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Abstract: Because cities worldwide have high population concentration, traffic congestion is a key
problem that needs to be addressed. As modern technology advances, smart traffic management
is able to collect data from the environment and uses a contextual signal assignment to determine
the traffic flow at intersections and improve the traffic conditions. In this paper, we propose a green
signal time allocation system based on a deep Q-network (DQN) that can maximize the capacity at
intersections and assign the green light time according to the traffic conditions. The proposed system
also aims to reduce the standard deviation of each lane at an intersection by considering the standard
deviation of the waiting time. As a result, selfish green signal allocations can be reduced. Thus, the
proposed system can achieve better experimental results in a dynamic environment than those of the
green signal phase sequence allocation system.
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1. Introduction

Traffic congestion is worsening in cities around the world as the number of vehicles
continues to increase. Traffic congestion delays the movement of vehicles and has a variety
of negative consequences, such as increased travel time, waste of fuel, and increased emis-
sions. To address the traffic congestion problem, transportation planners have proposed
various transportation-related policies, including a systematic public transportation sys-
tem or an alternative no-driving system. With the passing of time, the problem of traffic
congestion has rapidly worsened. Therefore, there is a need for research on smart traffic
signal control (TSC) that directly controls traffic flow.

Smart traffic management is an important part of transportation planning in smart
cities [1]. Owing to the development of technologies such as the Internet of Things,
cloud, and big data, the infrastructure of smart cities has been equipped with the latest
technologies. Smart transportation management is a platform that can improve the quality
of life, and its requirements are growing. Smart TSC is one of the most effective methods
for efficiently reducing traffic congestion at intersections. The current traffic signal is a
fixed traffic light that allocates time to a preset cycle. Fixed traffic lights always control the
traffic flow with the same time distribution, which has the advantage of simplicity and no
complexity. Therefore, fixed traffic lights are suitable for regular traffic flows. They are also
suitable for intersections where there is not much traffic variation between lanes. However,
traffic delays always occur because the actual traffic flow is unpredictable, and dynamism
is bound to occur in various traffic flows.

Smart traffic lights aim to maximize capacity at intersections by controlling the traffic
flow according to the environment. Therefore, they perform better than conventional
fixed TSC in environments where the traffic deviations are large between lanes at intersec-
tions or the traffic volume changes over time are dynamic. In addition, congestion and
environmental pollution can be reduced or wasted green light can be minimized [2]. A
wasted green light means that, despite a green light being allocated to the lane, there are
no vehicles leaving; therefore, the green light allocated is not being used efficiently. Traffic
lights at intersections can be managed in two ways: by adjusting the time of the signal
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or by adjusting the signal phase sequence. The former minimizes a wasted green light
by allocating the appropriate time for each situation, whereas the latter allows efficient
traffic light control by distributing the green signal to the most needed lanes. For example,
a traffic light that wants to minimize the waiting time of the vehicles determines that the
lane with the longest waiting time is the lane that needs the longest green signal.

Various machine learning methods have been used to control traffic signals, such
as fuzzy logic [3], neural networks [4], and computational intelligence [5,6]. However,
fuzzy logic, which controls signals through rule-making, makes it difficult to generate
effective rule sets when dealing with multiple intersections. Therefore, a traffic control
system, that requires learning of dynamic environments while recognizing the surrounding
intersections should apply reinforcement learning (RL) to determine the optimal decisions
for the environment. This paper proposes an optimal TSC-based RL that adjusts the time
of the signal.

The remainder of this paper is organized as follows. Related studies are given in
Section 2. The system model and the proposed technique are formulated in Section 3. In
Section 4, the experimental studies are presented and results are discussed. Finally, the
concluding remarks are provided in Section 5.

2. Related Works

Many TSC approaches have been proposed in the field of traffic research, and there
have been many attempts to implement a signal policy that depends on the traffic condi-
tions. The characteristics of the intersections should be identified for the appropriate signal
control. First, intersections are structures that affect each other. Vehicles pass through
neighboring intersections and affect them. Second, the intersection is an unpredictable
dynamic environment that varies over time or the day of the week. Intersections always
face new environments. Therefore, it is not efficient to control traffic flow at the intersection
with fixed traffic signal control. Moreover, traffic light control cannot be learned through
supervised or unsupervised learning. This is because it is impossible to predict and set the
answers to all situations pertaining to what actions should be taken under all situations.
Because of the characteristics of an intersection, it is difficult to model the environment;
therefore, most studies use RL [7,8].

TSC studies using RL are largely categorized according to whether the situation in the
surrounding intersections is considered. A study of TSC at an isolated intersection that
does not consider the circumstances in the surrounding intersections has the following
advantage: it can determine more accurately and in greater detail how to implement a
signal policy at a single intersection [9–12]. Therefore, it allows the implementation of
the best policy to determine the traffic conditions at an isolated intersection. However,
it is impossible to cope with events that occur in the surrounding intersections because
the situation there cannot be determined. A TSC study that considers the situation in
the surrounding intersections has the advantage of being able to implement policies for
various situations, including those in the surrounding intersections [13–18]. However, its
disadvantage is that the calculation complexity is high because there are many situations to
consider, not just those in the target intersection but also in the surrounding intersections.

Reinforcement learning implements a policy by obtaining the information about
the current traffic conditions in an intersection as a state and maximizing the rewards
through interactions with the environment. The traffic signal performance depends on
those parameters, which are considered as rewards. RL studies provide a variety of results
depending on the design method, including the state, action, reward, and algorithms. In
this paper, related studies fall into two groups: those that used the queue length and those
that used the waiting time as the reward parameter.

The queue length indicates the number of vehicles waiting at the intersection. This
represents the state of the intersection in the spatial domain. The waiting time indicates the
average amount of time the vehicles in the intersection have waited to exit the intersection.
This represents the time domain of the vehicle. In general, the queue length is considered
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as a reward if the aim is to minimize the number of vehicles at the intersection [9,10,13,18].
In contrast, the waiting time is considered as a reward if the aim is to minimize the waiting
time of the vehicles at the intersection [11,12,14–17].

In [9], the authors proposed a deep recurrent Q-network (DQRN) technique that
combines a recurrent neural network (RNN) with a deep Q-network (DQN) to learn
various traffic environments. The DQRN technique builds a Q-network with long short-
term memory (LSTM), which is an RNN. The objective of the DQRN is to minimize the
total number of waiting vehicles before the stop line at the time unit. It has the advantage
of considering not only the current state information but also a series of previous states to
better distinguish the environment. In [10], the authors proposed a simple RL model that
is less complex to speed up the learning. Their proposed model defines the queue length
parameter in the same sense as the travel time of the vehicles. Therefore, to minimize the
travel time of the vehicles, they defined the reward as the average of the queue length.
In [13], the authors used a Q-value transfer strategy using a DQN to reflect the situation in
the surrounding intersections. In other words, the Q-value of the surrounding intersections
is reflected in the Q-value update to balance the traffic with the surrounding intersections.
Therefore, the impact on the traffic conditions around the intersections can be considered.
However, the approach in [13] can continuously distribute green signals to the same lane
in the signal distribution. There is a concern regarding a selfish signal distribution, which
assigns green signals to only one lane where there are many vehicles. In [18], the authors
proposed a traffic signal timing plan that allocates the length of time. The goal is to
minimize the queue length at the intersection and optimize the traffic flow. In addition,
allocation of excessive green time is penalized. The experiment in [18] was conducted
at multi-intersections. Because information on surrounding intersections is shared only
through global optimization, the impact on learning is a concern.

In [11], the authors proposed an RL model with the goal of minimizing the total
travel time. Using a transfer network, the RL model speeds up the learning through
the transfer of the accumulated knowledge and it can also be learned with less data.
However, only a straight green light is possible at the intersection. In other words, various
green signals, such as the left direction or right direction, are not considered. In addition,
only a single-intersection environment is considered. In [12], the authors minimized the
aggregation of the total time spent in the queue of all vehicles using transfer RL. In [12],
the Markov decision process (MDP) considers an isolated four-way intersection; therefore,
if the intersection structure changes, the MDP must be modified accordingly. In addition,
in [14], the authors proposed an RL model using neural fitted Q-iteration (NFQI). The aim
of this NFQI-based RL model is to minimize the waiting time. The traffic environment
changes dynamically over time. However, it does not reflect the traffic conditions on the
time-domain flow. In [15], the authors proposed signal control in a multi-intersection
environment to reduce the travel times. It selects which lanes get a green light. It can
be extended from a single- to a multi-agent DQN through transfer learning. In [16], the
authors proposed a method for controlling the flow of vehicles by changing the timing
of the green and red traffic lights using RL. The goal is to minimize the average waiting
time of the vehicles. It considers the surrounding intersections by giving their Q-value
to the intersection agent next to the intersection agent directly sending the vehicles to
their intersection. In this way, the intersection identifies the surrounding situation and
controls the traffic flow. A limitation of the method in [16] is that the signal is simple:
only green and red lights can be controlled. In [17], the authors proposed a TSC technique
that allocates green signals to the lane that needs them to reduce the total travel time. In
addition, because the length of the green time can be adjusted as necessary, customized
signal control according to the situation is possible. However, it can be very complex
depending on the number of signal orders. Accordingly, high complexity is a concern.

Other studies have described the states of intersections using 2N-dimensional feature
vectors [11,12,14]. An intersection is represented as a 2N-dimensional feature vector; if
a vector element has a vehicle in that position, its value is set to 1; otherwise, it is set to
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0. In [11,12], studies that consider a single intersection are discussed; however, there are
differences in what the 2N-dimensional vector represents. In addition, in [11], the vector
reflects only the position and speed of the vehicles, whereas in [12] it contains additional
information regarding the current light configuration. By contrast, the approach in [14]
considers the surrounding intersections and includes information about the lane where
the vehicle exits the intersection in the vector. The use of a 2N-dimensional feature vector
has the advantage of accurately representing the current environment. However, it can
increase the complexity of the data as the structure of the intersection changes.

In the present paper, a TSC technique is proposed that considers the situation of the
surrounding intersections. The proposed technique adjusts the signal time to maximize
the capacity and minimize wasted green light time. In addition, it aims to prevent selfish
signal distribution by setting the order of signal assignment. Moreover, a new technique is
proposed that does not modify the MDP even if the intersection structure has changed.

3. Problem Formulation

The multi-intersection TSC optimization problem involves maximizing the capacity
of the target intersection through cooperation with the surrounding intersections. Capacity
is defined as the number of vehicles passing through an intersection during a unit of time.
The waiting time denotes the amount of time it takes a vehicle to exit the intersection from
the time it stops at the intersection. A large capacity at the intersection results in fewer
waiting vehicles at the intersection and shorter waiting times for them.

To increase the capacity at an intersection, it is important to optimize traffic signals.
Specifically, the efficiency of green signals is important for handling many vehicles at
an intersection. The more vehicles exit during a given green signal, the greater is the
capacity at the intersection during the time unit. However, a fixed traffic signaling can
cause green signal wastage because the green signal times are constant regardless of the
traffic conditions. Green signal wastage means that although the lane has been allocated
green light, there are no vehicles waiting; thus, there are no vehicles leaving the lane.
Minimizing the wastage of green signals improves the capacity at an intersection.

Figure 1 shows an example of the time wasted on green signals at a single intersection
using a fixed TSC. This experiment was conducted to analyze the efficiency of green lights
in a fixed signaling system. The intersection used in this experiment was in the form of a
single intersection with a four-way structure; the impact from the surrounding intersections
was not considered. The distribution of vehicles used in the experiment was based on data
with low traffic load. This is because a lower traffic load can more clearly show the impact
of green signal wastage. According to Weijermars and van Berkum [19], the time of day
with less traffic load in urban areas is before 8 am or after 8 pm on weekdays. Therefore,
we conducted the experiments using traffic data from the early hours of the day in an
urban area.

Figure 1. Green time (GT) wastage owing to the fixed green signal system.
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The experiment result showed that approximately 30% of the green signal time was
wasted in the fixed signaling system. This is because more green signal time is allocated
than is needed. When the duration of green signals is distributed efficiently, more vehicles
can be handled at an intersection. However, dynamic green-time assignments can cause
a selfish signal distribution. Intersections are chain structures that are connected to the
surrounding intersections. Consequently, there can be situations in which only high-
demand lanes receive signals to handle many vehicles at an intersection. In other words,
the selfish distribution of signals may result in lanes not receiving green signals. A traffic
signal system should distribute signals to all lanes. Therefore, a fair and reasonable signal
distribution is important.

3.1. Deep Q-Network

To solve the problem of TSC, this study uses a DQN, which is an RL method. DQN
defines the environment, recognizes the current state (st) at time t, selects a possible action
(at), and receives a reward (rt) for the result. The value for the selected action is defined
as the value (yt) at time t, and the value predicted by the DQN model is defined as the
predicted value (Qs,a):

Lt(θt) = Es,a
[
(yt −Q(s, a; θt))2]. (1)

The Q-network updates the network weights (θ) through neural network learning by
setting the minimum value of the loss function (L) to (1). In addition, a DQN consists of
neural networks that are Q-networks because DQN combines Q-learning and deep learning.
Therefore, it has the advantage of proceeding with learning using high-dimensional input.
However, a DQN has a disadvantage in that it collects data sequentially over time in the
environment. These data are then used as the input data. Because sequential data have high
correlations, experience replay is applied to solve the data correlation problems. Experience
replay is a method of storing the experience obtained at each time in the environment and
randomly selecting the experience to learn by organizing a mini-batch. This can reduce the
high correlation between the data and increase the data reliability.

3.2. Proposed DQN-Based Traffic Signal Control

The traffic signal problem of an intersection should be addressed by considering the
characteristics of the intersection, which are dynamic and unpredictable. Traffic conditions
change continuously depending on the time, day of the week, or weather. Intersections
constantly face new environments. Moreover, the intersection has a continuous structure.
The environment is computationally complex because it is affected by the circumstances in
the surrounding intersections. In RL, the environment is modeled as an MDP. An MDP is
defined as a state, action, or reward.

To optimize the signal control, we need to accurately recognize the current state in the
MDP. In addition, it is necessary to recognize the situation in the surrounding intersections
for cooperation. The state includes six pieces of information: the first and second are the
information about the total traffic load (i1) and the standard deviation of the traffic load
(i2) at the intersection, respectively. The combination of these two parameters provides a
detailed representation of the situation at the intersection. For example, if the traffic load
and its standard deviation are both small, there are not many vehicles at the intersection
in general. However, a small traffic load with a large standard deviation indicates that,
despite few vehicles being at the intersection, there are blocked lanes. Moreover, a large
traffic load means that the intersection suffers from traffic congestion regardless of the
standard deviation of the load.

The third (i3) and fourth (i4) pieces of information denote the traffic load of the two
directions that will receive the next green light. The fifth (i5) and sixth (i6) pieces of
information are regarding the traffic load in the directions where the vehicle will exit from
the two directions that will receive the next green light. The proposed model provides green
signals in two directions according to a traffic signal order. Figure 2 shows the movement
information when the vehicle receives a green signal. The intersection in Figure 2 is divided
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into two directions per road. One is the left-turn direction, and the other is the straight
direction where right turns are possible. For example, if the next green signal is scheduled
to be assigned the northbound straight or the right-turn direction (l1) and left-turn direction
(l2), the vehicles waiting in l1 will flow in the direction l3 and the vehicles waiting in the l2
direction will flow in the direction l4. In this case, traffic load information in directions l1
and l2 is i3 and i4, respectively, and that in directions l3 and l4 is i5 and i6, respectively.

Figure 2. An example of movement information when the vehicle receives a green signal.

The information regarding the directions where the vehicle flows in when the green
signal is on is needed because the number of vehicles that want to enter from a certain
direction depends on the traffic load in the outgoing direction. This is because no matter
how many green signals are allocated to the direction receiving the green signal, the number
of vehicles that can enter is limited if there is a high traffic load in the directions that they
are trying to enter. Therefore, if the time for a green signal is to be efficiently allocated,
the traffic conditions in the surrounding intersections where the vehicle is about to enter
should also be recognized. Therefore, the state of the MDP recognizes the current situation
at the intersection with the following six pieces of information: st = [i1, i2, i3, i4, i5, i6].

The proposed optimal TSC system adjusts the time of the traffic signal with the action
of the MDP to efficiently use the green signal. Therefore, it is important to distribute the
green signal to the required lanes at the appropriate time. An efficient green time allocation
can maximize the overall capacity of the intersections. The proposed model controls the
time of the green signals; moreover, it is assumed that the lane order in which the green
signal is assigned is fixed, as shown in Figure 3. Therefore, the action is defined as the
duration of the green signal time. We define the time unit as σ; the action of the proposed
model is defined as follows: at = [σ1, σ2, σ3, σ4, σ5, σ6, σ7].

Figure 3. Order of the green signal assignment.

The number of lanes varies depending on the structure of the intersection; the number
of lanes assigned with green lights also varies. Figure 4 shows the structure of three-
to six-way intersections. As can be seen in Figure 5, there can be three possible signal
directions at a three-way intersection and eight at a four-way intersection. The five- and
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six-way intersections have more signal directions than those of the four-way intersection.
As such, the number of signal directions varies for each intersection structure. Therefore,
the number of signal directions is affected by the structure of the intersection.

Figure 4. Structures of n-way intersections.

Figure 5. Examples of the possible signals at three- and four-way intersections.

Time is an essential factor when allocating signals to lanes at traffic lights. Each signal
direction has a certain length of time during which the vehicles exit the intersection. This
length of time does not have to change even if the structure of the intersection changes.
Therefore, the time duration of the signal is not affected by the structure of the intersection.
Therefore, the signal control model for determining the order of the signal direction has
to be changed according to the structure of the intersection. However, the model that
determines how long the green light lasts in each direction does not have to change
depending on the structure of the intersection. In other words, the proposed MDP does
not determine the order of the progress of the vehicles according to the action; rather, it
determines it according to the duration of the green signals. Thus, it is possible to apply an
MDP to intersections of various structures, such as three-, four-, and five-way intersections.

The goal of this study is to maximize the capacity. In addition, for a fair and reason-
able distribution of signals, all lanes have to be allocated green signals in order and the
appropriate green signal time must be allocated according to traffic conditions. Therefore,
the deviation in the queue length and waiting time between all lanes at the intersection can
be reduced.

In this study, the waiting time, not the queue length, was considered as a reward
parameter. This is because assigning waiting time as the reward parameter addresses
the TSC problem by allocating an appropriate green signal time, which requires time
information regarding how long vehicles must wait at an intersection. However, the queue
length does not include sufficient time information on the number of vehicles waiting at
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the intersection. In [10], there is an expression related to waiting time and queue length
as follows:

T =
τ ∗ q

N
+ l/µ

Here, T denotes the average travel time; q, the average queue length; τ, the time
interval; N, the number of vehicles; l, the length of the road; and µ, the speed of the vehicle.
In this equation, time and queue have a positive correlation. However, the concept of τ and
µ related to time is applied separately from the queue length. That is, the time information
includes information related to time besides information related to the queue length.

Furthermore, the standard deviation of the waiting time rather than the waiting time
itself represents the information regarding the deviation between the lane where a vehicle
waits for a long time and the lane where a vehicle waits for a short time at an intersection.
It is therefore effective to compare the situations in each lane. In addition, if the green
signal is distributed when considering only a capacity maximization, the green signal can
be distributed in favor of only certain lanes, which can cause problems to other lanes.
However, considering the standard deviation of the waiting time can address problems
that may arise when distributing signals for maximum capacity. Therefore, the standard
deviation of the waiting time between lanes should be kept small.

In addition, the standard deviation of the waiting time is considered as a parameter
rather than the waiting time because of the specificity of the data used in learning. Figure 6
shows an increase or decrease between the average waiting time and the standard deviation
of the waiting time over the time at an intersection. At approximately 30, 60, and 90 time
units, the waiting time for a total of three times suddenly decreases. This is because the
vehicle exits the intersection with the green light. The average waiting time has a large
range of changes when the vehicle exits the intersection. The instantaneous value of the
change is recognized as a significant value that affects the learning. Thus, the value of the
standard deviation of the waiting time is more stable than the average waiting time when
a sudden change occurs. In other words, sudden change can be prevented from being
reflected in the learning. Therefore, we consider the standard deviation of the waiting time
and the capacity as parameters to maximize the capacity at intersections with an efficient
green signal distribution.

rt = α ∗ τ − β ∗ wtstd, (2)

To maximize the performance of an intersection dealing with many vehicles, we
configure the reward function with two parameters, i.e., the capacity (τ) and the standard
deviation of the waiting time (wtstd). α is the adaptive weighting factor, which depends on
the traffic load at the intersection. It ranges between 0 and 1. β denotes 1 – α. The reward
function is defined as (2).

Figure 6. Waiting time over overall time.
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Figure 7 is a data flow chart representing the data and the process flow of the proposed
model. Moreover, it shows an interaction between an environment and the agent. The
environment represents several intersections. The perceived information from the target
intersection, such as the waiting time of the vehicle at the intersection and the traffic load
of the exit lane, is sent to the agent. Next, the agent learns from the received information
and determines an action for the current state to maximize the reward. The action is sent to
the environment. The action represents the time length of the green light on the lane that
will move next. The performance of the traffic light control at the intersection is calculated
and reflected in the learning of the agent.

Figure 7. Data flow chart of the proposed model.

4. Experimental Studies
4.1. Experimental Settings

The proposed algorithm was tested at nine successively interconnected four-way inter-
sections, as shown in Figure 8. The average distance between intersections is approximately
200 m. The average speed of the vehicle is approximately 15 km/h and the maximum
speed of the vehicle is about 50 km/h. The average speed of the vehicle was measured low
because it included the speed of the vehicles waiting in the intersections. We conducted
experiments to analyze the change in performance with varying the distance between
the intersections and the speed of the vehicles. We extend the length of the road to from
200 m to 400 m to measure the sensitivity related to the distance and speed of vehicles.
When we extend the length of the road, the average speed of vehicles was 30 km/h and
the maximum speed was 70 km/h. Through experiments, we confirmed that even if the
number of waiting vehicles increases due to the increase in the length of the intersection,
the capacity of the intersection is similar.

The experiment was conducted using the Python API provided by the Simulation of
Urban MObility (SUMO) package. SUMO is an open-source city environment and traffic
flow simulator designed to handle large networks [20]. In addition, various options such
as pedestrian and intersection signals can be provided to simulate the interactions with the
environment, vehicles, and people. The pedestrians were not considered in this experiment.
The vehicle data used in the experiment were produced in the form of a Poisson distribution
using SUMO. The vehicle route data had the following settings: repetition rate of 0.5, period
of 0.1, and arrival rate of 10.
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In the experiments, the proposed algorithm was used with mini-batches of size 64
and a replay memory of size 3200. The learning rate of the DQN model was set to 0.001,
and the discount factor was set to 0.99. The exploration rate decreased from 1 to 0.001 as
the training episode continued. The model calculates the loss function using a stochastic
gradient descent algorithm. The agent used k-fold cross-validation to increase the reliability
of the data by using all the data for training and validation to reduce the bias of the data of
the model and eliminate overfitting.

Figure 8. Structure of the environment for nine interconnected intersections.

4.2. Experimental Results

The experimental results were evaluated, where the demand fluctuation follows a
Poisson distribution. For the experimental results, the performance of the middle of the nine
intersections was used. To test the performance of the proposed algorithm, we compared
its results with those of other algorithms, namely, TFP-CTSC [21] and QT-CDQN [13]. TFP-
CTSC considers the waiting time as a reward parameter, whereas QT-CDQN considers the
queue length as a reward parameter. Both techniques under comparison also considered
the surrounding intersections.

Figure 9 shows the rate of green signal waste of the middle of the nine intersections
under the experimental environment. For the Poisson distribution, whereas TFP-CTSC and
QT-CDQN wasted approximately 22% to 23% of the green signals, the proposed algorithm
wasted only approximately 13% of them. The proposed algorithm wasted approximately
40% less green signal time than those of the other algorithms. This is because, although
both TFP-CTSC and QT-CDQN were distributed in order of green time according to the
situation, the time was fixed.

However, the proposed algorithm efficiently adjusted the green signal time to suit the
situation. The performance results were the average queue length, standard deviation of the
queue length, average waiting time, standard deviation of the waiting time, and capacity.

Figure 10 shows the change in the capacity of the intersection over time. As shown
in the figure, the proposed algorithm handled approximately 40% more vehicles than
those handled by TFP-CTSC and 30% more vehicles than those handled by QT-CDQN.
The proposed algorithm handled more vehicles than those handled by the two other
algorithms because it considers capacity as a reward parameter. In addition, the green
signal time was efficiently used as the proposed algorithm considered the circumstances in
the surrounding intersections. The efficient use of green signals also increased the capacity
of the intersections.
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Figure 9. The rate of green time wasted.

Figure 10. Change in the capacity of the intersection over time.

Figure 11a shows the performance results of the vehicle waiting time according to
the traffic load, and Figure 11b shows the results of the standard deviation of the waiting
time. The performances of the waiting times of the TFP-CTSC and the proposed algorithm
are lower than that of the QT-CDQN when the traffic load is less than 70%. This is
because the TFP-CTSC considers the waiting time as a reward parameter. However, as the
traffic load increases, the performance of the proposed algorithm is better than that of the
two other algorithms. This is because each lane was given an appropriate green signal
time, considering the standard deviation of the waiting times of the vehicles waiting at
the intersection. The standard deviation of the waiting time of the proposed algorithm is
approximately 35% shorter than that of TFP-CTSC and approximately 60% shorter than that
of QT-CDQN. The proposed algorithm performs well with time-related values because it
considers the standard deviation of the waiting time as a reward parameter. This indicates
that the appropriate green time was distributed because the standard deviation of the
waiting time of each lane in the intersection was considered.
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(a)

(b)

Figure 11. Performance results: (a) average waiting time and (b) its standard deviation.

Figure 12a shows the performance results for the queue length according to the traffic
load, and Figure 12b shows the standard deviation of the queue length. The queue length is
measured on the basis of the number of vehicles waiting at the intersection. In Figure 12a,
the proposed algorithm has a queue length that is approximately 50% shorter than that of
TFP-CTSC and approximately 45% shorter than that of QT-CDQN on average. Although
QT-CDQN considers the queue length as a reward parameter, wasted green signal times
occurred because the green time of the traffic signals was fixed.

(a)

Figure 12. Cont.
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(b)

Figure 12. Performance results: (a) average queue length and (b) its standard deviation.

5. Conclusions

This paper proposes a DQN-based TSC system that can learn optimal policies through
a direct interaction with the environment. The smart TSC distributes the order of green
signals according to the situation or sets the time of green signals in a fixed signal order.
The proposed TSC system sets the time in a fixed signal order by considering the standard
deviation of the waiting time and the capacity as parameters. To understand the situation
at the intersection, we defined the state by considering the traffic loads at an intersection,
the lane assigned the green light, and the lane used to exit. The aim of the proposed TSC
system is to set the green signal duration time to maximize the capacity at intersections
and minimize the standard deviation of the waiting time between lanes. Experimental
results showed that the proposed technique has more capacity and better TSC performance
than those of TFP-CTS and QT-CDQN. Accordingly, it showed effective improvement in
TSC performance by controlling the duration time of the green signal according to the
situation. The advantage of adjusting the time duration of the signal is that it is possible
to increase the efficiency of the signal by reducing the wasted time of the green signal. In
addition, because the time duration is set, it can be applied to different types of intersection
regardless of the structure. However, this study has limitations in that it requires prior work
to find the optimal order of signal directions. Because the traffic flow is different for each
intersection, a study on the order of signal directions that can maximize the performance
of traffic lights for each intersection is needed. Therefore, to apply the study results to
an actual environment, we need to identify the traffic flow at the intersection and find an
optimized sequence of signal directions that can maximize the performance of the TSC, as
well as to find the optimal time length of the green light in each traffic direction.

In the future, we will explore a TSC system that can consider the pedestrians. In
addition, we are planning to study TSC in terms of urban traffic control, such as grouping
intersections with geographical characteristics through federated learning to form clusters.
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