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Abstract: Contemporary deep learning approaches for post-earthquake damage assessments based
on 2D convolutional neural networks (CNNs) require encoding of ground motion records to transform
their inherent 1D time series to 2D images, thus requiring high computing time and resources. This
study develops a 1D CNN model to avoid the costly 2D image encoding. The 1D CNN model
is compared with a 2D CNN model with wavelet transform encoding and a feedforward neural
network (FNN) model to evaluate prediction performance and computational efficiency. A case
study of a benchmark reinforced concrete (r/c) building indicated that the 1D CNN model achieved
a prediction accuracy of 81.0%, which was very close to the 81.6% prediction accuracy of the 2D
CNN model and much higher than the 70.8% prediction accuracy of the FNN model. At the same
time, the 1D CNN model reduced computing time by more than 90% and reduced resources used by
more than 69%, as compared to the 2D CNN model. Therefore, the developed 1D CNN model is
recommended for rapid and accurate resultant damage assessment after earthquakes.

Keywords: seismic damage assessment; convolutional neural networks; feedforward neural networks;
ground motion records; wavelet transform

1. Introduction

Rapid and accurate seismic damage assessment is essential to post-event response
and rescue. Traditional approaches generate the fragility estimates of different structural
damage states based on low-dimensional intensity measures (IMs, usually a scalar IM or
two-element vectorial IM) of ground motion records. These approaches include cloud
analysis [1], incremental dynamic analysis (IDA) [2], multiple strip analysis (MSA) [3],
and improved models [4–9]. However, according to previous studies, low-dimensional
IMs were not sufficient to capture and propagate primary earthquake uncertainty through
seismic fragility analysis [10–13]. To overcome the disadvantage of low-dimensional IMs,
multivariate regression models were used to obtain a fragility estimation and facilitate more
accurate and reliable regional seismic risk estimates by incorporating multiple IMs (up to
five) into a vectorial IM [14]. Two artificial neural network (ANN) models, i.e., the feedfor-
ward neural network (FNN) and radial basis function (RBF) network models with 14 IMs as
inputs, were adopted to predict the seismic-induced damage states of 30 reinforced concrete
(r/c) buildings [15–17]. It was found that trained FNN and RBF models could reliably
and rapidly predict the resultant damage states of r/c buildings after earthquake events.
Machine learning (ML) techniques were also used for the seismic-damage classification.
Xu et al. selected up to 48 IMs as inputs to train ML models to predict the damage states
of structures [18]. Although these regressive and artificial intelligence models were able
to consider high-dimensional IMs in seismic damage assessments, they required careful
selection and computation of hand-crafted IMs from any IM candidate pool that consisted
of dozens, if not hundreds, of developed IMs because what constituted an optimal IM
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to characterize ground motion records would change based on different structural types,
collected ground motion records (GMRs), and structural damage indices [13,19–21].

To better consider the uncertainties in seismic damage assessment and avoid the
selection and the computation of hand-crafted IMs, GMRs were directly used as inputs
for CNN-based seismic damage assessment and seismic vibration identification [22–25].
Similar to the application of CNNs in 2D image and video analyses [26–28], the 2D GMR
images were generated from raw 1D GMRs with wavelet transform (WT) encoding for
CNN-based seismic assessments [22–24]. WTs have a long history of being applied in GMR
classification. For example, in [29–31], WTs provided detailed time-frequency information
of GMRs in the form of 2D images through time-variant spectral decomposition to classify
the near-fault GMRs. However, there were other methods for encoding 1D time series
to 2D images, such as recurrence plot (RP) [32], Gramian angular summation/difference
fields (GAF), and Markov transition fields (MTF) [33]. The test of RP and GAF–MTF
encoding techniques on the same dataset from the University of California’s Riverside
Time Series Classification Archive [34] indicated that the RP encoding obtained better
prediction performance with a smaller encoding data size in the CNN-based time-series
image classification than that of the GAF–MTF encoding.

In the previous work of Yuan et al. [25], RP encoding and the newly proposed time-
series segmentation (TS) were compared to the widely used WT encoding to explore the
most suitable image encoding method for CNN-based seismic damage assessment. It
was found that the WT encoding generated the highest prediction accuracy, as compared
to RP and TS. Generally, WT encoding is the best technique for GMR image encoding
for CNN-based seismic damage assessment in terms of prediction accuracy. Although
the contemporary CNN-based seismic damage assessments avoid the computation and
selection of hand-crafted IMs, the encoding of a 1D GMR time series to 2D GMR images
increases the training time for a large set of GMRs. The CNN training time with WT encod-
ing reached more than 20 h on a general-purpose computer without graphics processing
unit (GPU) farms, according to Lu et al. [23]. The expensive computational overhead
for a CNN-based seismic damage assessment approach with GMR image encoding com-
promised its advantages of avoiding the computation and the selection of hand-crafted
IMs. Therefore, a direct end-to-end approach that can use 1D GMRs as inputs was more
desirable, as compared to the contemporary CNN approaches that use GMR images as
inputs for seismic damage assessment.

The 1D CNNs were widely used in real-time time series classification tasks [35–37].
As stated by Kiranyaz et al. [38], for the task of 1D time series classification, 1D CNNs were
superior due to their cost-effectiveness, computational efficiency, and practical deployment,
and thus they were more suitable, as compared to deep 2D CNNs. Moreover, 1D CNNs
need relatively shallow architecture to manage the challenging 1D signal tasks, but 2D
CNNs required an extra image-encoding step and deeper architectures than the 1D CNNs
to handle the same tasks. Additionally, 1D CNNs are quickly trained on a general-purpose
computer with a central processing unit (CPU) configuration, and deep 2D CNNs usually
require special hardware setups like GPU farms or cloud computing to reduce training
time. Therefore, 1D CNNs were preferable in real-time 1D single classification tasks.
The post-earthquake damage assessment is inherently a classification task of 1D GMRs
according to their resultant structural damage states. Hence, this study proposed the use
of 1D CNNs, instead of 2D CNNs, for post-earthquake damage assessment. The 1D CNN
seismic classifier does not use extra preprocessing such as the wavelet transform encoding
of GMRs into 2D GMR images. Instead, 1D CNNs used the 1D GMRs (accelerograms) to
predict resultant seismic damage states of structures. To demonstrate the advantages of 1D
CNN seismic classifiers, a case study of a benchmark r/c building was conducted. Three
neural network models—namely, a 1D CNN model, a 2D CNN model with WT encoding,
and an FNN model—were trained under the same computing configuration with the same
training and validation datasets. Their prediction performances were compared from the
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same test dataset. The performance of these three models was evaluated in terms of their
computational efficiencies and prediction accuracies.

The rest of the paper is organized as follows. First, the methodology of the 1D CNN
post-earthquake damage assessment is presented. Second, the detailed architectures of the
three neural network models are introduced. Thereafter, the case study conducted on these
three models, trained with the same training, validation, and test datasets obtained from
the nonlinear time history analyses (NLTHA) results of a benchmark r/c frame building,
is presented. Third, the prediction performances and the computational efficiencies of
these three neural network models are evaluated based on the case-study results. Finally,
conclusions from our research and future research recommendations are presented.

2. Methodology of 1D CNN Seismic Damage Assessment
2.1. 1D CNN and 2D CNN Approaches

The 2D CNN-based seismic damage assessment used as a reference is briefly summa-
rized before the 1D CNN approach is presented. Figure 1 shows the pipeline of the 2D CNN
approach (dash arrows) as summarized from the previous studies [22,23,25]. The 1D GMRs
had to be transformed into 2D GMR images through an encoding technique (e.g., WT
encoding) before they were inputted into the 2D CNN model for post-earthquake damage
assessment. As a widely used image encoding technique in GMR classification, WT encod-
ing achieved the highest prediction accuracy among three image encoding techniques [25]
and was thus used to encode GMR images in this study via the toolbox developed by [39].
In contrast, the 1D CNN approach (solid arrows), in Figure 1, directly used the recorded
GMRs in the 1D CNN model and predicted their resultant damage states. The heavy
preprocessing of WTs in the 2D CNN approach was avoided in the 1D CNN approach.
Therefore, the 1D CNN approach would be preferred if it could maintain a comparable or
higher prediction accuracy, as compared to the 2D CNN approach.
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Figure 1. The pipelines of seismic damage state prediction with 1D CNN (solid arrows) only and 2D
CNN (dash arrows) that requires image encoding of the GMR images.

2.2. 1D CNN Architecture

The architecture of 1D CNNs mainly consists of two main components, the feature
extracting layers and the fully connected layers, as shown in Figure 2. The feature extracting
layers of the first component are mainly composed of convolutional layers and pooling
layers. The fully connected layers are usually a shallow FNN classifier with similar
architecture, as used in [17]. The difference lies in that hand-crafted IMs were inputted into
the FNN model in [17] while automatically extracted features (denoted as X̃ in Figure 2)
from the first component of the CNN architecture were inputted in the FNN classifier.
To extract the features of the input 1D GMR X, a kernel W with M learnable parameters
conducted the convolution operation by sliding on the vector X with a stride S. With
K kernels in one convolutional layer, corresponding K feature vectors were extracted



Appl. Sci. 2021, 11, 9844 4 of 14

(denoted as Depth K in Figure 1. In 2D CNNs, they are known as feature maps). The ReLU
activation function σ(·) was adopted to activate neurons in the neural network because it
is computationally efficient [40]. The convolution operation is represented in Equation (1):

p = σ(X|θ) = σ(W⊗ X + b), θ = [W, b] (1)

where ⊗means the convolution operation. For an input GMR vector X with a length of N,
a scanning stride of S, and a kernel of M trainable parameters, the convolution output p
through the activation function ReLu σ(·) is (N−M)/S + 1. W presented the parameters in
the kernel, and b was used as the bias item to form the ensemble of learnable parameters θ.
The pooling layer conducted a similar scanning technique with a certain stride (e.g., 3)
on each feature vector generated by the former convolutional layer. The maximum or
the average value of a local, receptive slice for each feature vector was extracted in the
pooling layer. Max-pooling is very commonly used in CNN training due to its superior
performance [41]. Through several stacked convolutional and max-pooling layers, the high-
level extracted features were flattened as feature vectors (denoted as X̃) and inputted into
the FNN classifier composed of fully connected layers. The FNN classifier also contained
a set of trainable synaptic weights (denoted as θ̃). The extracted high-level features were
fed into the FNN classifier until the final output layer. In the output layer, the softmax
activation function [42] was used for the seismic damage state prediction. The 2D CNN
architecture is very similar to 1D CNN architecture, except that the inputs are 2D GMR
images and the convolution and pooling operations are usually conducted on a 2D matrix
in the horizontal and vertical orientations simultaneously.
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The training of the 1D CNN model was an iterative tuning process of the learnable
parameters

(
θ, θ̃

)
of the convolutional kernels and the fully connected synaptic weights

to achieve the best prediction performance. To tune the parameters, the performance of the
1D CNN model was evaluated by a loss function of categorical cross-entropy (CE), defined
as Equation (2):

CE = −∑C
i yi ln(si) (2)

where yi is the ground-truth category of an input GMR and si is the score of the 1D CNN
model obtained from the softmax activation function in the output layer of the FNN
classifier. In one training iteration, a batch of GMRs from the training dataset was fed into
the CNN model, and all trainable parameters in

(
θ, θ̃
)

were updated based on the loss
CE through the gradient descent optimization algorithm. This training strategy is also
known as batch training [43]. A training epoch was reached when all the samples in the
training dataset were fed into the model once. A basic gradient descent optimizer is given
in Equation (3):
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(
θ, θ̃

)new
=
(
θ, θ̃

)old
− η

∂CE

∂
(
θ, θ̃

) (3)

where η is the learning rate and ∂ is the partial differential operator. Additional modified
advanced optimizers based on Equation (3) were referred to in [44], where the Adam
optimizer was adopted in the study due to its superior performance [45]. Finally, the

optimal
(
θ, θ̃

)∗
was acquired to achieve the lowest CE on a separate validation dataset.

The trained 1D CNN model with the optimal parameters was saved and could be used to
rapidly predict the resultant damage states of structures by future GMRs.

3. Configuration of Three Neural Network Models

In this study, three neural network models were trained and compared with the same
training, validation, and test GMR datasets in order to evaluate their performances. GMRs
in different earthquake events have highly variable durations, lasting from several seconds
to hundreds of seconds. Therefore, a short pre-defined 30 s duration for each GMR, centered
on the peak ground acceleration (PGA), as adopted in [23], was extracted if the GMRs were
longer than the pre-defined duration. A time step of 0.02 s was adopted in this study as a
common time step used in NLTHA under earthquake excitations [46]. Thus, each GMR
inputted into the neural network models contained 1500 data points. Those raw GMRs that
had less than 1500 data points were padded with the equivalent number of zeros to reach
1500. Figure 3 shows the architecture of the three neural network models: the 2D CNN
model, the 1D CNN model, and the FNN model. For the 2D CNN model, the WT-encoded
GMR image size was 128 × 1500, indicating a scale ranging from 1 to 128. The 1D and 2D
CNN models both had four convolutional layers and four max-pooling layers with the same
feature map (vector) depth in each convolutional layer. The kernel sizes of the convolution
and max-pooling layers are shown in Figure 3. In the fully connected layers, the dropout
technique was applied with a probability of 0.3 to reduce overfitting in the deep networks
and improve the generalization ability [47]. In addition to the two CNN models, the third
FNN model was also trained with the same GMR inputs as were used in the CNN models.
Similar to the fully connected layers in the two CNN models, the third FNN model had an
extra hidden layer with 200 neurons because two hidden layers are usually recommended
to form the feature space in FNNs [48] that do not have high-level extracted features as
inputs. A dropout probability of 0.5 was used in the two hidden layers of the FNN model
to further regulate the training process and avoid overfitting. These three models were
trained and tested under the same computing configuration and using the same training,
validation, and test datasets of GMRs in the following case study. Their performance was
evaluated in terms of model computational efficiency and prediction accuracy. Details
of these three models are presented at https://github.com/yuanxzMST/1d-cnn-GMRs
(accessed on 8 October 2021).

https://github.com/yuanxzMST/1d-cnn-GMRs
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4. Case Study
4.1. Benchmark Building and NLTHA

A benchmark building analyzed by [49] was selected as the case study structure. This
benchmark building was designed as a hypothetical four-story office building based on the
2003 International Building Code (IBC). The building was located in a typical high-seismic
urban region of California. The design incorporated a perimeter-frame system with four
perimeter frames mainly providing the lateral resistance for the building. Figure 4 shows a
2D nonlinear finite element model of one perimeter frame of the benchmark building in
OpenSEES [50]. In Figure 4a, the symbols of ”b”, “h”, and “bar #” are the width (m), depth
(m), and steel rebar diameter (mm) of the beams and columns.

The symbol “ρ” means the reinforcement ratio of the columns, and the symbols
“ρbot” and “ρtop” are the bottom and top reinforcement ratios of the beams. In this study,
all the columns were fixed at the base since their support conditions had little effect on
seismic responses. Figure 4b represents the fiber-distributed plasticity element to simulate
the nonlinearity of the beams and the columns of the frame. Each structural element
consisted of five integration points. The material characteristics of concrete (with a nominal
compressive strength of 34.5 MPa) and steel (with an expected yield strength of 462 MPa)
were captured by the Concrete02 and Steel02 material models in OpenSEES, respectively.
The stress–strain relationships (left) and the hysteretic behavior (right) of Concrete02
(top) and Steel02 (bottom) are found in Figure 4c. Additional details regarding these two
materials were referenced in [51,52].

The dynamic analysis was conducted on the computational model of the benchmark
building. The fundamental period for the fixed-base perimeter frame, in Figure 4a, was
0.724 s, slightly lower than the 0.75 s of the flexible-base model in [49] due to the stiffness
increment of the fixed base. Using the maximum interstory drift ratio (MIDR) as the
damage index in [49], the frame would fail at an MIDR range of 0.07–0.12, and 39% failure
scenarios formed the mechanism at the first story while approximately 61% of the scenarios
caused the mechanism to form at the third story. For the GMRs with a typical design
basis exceedance probability (10% in 50 years), the MIDRs of the frames ranged from
0.005–0.02, which satisfied the design limits set by the design code. For the task of seismic
damage assessment, a flexible number of damage states were defined to describe the
building’s damage conditions. Two damage classes—namely, the collapse class and the
non-collapse class—were defined in the machine learning-based approaches to predict
the collapse of ductile r/c building frames [53]. Five damage states of r/c buildings in
neural network-based approaches were used to classify the seismic structural damage



Appl. Sci. 2021, 11, 9844 7 of 14

states [16,17,23]. Three damage states were used to evaluate the performance of r/c
buildings after earthquake events in [22,25,54], following the guidelines of the Applied
Technology Council (ATC)-20 [55] and ATC-40 [56]. Three damage states, i.e., safe (green
placard), limited entry (yellow placard), and unsafe (red placard), were defined in this
study, following ATC tag rules. Based on the MIDR limits in [49], GMRs with MIDRs < 0.02
were labeled with green placards, GMRs with 0.02 ≤ MIDRs < 0.05 were labeled with
yellow placards, and GMRs with 0.05≤MIDRs were labeled with red placards. Particularly,
the lower bound of 0.05 for the red tag was determined by the mean value minus three
times the standard deviation of all GMRs in the collapse range of 0.07–0.12, which was
identified in [49] to be conservative in the evaluation of unsafe structures.
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A total of 1993 worldwide horizontal historical GMRs with PGAs higher than 0.15 g
(g = 9.81 m/s2) were selected from the PEER GMR database (https://ngawest2.berkeley.
edu/, accessed on 5 April 2021) for the NLTHA of the benchmark building. However,
due to the stringent seismic design of the building, only 7 out of the 1993 historical GMRs
yielded a red tag, given the NLTHA results. A simple way to obtain sufficient strong GMRs
was to uniformly scale up the historical GMRs by a scaling factor [2]. However, scaling
factors, along with structural properties, GMR intensity, and types of seismic responses, can
cause biased NLTHA results [2,57,58]. In the engineering seismology community, common
scaling factors vary from 1 to 10 or more [58]. An alternative way is to synthesize GMRs
based on historical GMRs even though it takes more computing time and resources. To

https://ngawest2.berkeley.edu/
https://ngawest2.berkeley.edu/
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obtain enough red tag GMRs and limit the bias introduced by scaling factors, the 1993
historical GMRs were scaled from 2 to 10 with an increment step of 1. Thus, 17,937 extra
GMRs were obtained. Meanwhile, 2500 synthesized GMRs were generated, and they
were spectrum- and energy-compatible with the historical GMRs, based on an algorithm
developed in [59]. Therefore, 22,430 GMRs were obtained and inputted into the building
model for NLTHA. To further limit the bias introduced by the potentially excessive scaling
of historical GMRs, the MIDRs in the 22,430 GMRs were examined, and the GMRs resulting
in MIDRs > 0.12 were excluded because the perimeter frame would have collapsed with
an MIDR larger than 0.12, indicating it is impossible for the numerical model to have a
converged solution due to instability. An examination of the excluded GMRs showed
that most were scaled up with a factor over 8, which affirmed that the excessively scaled
GMRs were removed. Among the remaining 17,647 GMRs, only 1067 GMRs were labeled
with red tags. To form a balanced training dataset and to ensure that the performance of
the neural network models was not biased by the class that had the most training GMR
samples, 1067 GMRs were randomly selected from the green and yellow classes. Finally, a
balanced dataset composed of 3201 GMRs was collected to train the neural network models
where each green, yellow, and red class had 1067 GMRs, respectively. The process of GMR
selection is shown in Figure 5.
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The 3201 collected GMRs were preprocessed, as mentioned in Section 3, to extract a
duration of 30 s centered on their PGAs before training the three neural network models.
Particularly, the extracted GMRs were encoded to 2D WT images for input into the 2D CNN
model. However, the 1D GMRs were directly inputted into the 1D CNN model and the
FNN model. The 3201 collected GMRs were randomly shuffled and proportionally divided
into the training set, the validation set, and the test set by 0.70:0.15:0.15. An approximately
balanced training set had 2241 GMRs made up of 754 green GMRs, 753 yellow GMRs, and
734 red GMRs. The validation set had 481 GMRs, and the test set had 479 GMRs. These
three sets were used to train and test the three neural network models, as described in the
following section.

4.2. Model Training, Validation, and Test

The three models were trained and tested with the same datasets under the same
computing configuration. A workstation with a GPU GeForce RTX 2080 (8 G memory) was
used to train the three neural network models. The TensorFlow 2.2.0 platform [60] was
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adopted to build and train the models. During the training process, the training set was
mainly used to tune learnable parameters. In each training iteration, a batch of 32 GMRs
from the training set was fed into the model to update the parameters with the Adam
optimizer. Each training epoch had 70 training iterations to feed all 2241 training GMRs
into the model once. Fifty training epochs were conducted for each model. The validation
set was utilized to monitor the performance of the model during the training process, but
it was not used to update the learnable parameters. The model checkpoints at which the
trained models achieved the smallest validation losses on the validation sets were saved
for assignment using the unseen test set. Figure 6a,b depicts the training and validation
histories of the three models. The 1D CNN model and the 2D CNN model had similar loss
histories using the same training and validation sets. However, the FNN model, which
had higher losses, was less accurate with lower performance than the CNN models. This
result indicated that the high-level features extracted by the convolutional and max-pooling
layers in CNNs could better characterize the GMRs than the two-hidden-layer feature
space in the FNN model. The stars in Figure 6a,b denote the epochs where the three models
achieved the lowest validation losses. The tuned weights at these epochs were saved for a
further performance assessment using the same unseen test set, which was not involved in
the training process.
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The performance assessment of the test set is shown in Figure 6. Figure 6c–e represents
the confusion matrices of the three models on the same test set. The test set had 479 GMRs
composed of 155 green GMRs, 166 yellow GMRs, and 158 red GMRs. The rows of the
confusion matrices were predicted classes by the neural network models, and the columns
were the true classes of the GMRs obtained from NLTHA. The cells denoted as “recall”
in the last row indicated portions of correctly classified GMRs in a true class. The cells
denoted as “precision” in the last column were the portion of the true GMRs in a predicted
class. The cell in the bottom right corner denoted as “accuracy” was the portion of correctly
classified GMRs in one test set. Higher recall, precision, and accuracy close to 1 on the
test set indicated better model performance [61]. Figure 6c–e shows that the 1D and
2D CNN models had close recall, precision, and accuracy. However, the FNN model
had lower recall, precision, and accuracy than the two CNN models. This comparison
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indicated that the CNN models outperformed the FNN model in the GMR-dependent
seismic damage assessment.

5. Discussion

The model training, validation, and test results in Section 4.2 demonstrate that the
1D CNN model and the 2D CNN model performed similarly; however, the FNN model
performed at a lower level. In this section, the computing time and computing resources
consumed by the three models were investigated to evaluate their computing efficiencies.
The same model training and test strategies outlined in Section 4.2 were used in the CPU
computing configurations. The workstation CPU was an Intel Xeon CPU E5-2670 V3 @
2.30 GHz with 126 G memory and 48 cores. Table 1 compares the three neural network
models under the same computing configurations with a GPU and/or a CPU. Though
the 2D CNN model with the WT-encoded GMR images achieved the highest prediction
accuracy of 81.6%, the WT encoding of the GMRs, the model training, and the testing of the
2D CNN model consumed significantly more time than the 1D CNN model and the FNN
model. However, the 1D CNN model had a prediction accuracy of 81.0%, as compared to
the 2D CNN model, and it took less computing time and fewer resources. As compared
to the 2D CNN model, the 1D CNN model reduced GMR preprocessing time by 99.9%,
training time by 96%, and testing time by 90%. The FNN model took the least time among
the three models but was also the least accurate at 70.8%. Therefore, the FNN model is not
recommended for a GMR-dependent seismic damage assessment. Hand-crafted IMs were
required by the FNN model to achieve high prediction performance, as demonstrated in
previous studies [15–17].

Table 1. Comparison of computing time and resources of the three neural network models.

Model Trainable
Parameters

Memory
Usage (MiB)

GMR
Preprocessing

Time (s)

Model Training
Time (s)

Model Testing
Time (s)

GPU CPU GPU CPU GPU CPU

1D CNN 105,283 2299 0.08 0.09 18 66 0.11 0.15

2D CNN 787,715 7423 106 104 504 6926 1.13 6

FNN 313,259 313 0.08 0.09 12.7 14 0.07 0.08

In terms of the computing resources, GPUs are more expensive with less memory size
than CPUs. The 2D CNN model had the most trainable parameters and almost reached
the GPU memory limit because the WT-encoded GMR images had large input sizes. A
batch size larger than 32 in the 2D CNN training could cause problems due to the lack of
GPU memory. Compared to the 2D CNN model, the 1D CNN model reduced the trainable
parameters by 86% and the memory usage by 69%. The FNN model had the smallest
memory usage due to its shallow architecture with middle-size learnable parameters, but
the FNN model is not recommended because it was the least accurate. Compared to the 1D
CNN model, the 2D CNN model with WT encoding increases the dimensionality of the
input GMRs, further leading to computing inefficiency, especially in CPU computing. As
stated in [62], the data volume, dimensionality, acceptable time, and storage complexities
are important to a novel efficient, effective algorithm. Therefore, based on the results
of prediction performance, computing time, and resource usage, the 1D CNN model is
recommended for rapid post-earthquake damage assessment among these three studied
neural network models. Note that the scarcity of reliable historical GMRs on a specific site,
instead of using GMRs scaled and synthesized from historical GMRs all over the world,
is still a challenge to training neural network-based seismic classifiers that require a large
training set to achieve desirable prediction performance.
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6. Conclusions

Existing CNN-based approaches encode 1D ground motion records into 2D images
for structural damage classification via deep 2D CNN models. This process leads to
unnecessarily high computing time and expensive computing resources. Instead, this study
directly inputted 1D ground motion records into the 1D CNN model for structural damage
classification. The developed 1D CNN model avoided redundant 2D image encoding and
expensive computing time. A benchmark r/c frame building was studied using three
neural network models: a 1D CNN model, a 2D CNN model, and a shallow FNN model.
They were trained, validated, and tested with the same dataset from the NLTHA of the
benchmark building using 3201 ground excitations in the same computing environment.
The studied results showed that the 2D CNN model yielded the highest accuracy (81.6%)
of prediction, the 1D CNN model provided a similar level of prediction accuracy (81.0%),
and the FNN model had the lowest accuracy (70.8%) of prediction. In comparison with
the 2D CNN, the 1D CNN model reduced trainable parameters by 86%, memory usage
by 69%, GMR preprocessing time by 99.9%, training time by 96%, and testing time by
90%. The proposed 1D CNN model is thus recommended for CNN-based post-earthquake
damage assessments due to its high prediction accuracy and computational efficiency.
Future studies should focus on the influence of GMR duration and time step on the 1D
CNN performance. The optimal size of a GMR dataset also needs to be determined to
avoid time-consuming NLTHA. Moreover, the 1D model should be further validated with
varying structure types, such as bridges, in a future study.
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