one.

If the forger then simulates the {Y, SignPKV
(Y)} digest-signature pair, the resulting Y

cannot be chosen (otherwise the underlying signature scheme would be forgeable), so that
YR = Y⊕YS can neither be chosen and, after taking any XR, the public key QR obtained
from (QR, rR) = OAEP−1(XR, YR) is pseudo-random and its private key remains unknown.
In this way, the resulting e-coin is no-valued. Lemma 1 guarantees that given YR and some
chosen QR, finding a {rR, XR} pair satisfying the previous expression is unfeasible.

Alternatively, the forger could generate a vR/QR key-pair and OAEP-encode it into
(XR, YR). In this case, the obtained YR component is pseudo-random and so the resulting
Y = YS ⊕YR is. Hence, the signature SignPKV

(Y) over Y cannot be obtained by the forger
without the participation of the vendor.

Lemma 3. E-coins of the proposed digital cash system cannot be double-spent.

Proof. When an e-coin is spent, the vendor stores a record which includes its YS component.
Hence, any attempt to spend the same e-coin in the future will be detected.

Lemma 4. An honest customer cannot be falsely accused of being a double-spender by a dishon-
est vendor.

Proof. Customers spending an e-coin are required to digitally sign a timestamped sequence
using the vS private key. This digital signature can be validated under public key QS. Only
the customer who generated an e-coin knows its vS secret key.

A vendor claiming that an e-coin is being double-spent is required to provide the
signed timestamped sequence of the first time the e-coin was spent (Section 4.5, step 4). If
the claim is false, they will be unable to provide it.

7. Experimental Results

The proposed paradigm has been validated through a prototype implemented in
Java. Cryptographic operations involving large integers use the java.math.BigInteger
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library. Hash digests have been computed using the SHA-224 [25] function. Regarding the
employed cryptosystems, we have chosen the following:

• Vendor’s key-pair (Section 5.1): RSA with 2048 bit keys.
• Cryptosystem for e-coin transaction signature (Section 5.2): ECDSA [26] with 224 bit keys.
• Cryptosystem for product encryption (Section 5.3): ECIES with 224 bit keys.

Our experiments have measured the running time of the “Valued e-coin genera-
tion” (Section 4.3), “No-valued e-coin generation” (Section 4.4), and “Spending an e-coin”
(Section 4.5) procedures. The prototype has been run on several personal computers. Aver-
age running times from 500 executions have been measured. As expected, computers with
a faster processor lead to better running times. We have also observed that the running
time benefits from parallel execution mode.

Table 1 shows the average running time of the “Valued e-coin generation” and “No-
valued e-coin generation” procedures. Let us recall that the generation of valued e-coins
involves both the customer and the server (which is required to compute a blind signature)
while the procedure for generating no-valued ones is run entirely by the customer. The
table shows that the generation of a no-valued e-coin takes some more time than a valued
one. This is due to the fact that step 3 of the procedure for generating no-valued e-coins
sometimes has to be run more than one time. In our experiments, in which we have
implemented the ECIES cryptosystem, there is a 50% chance of having to run it again.
In the fastest tested processor, in parallel mode, generation of a valued e-coin and a no-
valued one takes around 3 and 4 ms, respectively, leading to generation rates of 333 and
250 e-coins per second, respectively.

Table 1. “E-coin generation” running times (in milliseconds).

System Server & Client Valued e-Coin No-Valued e-Coin
Processor Cores Threads GHz Serial Parallel Serial Parallel

AMD Athlon 4 4 2.80 49.28 13.62 68.25 20.39
Intel i5-8350U 4 8 1.70–3.60 21.40 5.23 32.69 7.69
Intel i7-6700 4 8 3.40–4.00 20.50 4.71 28.95 7.27
Intel i7-8700 6 12 3.20–4.60 18.75 4.66 28.41 6.31

AMD Ryzen 7 8 16 3.70–4.30 23.18 3.05 32.86 3.97

Table 2 shows the running time of the “Spending an e-coin” procedure at the vendor
part. We focus on this part of the process due to the fact that a vendor may receive a lot of
concurrent payments. We do not distinguish between spending a valued or a no-valued
e-coin since the procedure is exactly the same in both cases. The fastest running time,
obtained on an AMD Ryzen 7 processor in parallel mode, indicates that receiving an e-coin
payment takes 2.69 ms, so that around 371 payments can be processed in a single second.

Table 2. “Spending an e-coin” running times (in milliseconds).

System Server
Processor Cores Threads GHz Serial Parallel

AMD Athlon 4 4 2.80 51.24 13.99
Intel i5-8350U 4 8 1.70-3.60 26.67 7.37
Intel i7-6700 4 8 3.40-4.00 22.68 5.12
Intel i7-8700 6 12 3.20-4.60 20.69 3.59

AMD Ryzen 7 8 16 3.70-4.30 25.41 2.69

8. Conclusions

This paper has presented a novel digital cash paradigm in which customers are able
to generate no-valued e-coins by themselves. Such no-valued e-coins can be spent like
regular valued ones in such a way that the vendor receiving a payment is unable to
distinguish between both situations. The customer only receives the requested digital
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product when the spent e-coin is a valued one. This new paradigm fits in scenarios in
which customers may wish to mask their consumption patterns through bogus transactions
like pay-per-view TV or music platforms. The paradigm has already proven its validity in
privacy-preserving pay-by-phone parking systems enabling drivers with the possibility of
keeping their expected parking time secret.

In our future research, we plan to investigate the design of privacy-preserving proto-
cols, which include the presented digital cash paradigm as a building block.
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