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Abstract: Ensuring the sustainability of road infrastructure cannot be achieved without the con-
tinuous application of new knowledge and approaches within individual management steps. A
particularly risky stage in the life cycle of existing roads is the operation phase. High attention is
paid to the environmental, financial and social impacts and benefits of individual processes applied
by road managers. These processes meet in pavement management systems (PMS), which, however,
cannot work reliably without the necessary input data. Information on the development of the
technical condition of the road can also be included among the most important data. The paper
brings the first outputs from several years of research of measurements on the Slovak 1st class road.
Its aim is to gradually determine the degradation functions for the needs of Slovak geographical, cli-
matic and transport conditions. The secondary objective is to verify the reliability of non-destructive
measurement procedures of the technical condition of the road. Emphasis is placed on the application
of such mathematical procedures that can not only reliably bring about the determination of past
developments in the roadway, but can also present the expected picture of future developments.

Keywords: pavement condition; long-term monitored road; degradation functions; rut; iri; design

1. Introduction

The sustainability of the road network is under ever-increasing economic, environ-
mental and social pressures. Road infrastructure users are demanding higher and higher
benefits from road administrators for their private as well as public financial resources.
This represents, in particular, a combination of ensuring higher road safety level, acceptable
time availability of destinations, but also economic efficiency in the processes of road
infrastructure management by administrators. At the same time, new regulations related
to environmental protection and efforts to actively implement finance in terms of value
for money are constantly emerging. These, as well as other regulations and restrictions,
challenge the whole sector to find new or improve existing solutions that have innovative
features. Their goal is to move the whole society forward and at the same time in terms of
sustainability rules, they will not generate adverse effects for future generations.

The general concept of road infrastructure sustainability is well defined and its basic
characteristics are recognized worldwide. Nevertheless, there is scope for its partial
parts to be modified, while the aim is to ensure a higher quality of the whole model.
Among the most important processes within the sustainability model include pavement
management systems (PMS). Their task is to optimize the performance of roads during their
expected service life and, thus, especially to ensure the time optimization of construction
interventions in the road [1,2]. Achieving this state cannot only bring significant financial
benefits, but also reduce the demands on the environment and satisfy the user demand for
quality road infrastructure.

The starting point for the successful applicability of PMS is the use of pavement
performance forecasting model (PPFM) functions. It determines the planned performance
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of new roads and the residual life of existing roads, during their life cycle. For these two
components of the sustainability model, a mutually complementary relationship applies,
where PPFM directly evaluates and expresses the pavement condition in a presentable form.
At the same time, all tasks associated with monitoring the condition of roads contribute to
the improvement of PPFM.

As can be seen from Figure 1, due to its great importance, the pavement performance
forecasting model must be able to work efficiently with a large group and several types of
data.
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Figure 1. The position of the pavement management system in the general philosophy of the pavement sustainability [3,4].

Due to the different transport, climatic and construction characteristics of the managed
road network, these data require their own approaches for collection, processing and, of
course, their interpretation. This also applies to their basic part, which they are degradation
models of residual road performance. They represent the so-called indicator of road
quality [5] presented as a combined mathematical-graphical expression of the decline
in road performance over time. The absence or poor quality of these functions greatly
weakens the whole meaning of the pavement management system.

Administrators, without information about the exact development of the road condi-
tion in the future, applied maintenance and repair work solely on the basis of the current
quality of the road, or made their own estimates of future development based on an expert
estimate. This procedure, of course, often led to bad managerial decisions, which were
accompanied by low financial efficiency. From this reason degradation models have already
become an essential part of the road management system and their regular application can
achieve the sustainability of the entire process of repairs, maintenance and reconstruction
of the road network [6–8].

Figure 2 illustrates the general concept of application of corrective pavement treatment
as a function of pavement condition.
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Figure 2. General concept of degradation function of pavement [9].

One of the basic problems is the fact that the course and shape of this function differs
due to various factors that occur within the life cycle of the pavement. For this reason, it is
appropriate to generate your own degradation function for certain regional characteristics.

This paper contains partial results of a long-term research project, one of the partial
parts of which was the task of determining relevant degradation functions on the basis of
a long-term monitored Slovak first class road. The results described in this paper build
on further knowledge of the author team in the areas of road management systems, non-
destructive road measurements and in the field of progressive materials used for roads,
which are described mainly in the works [10–12].

Related Research

In the process of compiling degradation models, it is necessary to take into account
factors such as the possibility of measuring input parameters (including the possibility
of objectively evaluating them), verifiability of the model empirically based on physical
properties and also local conditions. From this also follows the procedure whether we
will proceed using the knowledge of the laws of aging of materials or from the analysis
of experimental measurements. Procedures for determining degradation models can be
defined as follows through three basic approach groups:

- based on the physical laws of failure mechanics and these models must be calibrated
and verified using the results of laboratory tests and field measurements,

- on the basis of repeated laboratory tests of materials under load and conditions that
are very close to the real one,

- on the basis of long-term measurement and evaluation of real roads under the same
boundary conditions [13].

Road degradation can be monitored, evaluated and forecasted by changes in one
parameter or also by changes in several parameters in the aggregated assessment. It is
the availability of parameters and the possibilities for obtaining them, that are one of the
conditions for selecting one of the above-mentioned methods for determining degradation
models.

Within international standards, approaches to the creation of degradation models
are divided into those that are created on the basis of experimental measurements in real
conditions and on the basis of measurements in laboratory conditions [14]. Among the
significant works that arose on the basis of real conditions, it is possible to include example
results of the long-term pavement performance study [15]. The program and the results are
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focused on the collection of road performance data, containing more than 2500 test sections
at more than 900 locations. The results serve as a very useful basis for follow-up work,
such as the study [16], which instead of who developed a transformed linear regression
model between the pavement condition index and IRI indices, or the study [17] where on
data from the long-term pavement performance program analyzed various options for
road maintenance and rehabilitation.

In general, activities related to the acquisition of degradation models are not imple-
mented primarily to replace or substantially improve other predictive functions, with
universal applicability. For certain regions and specific traffic conditions, it is necessary
to develop individual degradation models and constantly work on their improvement.
Among the parameters, which are in the set are condition of the road surface in terms of
cracks, the course of transverse tracks, skid resistance and load-bearing capacity of road
layers, traffic load, climatic conditions, humidity parameters of the internal structure of the
road [18,19]. At the same time, it is necessary to observe in the background time factors
and other serious external influences that may occur.

Subsequently, it is at the discretion of the creators and users of pavement management
systems which collected, derived or estimated data prefer as inputs, or which parameters
they consider crucial for determining the road quality. The studies contained in [20,21]
emphasize the use for the pavement performance International Roughness Index (IRI)
parameter. This is despite the fact that they collect various other data with different collect
frequency (e.g., pavement crack, road roughness) that can provide more comprehensive
assessments. While, for example, the studies described in [22] are based on more compli-
cated approaches including road age, traffic load, cracks, temperature and rut depth. The
model below states that IRI increases with an increase in age, rut depth, freezing index and
plasticity index, while thicker overlay and base layers result in less IRI. As further stated
in the study [22], when age and rut depth are considered as zero and average values of
5286, 1.416 ◦C-day, 243 mm and 263 mm are used for AADT, FI, overlay and base thickness,
respectively, IRI0 of 0.92 m/km is obtained using next Eq. This observation implies that
although no milling is performed prior to overlay, a low IRI0 of 0.92 m/km is still attained
for the overlaid sections.

IRI = 0.786+ 0.099·e
Age
25 × AADT + 0.2−

(
FI

1000

)
− 1.55× Base (m)− 1.5× AC (m) + 0.074× Rutting+ 0.01× PI (1)

where AGE is the last rehabilitation or construction activity life in years, AADT is
average annual daily traffic, FI is freezing index, base (m) is base layer thickness in mm, AC
is the layer or AC overlay thickness in mm, rutting is the 80th percentile rut depth and PI is
plasticity index.

However, the general aim is to create the simplest possible predictive functions so
that they are not greatly affected by the high number of input parameters. At the same
time, emphasis must be placed not only on tests in laboratories, but also on additional
measurements in the field, e.g., using non-destructive forms of diagnostics [23]. It is
quite interesting to observe what is the decisive period on the basis of which individual
prediction models and functions arise. Examples of models are available based on data
collected over a period of 4 years [24], which result in a road condition index based on a
change in the road construction and characteristics and traffic load of the road. Study [25]
describes degradation relationships through an index based on a combination of roughness
and macrotexture, with the experimental section being monitored for 7 years. It is quite
interesting to observe that this period is not unified, but is chosen individually at the
discretion of those skilled in the art. Below is a brief overview of how the quality of the
road as a whole is determined or using values of the monitored parameters. As can be seen
in Table 1, the approaches used by the authorities responsible for assessing the quality of
road conditions are fundamentally different. Each state proceeds individually, especially
taking into account the traffic, climate, road construction specifics that are present on a
given road network. Changes in this direction are not expected in the future.
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Table 1. Overview of approaches for evaluating the quality of roads and their parameters [24,26].

Country Evaluation Function Explanation of Function

Overview of Approaches for Rut Calculation

Austria t = a
√

N

T is rut depth,
N is the number of loads equivalent to a standard axle (10 t),
a is an empirically determined factor depending on the road

structure.

Finland RDp = RDm +
(

RDm−2.0
AGEorm

)
× AGEmp

RDp is predicted rut depth,
RDm is measured rut depth,

AGEorm is the number of years from the last road
reinforcement to the year of measurement,

AGEmp is number of years from measurement to year of
wheel path depth forecast

Hungary RUT = ea+b×AGE

RUT = ea+b×FORG

AGE is age of the road abrasive layer,
FORG is number of repeated crossings of equivalent

passenger cars
a, b are constants

Ireland IRIt =
IRIt−1 + (a + b× ESALt × 0.41× 10)

ESALt is number of passes of uniaxial design axles (80 kN),
IRIt is value IRI in year t,

a, b are calibration parameters

HDM 4

∆RDM = RDO + ∆RDPD +
∆RDW, f or AGE4 ≤ 1

∆RDM = ∆RDST + ∆RDPD +
∆RDW, f or AGE4 > 1

∆RDM is the annual increment in the total average wheel
path depth in both wheel paths

RDO is depth of inequalities due to initial compaction,
∆RDST is the annual increment due to structural

deformations,
∆RDPD is an annual increase due to plastic deformations,

∆RDW is the annual increase due to wear and tear,
AGE4 is the number of years since the last road

reconstruction or construction

Overview of Approaches for IRI Calculation

Finland IRIt+1 = a + b× IRIt

IRIt+1 is IRI prediction for year t + 1,
IRIt is IRI prediction for year,

a, b are the parameters of the model according to the type of
road construction

Hungary IRI = ea+b×AGE

IRI = ea+b×FORG

AGE is age of the road abrasive layer,
FORG is number of repeated crossings of equivalent

passenger cars
a, b are constants

Ireland RDt = a× (0.41× cumESALt)
b

RD is transverse evenness in mm
cumESALt is cumulative number of passes of uniaxial

design axles (80 kN) per year t,
a, b are calibration parameters

HDM 4 ∆RI =
Kgr(∆RIs + ∆RIc + ∆RIr + ∆RIt) + ∆RIe

∆RI is incremental change of IRI
Kgr is calibration factor for the development of longitudinal

roughness,
∆RIs is contribution of the structural component of

roughness,
∆RIc is the contribution of cracks to inequalities,

∆RIr is the contribution of variations in transverse
inequalities to longitudinal inequalities,

∆RIt is contribution of pressures to inequalities,
∆RIe is the contribution of the environment to inequalities

Poland IRI = IRI0·e0.033(t−t0)
IRI is predicted value IRI in year t,

IRI0 is measured IRI in year t0
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Table 1. Cont.

Country Evaluation Function Explanation of Function

Overview of Approaches for Pavement Bearing Capacity Calculation

Hungary E = a− b× AGE
E = a− b× FORG

AGE is age of the road abrasive layer,
FORG is number of repeated crossings of equivalent

passanger cars
a, b are constants

Other Approach—Structural Failure Index

Spain ID = NDa × 10b

ID is structural failure index
ND is the number of vehicle

a, b are the constants determined from the tables according
to the road construction

Other Approach—Surface Failure Index

Finland DIp = DIm
AGEb

om
× AGEb

ob

DIp is predicted failure index
DIm is failure index-measured,

AGEom is time period in years from the last replacement of
the cover to the year of measurement

AGEob is time period in years from the last cover
replacement to the year of prediction,

b is constant based on type of pavement

2. Research Methods
2.1. Theoretical Approach

Experimental approaches for determining the course of road aging differ significantly,
despite certain common principles. The baseline curve of the road degrading without
intervention is expressed by a decreasing curve [27–29]. Over the last 20 years, a number
of scientific approaches have been presented to predict road performance and residual life.
They were based on the evaluation of long-term measured data in the statistical form [30],
stochastic approaches using probabilistic trends from real measurements [31,32] or fuzzy
logic and analytic hierarchy process [33], or the artificial neural network approach [34].
However, among the most reliable approaches, it is possible to include those based on
a combination of long-term collected data, combined with high quality diagnostic and
evaluation equipment [35]. This approach represents a backward regression in the form
of an iteration between traffic conditions, the specific construction of the road and the
condition of its surface [2,36,37].

The experimental approach presented in the article is based on monitoring the tech-
nical condition of a specific section of Slovak 1-st class road over a period of 20 years,
while this monitoring continues. This is an important 1st class road (built in 1973) marked
as I/64 connecting the transport hub of northern Slovakia (the city of Žilina) to another
regional center (the city of Prievidza). Specifically, the monitored section is located between
Poluvsie and Porúbka cities, in a zone where relatively regular and sudden fluctuations in
temperature and changes in weather conditions occur during the year. The annual average
temperature is about 7.5 ◦C, while the warmest month of July has an average temperature
of 16.7 ◦C. The average number of days with a snow cover is about 50 days. The average
height of the snow cover is 15 cm and during dry winters only 5 cm. The maximum height
of the snow cover is 70 cm. The road construction consists of a mastic asphalt concrete, an
asphalt concrete for the load-bearing layer, an asphalt concrete for the upper base layer, a
cement-bonded mixture and an unbonded layer of gravel. Daily intensity is at the level of
about 12,600 vehicles, while the share of heavy trucks is about 16%.
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The starting point for determining road degradation is based on the relationship
between the independent variables and the modeled parameter based on a general deter-
ministic model [38,39]:

PCSt = f (P0, ESALst, He, MR, C, W, I) (2)

where PCSt is the road condition in t year, P0 is the initial road condition in the first year,
ESALst is the equivalent load of one axle on the road in t age, He is the total equivalent
structure thickness, MR—is the modulus of elasticity of the subsoil, W—is the climatic or
the environmental impacts, C—is the structural conditions of roads and I is interaction
effects [40].

Most pavement management systems require degradation models designed from rut,
IRI and pavement bearing capacity parameters [40–43]. The rut parameter is one of the
most important parameters in terms of influencing operational capability. The development
of rut in degradation models is mainly represented by an increase in the depth of the wheel
path. When creating degradation functions/models, it is appropriate to monitor only
one wheel path, whose prediction of development reaches the limit value earlier than the
other [13].

The processing of functions was based on the initial degradation models described
in [39] used in Slovakia, Austria, Netherlands, Ireland and also in the software HDM-4.
Expressing the IRI parameter through degradation models is a more demanding process
than with the rut parameter. This is mainly due to the need of ensuring the same boundary
conditions for long-term repeated measurements. The course of IRI in degradation models
is represented by its own parameter: IRI (International Roughness Index) [13]. The starting
models were the findings presented in [14,44].

Due to the volume of measured data from long-term repeated measurements, de-
terministic (empirical) degradation models were created. In the creation of degradation
functions, polynomial regression analysis was used, which prescribes a general regression
relation in the form of a polynomial with an independent variable. Experience has shown
that, for most of the modeled parameters, it is sufficient to consider polynomials of at most
fourth degree.

D(x) = a0 + a1x + a2x2 + a3x3 + a4x4 (3)

where D(x) is a modeled degradation function, x is an independent variable (time or traffic
load) and a0, a1, a2, a3 and a4 are regression constants.

To mathematically model the degradation function, it was necessary to create a re-
lationship between the relative values of the monitored parameters. When processing
the amount of data, local extremes were eliminated, which could have occurred due to
non-compliance with the wheel path of the measuring device, non-compliance with mea-
surement procedures, extraordinary climatic impact, etc. The data prepared were thus
further processed using statistical methods. Extrapolation methods were used to monitor
further developments. The road condition can be expressed using the function as follows:

Q(t) = q × f (4)

where q are the transport conditions and climatic conditions and f is the time. After
modification, this relationship can be defined as follows:

q =
Q(t)
f (t)

(5)

The known time value T represents the limit value of the monitored parameter. Then,
the mathematical ratio t/T determines the dimensionless monitoring of changes in the
state of individual parameters, depending on the ratio between real time and time, which
represents the end of life of a particular parameter. In the same way, it is possible to define
the dependence on the traffic load n/N, which depends on the knowledge of the number
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of passes of the traffic load. Parameter N represents the total (limit) number of design axles
for the whole life of the road and parameter n expresses the number of axles up to the
moment of evaluation. The mathematical relationship t/T is called the time index and the
relationship n/N is called the load index.

The P(x) function is the value of the deformation. At a time that can be considered as
the beginning of the road life cycle, or at a time when it is fully operational, the value is
equal to 1. This means that it shows absolutely no degradation effects. The parameter P(x)
acquires the value 0, or it acquires a value close to 0 at the time when the road is degraded.
The relative expression of the parameters of transverse roughness used in Slovak conditions
is as follows:

P(x) = 1−
hk,mer

hk,dov
(6)

where the parameter hk,mer is the measured wheel path depth (mm) for repeated measure-
ments, hk,dov is the maximum permitted wheel path depth (mm) specified in the technical
conditions for the Slovak road in general [45]. The relative expression of the parameters of
longitudinal roughness used in Slovak conditions is as follows:

P(x) = 1− IRImer

IRIdov
(7)

where IRImer is the measured IRI value (m/km) during repeated measurements, IRIdov is
the maximum allowed IRI value (m/km) stated in the technical conditions for the Slovak
road in general [46]

2.2. Experimental Approach

When determining the relationships of degradation functions, it is necessary to know
the input data that affect the development of parameters of operational capability and
performance that are IRI, rut and pavement bearing capacity. For this reason, in cooperation
with the Research Center of the University of Žilina, nondestructive road conditions mea-
surements were carried out. The task of the measurements was to determine the thicknesses
of the structural layers of the road, to measure in addition to IRI, rut and the load-bearing ca-
pacity, gain knowledge about the subsurface failures of the pavement. Ground-penetrating
radar (GPR), laser scanning and falling weight deflectometer technologies were used.

As can be seen at Figure 3 GPR consists of high-performance multi-channel radar
control unit with air coupled 2 GHz horn antenna for asphalt layer thickness (from 0 to
0.75 m under surface) and 400 Mhz antenna for sub-base layer information (from 0 to 4 m
under surface). The peak load of falling weight deflectometer KUAB 50 which is presented
at Figure 4, it can be varied from the keyboard of the computer, by the choice of height of
fall. The peak load range is 15–50 kN at 22 ms rise time (=time from start to peak).
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Figure 4. Profilegraph GE (a); Falling weight deflectometer KUAB 50 (b).

The measurement procedures and used technologies are designed based on many
years of best practices, which are described in multiple studies [46–48]. It is very positive
that despite the relatively high-quality equipment, developments in non-destructive data
collection technologies are moving forward. An example is new approaches based on
advanced sensor systems and machine learning that are emerging, which could signifi-
cantly help improving the data collection process and road surface classification through
integration. An example of progress is the identification of road surfaces in vehicles by
acquiring the generated vibration in the suspension due to tire rolling [49] or the definition
of the relationships between the road roughness and the ratios of individual amplitudes in
a specific frequency band of the vehicle body acceleration values [50,51].

The data were evaluated for every 20 m. In Table 2 examples are presented of mea-
surements in the station every 100 m.

Table 2. Example of GPR measurement evaluation (date 9 December 2020).

Direction 1 (from Porubka to Poluvsie) Direction 2 (from Poluvsie to Porubka)

Road
Stationing

(m)

AC Average
Thickness

[mm]

Road
Average

Thickness
[mm]

Road
Stationing

(m) (m)

AC Average
Thickness

[mm]

Road
Average

Thickness
[mm]

100 239 403 100 174 655
200 294 508 200 290 713
300 252 569 300 327 591
400 274 729 400 305 611
500 240 744 500 234 512
600 295 838 600 284 525
700 248 647 700 291 521
800 321 540 800 251 477
900 216 714 900 207 477
1000 263 1024 1000 231 316

Average 260 632 Average 257 563

In Figure 5 it is possible to see the values obtained by measuring the rut and IRI at the
station 0 to 250 m, for both driving directions.
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3. Results

Degradation models are created for the rut, IRI characteristics and parameters of
road bearing capacity. The next sections present a graphical course of dependencies
due to long-time traffic load, whereas in this paper there are presented data for the one
direction Poluvsie–Porubka. The derived degradation functions are listed in the individual
parameters as follows.

3.1. Results of Rut Characteristics

Based on the available data from the long-term road monitoring, the linear dependence
was determined. By mathematical evaluation of the dependence of the decrease in the
course of the right and left wheel path on depth to create a linear dependence in the form
described in the next graph.

For the Figure 6, as well as for the following Figures 7 and 8 in this section, we state
that where yleft is RUT—the left rut depth (mm), yright is RUT—the right rut depth (mm), x
is the traffic load (mil. vehicles) and R2 is the determination index.
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Figure 8. Degradation of the rut depending on the time t/T.

Based on the above dependence, it is relatively easy to monitor the development trend
of the monitored parameter together with its prognosis. For cases where we are interested
in determining the time when the limit values occur, it is necessary to know the forecasts
of the development of traffic load.

Based on the defined magnitude, it was possible to design degradation functions.
These confirm the results of several studies. They state that the maximum values of
transverse inequalities are achieved mainly in the right wheel path. In addition, higher
surface tensions arise in this part, which is caused by the deformations of the road shoulder.

3.2. Results of IRI Characteristics

Based on the available data from the long-term IRI monitoring, the polynomial depen-
dence was determined in the form described in next graph.

For the Figure 9, as well as for the following Figure 10 we state, that y is the IRI
(m/km), x is the traffic load (in millions of heavy trucks), yn/N is the IRI depending on
load n/N, where yt/T is the IRI depending on the load t/T and R2 is the determination
index. In the above Figure 9 it is possible to notice an interesting trend of IRI where it
initially increases, then decreases and then it takes off. To explain this, it can be stated
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that the staff responsible for the preparation and execution of the experiment, as well as
for the subsequent processing of data, always proceed in accordance with the technical
regulation of the Slovak Road Administration (TP 056). Although the experimental section
was measured three times under the same conditions, very unusual results were found.
Due to the fact that the causes of these non-traditionally measured data could not be
unambiguously determined, they were not considered in the subsequent parts of the
research task and do not affect the results. These data are presented as evidence that the
experiments were performed. One of the assumptions as to why this data may have been
generated is the possibility that a very rare temporary technical failure has occurred on
one of the measuring lasers. However, other influences cannot be ruled out. These are, e.g.,
locally heavily dirty road surface, the effect of very heavy braking during the measurement
or the necessary deviation from the correct measuring line, which we did not consider
significant. However, as can be seen, in the end, some of these influences could have largely
skewed the resulting values.
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3.3. Results of Road Bearing Capacity

This section expresses the degradation functions for the values of the structural layers
modulus of elasticity determined by back-calculation.
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3.3.1. Asphalt-Bonded Construction Layers

As a general fact, the modulus of elasticity of asphalt-bonded road construction layers
changes under the influence of temperature. The data were therefore divided into three
temperature groups. The modulus of elasticity was then calculated for each group by
regression analysis.

1. Data group—road temperature 20.01–30.00 ◦C
2. Data group—road temperature 10.01–20.00 ◦C
3. Data group—road temperature 5.01–10.00 ◦C

The most represented temperature group, which covers the whole evaluation period,
is group no. 2 with road temperature during measurement 10.01–20.00 ◦C. The available
measured data in this group are the period 1997–2018 and contain 12 representative values.
The first temperature group contains only 6 representative values and temperature group
no. 3 contains seven representative values. For this reason, data temperature group no.
2 was selected to assess the development of the modulus of elasticity of asphalt-bonded
layers in the long-term section. The limit value was determined as 30% of the design value
of the modulus of elasticity, i.e., 1650 MPa. Upon reaching this modulus of elasticity, the
road is considered unsuitable for road traffic in terms of the modulus of elasticity. The
mathematical evaluation of the dependence of the development of the modulus of elasticity
recalculated by back-calculation, describes the polynomial dependence of the 3rd degree.
To recalculate the modulus of elasticity of the structural layers of the road, a calculation
program was used, which works on the principle of creating a model of the road with
a layered half-space. The interaction of the layers is simplified and the materials of the
layers of the road structure are homogenized. Isotropy and flexibility of the half-space
are also considered. The principle of calculation is based on the approximation of the
calculated deflection curve to the measured deflection curve at the measuring point until
the conditions of the permitted difference between the measured and calculated deflection
curve are met. The load on the surface of the model must correspond to the load parameters
when measuring the deflection with the FWD deflectometer. The radius of the loading
surface of the road model must be equal to the radius of the load plate of the deflectometer.
In the experiment, the road section was evaluated as one homogenized unit in the length
of 1000 m with 51 evaluated points. After removing the local extremes from the input data,
the back modulus of elasticity of the individual structural layers of the three-layer system
was recalculated. For deflection curves, the procedure of creating an average deflection
curve in one measured year was used. The input data entered (which remain unchanged)
are as follows: uniform load; load ring radius; contact in the joints of structural layers;
radial coordinates (representing the distance of the sensors from the load axis); vertical
coordinates (representing the depth of the structural layers). The input data entered (whose
values change in order to monitor the change in the shape of the deflection curve) are the
modulus of elasticity of the structural layers; thickness of structural layers and Poisson’s
ratio. For Figures 11–14 in this section we state that y is modulus of elasticity, x is traffic
load (mil. vehicles), yn/N is modulus of elasticity depending on load n/N, where yt/T is
modulus of elasticity depending on load t/T and R2 is determination index.

3.3.2. Road Foundation

The modulus of elasticity of the base layers is not directly affected by the temperature
influence during the measurement, as is in the case asphalt-bonded road construction layers.
Therefore, it was not necessary to divide the degradation models into three temperature
categories. The modulus of elasticity was determined by back-calculation based on traffic
load data. Results are presented at Figures 15 and 16.
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3.3.3. Subsoil

Based on the experimental measurements, it is clear that from the traffic load analysis it
is not possible to create a degradation model describing the dependence of the development
of the modulus of elasticity of the subsoil on the dependence. For this Figure 17 we state
that x is traffic load (millions of heavy trucks).
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3.4. Interpretation of Results and Sensitivity Analysis

In addition to determining the degradation functions, correlation analyzes were also
processed in parallel. Their aim was to determine the level of dependence between the
obtained data on the quality of the road, the road temperature during the measurement
and the traffic load. Subsequently, it was possible to treat these effects in the creation of
mathematical functions of degradation.

The result of the analysis confirmed the dependence of the average temperature of
the road surface during the measurement on the change of the modulus of elasticity of the
asphalt-bonded layers, expressed by the Pearson coefficient with the value up to r .

= 0.808.
The dependence between the base layers and the average road surface temperature is
r .
= −0.370 and the correlation between the road surface and the average road surface

temperature is r .
= 0.250. The correlation analysis for asphalt-bonded structural layers was

also influenced by the performance of road maintenance. For this reason, the observed
period was divided into three categories, while the correlation coefficients are as follows—
the period before maintenance −0.79, the period between maintenance −0.83 and the
period after maintenance −0.86.

The processing of the dependence between the modulus of elasticity of the individ-
ual structural layers and the traffic load showed the following results. An overview of
approaches for evaluating the quality of roads and their parameters for the underlying
layers is r .

= −0.71, which means a strong dependence. No dependence was found between
the development of the subsoil elasticity modulus and the traffic load. When assessing
the dependence between the development of the modulus of elasticity of asphalt-bonded
layers and the traffic load, the bond was again evaluated with a division into periods
according to the performance of construction maintenance. At the same time, the effect
of temperature was applied here. In all cases, strong dependence was confirmed. In the
following Table 3 it is possible to see the degree of dependence between the increase of the
rut or IRI and the decrease of the load-bearing capacity of the structural layers of the road.
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Table 3. Overview of Pearson coefficient for the road construction layers.

Road Foundation Subsoil
Asphalt-Bonded Construction Layers *

20.01–30.00 ◦C 10.01–20.00 ◦C 5.01–10.00 ◦C

Rut (left) r = −0.73 r = −0.31 r = −0.77 r = −0.43 r = −0.73

Rut (right) r = −0.54 r = −0.38 r = −0.88 r = −0.58 r = −0.22

IRI r = −0.70 r = −0.21 r = −0.73 r = −0.70 r = −0.70

* Divided by surface temperature during measurement.

From the point of view of correlation evaluation, it can be stated that there is a medium
to strong dependence between rut and the modulus of elasticity of the base layers. There is
a medium dependence between rut and the modulus of elasticity of the substrate, there is
a strong dependence between IRI and the modulus of elasticity of the subsoil.

At the same time, it was shown that there is a medium to strong dependence between
the rut and the decrease in the load-bearing capacity of the asphalt-bonded structural
layers. There is a strong relationship between the IRI and the decrease in the load-bearing
capacity of asphalt-bonded structural layers.

4. Discussion and Conclusions

This paper presents the results associated with the creation of degradation functions
of the 1st class road in Slovakia in the section between the villages Porúbka and Poluvsie.
Approaches of non-destructive data collection for a period of 20 years were used in the
work, in combination with mathematical modeling and application of the results of sen-
sitivity analysis using a simple Pearson’s coefficient. The result is the creation of highly
sought-after road degradation functions. These are expressed by polynomial functions
of at least the third degree, as they best express the dependences between the traffic load
and the development of longitudinal and transverse inequalities. At the same time, the
measurements confirm the conjecture that the right wheel path (within one direction)
deforms faster. On the measured section of the road, the difference between the values of
deformations in places was up to 38% more. This is mainly due to the insufficient width of
the road, despite its importance. The vehicles are forced to drive close to the curb, which
creates a higher surface tension in the right part of the road in the right wheel path. This
also causes earlier damage to the curb and subsequent cracks due to water seepage into the
lower layers of the road. The study also verified the assumptions associated with the effect
of temperature and traffic load on the values of rut, IRI and road load capacity. The biggest
impact is on the top layer of the road. Mathematical performance models have not yet been
validated in detail with degradation models by other researchers. However, the author
team initiated several new activities with its partners, which could unify the boundary
conditions for data collection. This would ensure that there are not too many gaps when
comparing the same road design. Subsequent work will have the character of application
of the identified degradation functions to other long-term monitored sections of roads
with the same design properties to bring verification of mathematical modeling. Among
the new ideas that emerged during the study, it is possible to include the continuation of
measurements, but under improved technical conditions. This means that the tests are
carried out in such a way that climatic similarity is observed, measurements at different
seasons and, in particular, measurements at the same places on the road. At the same
time, it is appropriate to focus on the application of new technological tools in the form of
sensors that could simplify and improve the entire data collection process.
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