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Abstract: In this paper, we consider a control problem where a group of fixed-wing unmanned aerial
vehicles (UAVs) with uncertain dynamics tracks the target vehicle cooperatively in the case of external
disturbance. Based on the Gaussian process regression, a data-driven model is established, whose
uniform error is bounded with probability. Then a learning-based consensus protocol for multi-UAVs
is designed. The stability of the system is proven via Lyapunov function, and the tracking error is
guaranteed to be bounded with a high probability. Finally, the effectiveness of the proposed method
is shown in the numerical simulation.

Keywords: gaussian process regression; uniform bound; fixed-wing UAV; consensus protocol

1. Introduction

In recent years, cooperative tracking control of multi-UAVs has been developing
rapidly for its wide application [1,2], such as pursuing recovery device in air-recovery [3],
following aircraft in a cooperative operation [4] and tracking virtual leader in formation
flight [5]. However, there exist many challenges in the research [2]. First, the nonlinear
dynamics, in particular the unmodeled dynamics, of UAV make the design of control
law more difficult. Second, the disturbance in the environment, such as wind, is to be
considered in the coordinated control for the safety of the formation flight.

For the study of the model of fixed-wing UAV, 6 DOF model [6] is constructed in
the early modeling of UAV, where aerodynamic parameters are used to refine the model
characteristics. However, it is difficult to be applied in practice due to the coupling
characteristics of the model and it is usually used in the maneuver flight with high speed,
which relies on the attitude control [7]. To better analyze the movement of UAV in three-
dimensional, most researchers adopt 3 DOF model [8,9] in their study. Furthermore, if the
height remains unchanged, the 3 DOF model can be expressed as a unicycle model [10,11],
which is a kinematic model without considering the dynamic characteristics of the UAV.
To better analyze the tracking performance of the UAVs in the plane, a 2 DOF model is
discussed in this paper based on the assumption that the height of the UAV is constant,
which not only preserves the dynamics of the UAV but also simplifies the description of
the problem.

Although most of the models we use are the nominal model, which is a standard model
without uncertainties, there is still an uncertain part caused by parameter uncertainties and
high-order dynamic terms, which is often difficult to be modeled by functions. Thus, data-
driven model is widely used in the model-based control techniques with the development of
computer technology. Gaussian process (GP) model is a Bayesian nonparametric regression
model, which is widely used in the machine learning [12,13]. Compared with the neural
networks (NNs) [9], GP does not only provide a prediction but also a prediction variance, an
effective measure of the uncertainty of the learned model [14]. When model-based methods
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are used in control, model errors are of great importance to be taken into account [15]. GP
provides uniform error bound [16,17], while there is no guaranteed bound of the estimation
error in NNs [18]. To apply model-based control methods to data-driven models, we use
GP regression to model the unknown dynamics of the UAV for its uniform error bound.

The main contribution of this paper is the design of a cooperative tracking control law
for fixed-wing unmanned aerial vehicles based on GP, considering model uncertainty and
disturbances. We model the unknown dynamics of fixed-wing UAV based on GP, take the
disturbance into account, prove the stability of the system with the help of Lyapunov func-
tion and guarantee that the tracking errors are in a certain bound with a high probability.

The remainder of the paper is as follows: Section 2 reviews the works related to our re-
search. In Section 3, some mathematical symbols are explained, and the basic knowledge of
graph theory and Gaussian process regression is introduced. The mathematical description
of control problem is established in Section 4 followed by the main results of our work in
Section 5, where the learning-based control law for coordinated tracking is proposed and
stability with probability for the system is proven. Section 6 shows the results of numerical
simulation and demonstrates the effectiveness of the proposed method. Conclusion is
drawn in Section 7.

2. Related Work

There are many applications based on Gaussian process, such as constructing maps [19],
filtering [20], action recognition [21], classification of hyperspectral images [22,23] and
modeling. In particular, modeling is one of the most important applications. Jongseok
Lee et al. [24] proposed an identification framework for fixed-wing platforms, which
includes flight test, training parameter, correcting identification and updating model.
Khansari-Zadeh et al. [25] presented a method to learn discrete robot motions and demon-
strates its validity through a set of robot experiments. With the wide applications of GP
model, some researchers started to apply control methods to GP model. Prasad Hemaku-
mara et al. [26] modeled the dynamic of UAV and controlled it in real flight. Sooho Park
et al. [27] proposed a learning algorithm to learn the unknown system model and tested
it on the control of the mecanum-wheeled robot. It is a pity that the above research lacks
analysis of stability of the control system.

When it comes to the stability of control system based on GP model, we have to thank
Niranjan Srinivas et al. [16] for their excellent work. They obtained explicit sublinear regret
bounds for many commonly used covariance functions, which is cited by many researchers.
Based on their theory, Jonas Umlauft et al. [28] put forward an uncertainty-based control
Lyapunov function framework to stabilize control-affine systems with high probability,
while Michael Maiworm et al. [14,29] designed a model predictive control law for nonlinear
discrete time systems and established input-to-state stability. Armin Lederer et al. derived
a novel uniform error bound under weaker assumptions.

All the research above applies to individuals. There exists a few data-driven control
approaches for unknown nonlinear multi-agent systems (MAS) [18]. Zewen Yang et al. [18]
designed a learning-based leader-follower consensus protocol for unknown nonlinear MAS
based on GP. However, the model proposed by Zewen Yang et al. is relatively simple
and does not apply to the design of control law of fixed-wing UAV, at the same time, the
disturbance caused by changing wind and mutual airflow between UAVs is not considered,
which is of great importance in the control of multi-UAVs. Although Wang Ping et al. [30].
and Michael Defoort et al [31]. had taken disturbance into account, they did not consider
the uncertain dynamics of agents. Inspired by them, we design a cooperative tracking
control law for fixed-wing unmanned aerial vehicles based on GP, considering model
uncertainty and disturbance, and prove the stability of the proposed method.
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3. Preliminaries
3.1. Notation

In this paper, vectors and matrices are represented by bold letters, while scalars are
represented by normal letters. For a vector x ∈ Rn, ‖x‖ is usual Euclidean norm of x, i.e.,
‖x‖ = (∑n

i=1 |xi|2)
1
2 . Accordingly, the matrix norm is induced by Euclidean norm i.e., for

a matrix A ∈ Rm×n, ‖A‖ =
√

max{λi(AH A)}, where AH is the conjugate transpose of A
and λi(A) is the i-th eigenvalue of A. For a square matrix B ∈ Rn×n, the expression B ≺ 0
means B is a negative definite matrix, while B � 0 means B is a positive definite matrix.
The symbol ⊗ denotes the Kronecker product, e.g., for matrix C ∈ Rm×n, D ∈ Rp×q,

C⊗ D =

 c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD

 ∈ Rmp×nq,

where cij is the ij-th element of C.

3.2. Graph Theory

We use an undirected graph G = (V , E) to describe the interactions among a group of n
fixed-wing UAVs, where V = {1, · · · , n} is a node set, E ⊆ V ×V is a set of ordered pairs of
nodes, called edges. The adjacency matrix A = [aij]n×n is defined as aii = 0 and aij = aji =
1 if there is an edge between node i and node j. Diagonal matrix D = diag{d11, d22, · · · , dnn}
is the degree matrix of G, where the element of dii = ∑n

j=1 aij. The Laplacian matrix of the
graph G is defined as L = D − A. Without loss of generality, the UAVs are denoted by
nodes 1, 2, · · · , n, and the target vehicle is denoted by node 0. We use another diagonal
matrix B = diag{b11, b22, · · · , bnn} to describe the connection between the i-th UAV and
the target vehicle, where bii > 0 if the state of the target is available to the i-th UAV and
bii = 0 otherwise.

The following assumption is made on digraph G.

Assumption 1. The undirected graph G is connected and there exists at least one UAV that can
obtains the state of the target.

Based on the Assumption 1, there are two important lemmas as follows

Lemma 1. Let L = (lij) ∈ Rn×n be a Laplacian matrix of a connected undirected graph. Then the matrix

L̃ = L + B =

l11 + b11 · · · l1n
...

. . .
...

ln1 · · · lnn + bnn

, (1)

is positive definite, if there exists an i such that bii > 0.

Proof of Lemma 1. For ∀z ∈ Rn\{0}, one can obtain that zT L̃z = zT Lz + zT Bz ≥ 0,
since L and B are both positive semi-definite. When zT Lz = 0, one can obtain that
z ∈ span{1}\{0}, and zT Bz > 0. Thus, we always have zT L̃z > 0 for z 6= 0, which implies
the conclusion.

Lemma 2. Let L̃ ∈ Rn×n be a positive definite and symmetric matrix. Then the matrix

M =

[
0 In
−β1 L̃ −β2 L̃

]
∈ R2n×2n, (2)

is negative definite, where β1, β2 > 0.
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Proof of Lemma 2. To prove that M ≺ 0, we can solve the equation det(λI2n −M) = 0,
where det(λI2n −M) is the characteristic polynomial of matrix M. Please note that

det(λI2n −M) = det
([

λIn −In
β1 L̃ λIn + β2 L̃

])
= det

([
0 −In

λ2 In + (β1 + β2λ)L̃ λIn + β2 L̃

])
= det

(
λ2 In + (β1 + β2λ)L̃

) , (3)

Additionally note that the eigenvalues of L̃ satisfy the following property

det
(
λI2n + L̃

)
=

n

∏
i=1

(λ + ρi) (4)

where ρi is the i-th eigenvalues of L̃. Comparing Equation (3) and Equation (4), one can
obtain that [32]

det
(

λ2 In + (β1 + β2λ)L̃
)
=

n

∏
i=1

(
λ2 + (β1 + β2λ)ρi

)
(5)

which implies that the roots of Equation (3) can be found by solving λ2 + (β1 + β2λ)ρi = 0.
Thus, the eigenvalues of M are given by

λi± =
−β2ρi ±

√
β2

2ρ2
i − 4β1ρi

2
(6)

Since L̃ � 0, one can obtain that ρi > 0, it is easy to prove that every eigenvalue of L̃
has negative real parts when β1, β2 > 0. Thus, M ≺ 0.

3.3. Gaussian Process Regression

For the learning of an unknown function f (·), we need an oracle to predict the value
of f (x) for a given input x ∈ X. In this paper, we use gaussian process as oracle which is a
nonparametric model.

Definition 1 ([33]). A gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Compared with other machine learning methods, GP does not only provide a pre-
diction but also a prediction variance, an effective measure of the uncertainty of the
learned model.

A GP is used to describe a distribution over functions, which can be written as

f (x) ∼ GP
(
m(x), k

(
x, x′

))
, (7)

where m(x) : X → R is the prior mean function, which allows the inclusion of prior
knowledge about the unknown function f (x) and is often set to zero if there do not have
any prior knowledge, and k(x, x′) : X×X→ R0,+ is the covariance function, which is
associated with abstract concepts of function f (x) such as smoothness. Since the choice of
kernel function is beyond the research of this paper, we choose squared exponential kernel
typically as kernel function

k(x, x′) = σf
2 exp

(
−1

2
(x− x′)>Ω−1(x− x′)

)
, (8)

where σf ≥ 0, Ω = diag{l12, l22, · · · , ln2}, li ≥ 0 are hyperparameters.
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To explain the process of GP regression, we assume a training data setD = {X, Y} con-
sisting of training inputs X =

{
x(1), x(2), · · · , x(M)

}
and training outputs

Y =
{

y(1), y(2), · · · , y(M)
}

, which consists of noisy observations y(i) = f (x(i)) + ς, where
i = 1, · · · , M, of an unknown function f (·) perturbed by Measurement noise ς.

Assumption 2. The unknown function f (·) is a sample from a Gaussian process GP(0, k(x, x′))
and observations y(i) = f (x(i)) + ς are perturbed by zero mean i.i.d. Gaussian noise ς with
variance σ2

0 , i.e., ς ∼ N (0, σ2
0 ).

Based on Assumption 2, the evaluations of y∗ at a given test input x∗ is again a
Gaussian distribution with the posterior mean and variance

µ(y∗|x∗,D) = k(x∗)>
(

K(X) + σ2
0 IN

)−1
Y , (9)

σ2(y∗|x∗,D) = k(x∗, x∗)− k>(x∗)
(

K(X) + σ2
0 IN

)−1
k(x∗), (10)

where the elements of k(x∗) ∈ RM and K(X) ∈ RM×M are defined through ki(x∗) =

k(x∗, X(i)) and Kii′(X) = k(X(i), X(i′)), respectively.
To capture the uncertainty of prediction, Yang et al. [17] made the following assump-

tion, and put forward Lemma 3.

Assumption 3. The continuous function f (x) is Lipschitz in x with Lipschitz constant L f to
be a sample obtained from a Gaussian process GP(0, k(x, x′)) with Lipschitz continuous kernel
k : X×X→ R0,+.

Lemma 3 ([17]). For any compact set X ∈ Rm and a probability δ ∈ (0, 1), consider the unknown
function f : X → R, which satisfies Assumption 3, the estimation error ∆τ(x) of the posterior
mean function conditioned on the training data D = {X, Y} is bounded with a certain probability.

P
{

∆τ(x) = | f (x)− µ(x)| ≤
√

β(ρ, δ)σ(x) + γ(ρ), ∀x ∈ X
}
≥ 1− δ, (11)

where

β(ρ, δ) = 2m log
(

rΩ
√

m
2ρ

)
+ 2 log(n)− 2 log(δ), (12)

γ(ρ) =
(

L f + Lµ

)
ρ +

√
β(ρ, δ)Lσ2 ρ, (13)

where ρ ∈ R+ are selected constant, rΩ = maxx,x′∈X ‖x − x′‖, Lµ and Lσ2 are the Lipschitz
constants of the individual GP mean and variance functions, respectively.

4. Problem Formulation

In this section, we consider the corporative tracking control problem of a group of n
fixed-wing UAVs with uncertain dynamics under bounded disturbance.

4.1. Models of Fixed-Wing UAVs

To simplify the dynamic model of UAV, we assume that each UAV flies at the prede-
fined height, then the dynamics of the i-th UAV is described as

ẋi = υi cos θi
ẏi = υi sin θi
υ̇i = ai + fi1(υi, θi) + di1
θ̇i = ωi + fi2(υi, θi) + di2

(14)
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where (xi, yi)
> represents the position of UAV i under initial frame, υi and θ̇i are linear

velocity and angular speed of UAV i, respectively, ui = (ai, ωi)
> is the control input,

fi = ( fi1, fi2)
> is the unknown dynamics of UAV i, and di = (di1, di2)

> is the unknown
disturbance, which is bounded, i.e., ‖di‖ ≤ d.

Remark 1. The unknown dynamics illustrate the model deviation relative to the nominal system.
The function fi is unknown but the function value fi(υ

∗
i , θ∗i ) can be measured. However, the

external disturbance changes in different environment, which requires the robustness of the control
law designed.

Define ξ i = (xi, yi)
>, ζ i = (ẋi, ẏi)

>, then Equation (14) can be transferred into state
function {

ξ̇ i = ζ i
ζ̇ i = Gi(ui + fi + di)

(15)

where

Gi =

[
cos θi −υi sin θi
sin θi υi cos θi

]
.

It is obvious that the matrix Gi is full rank, and ‖Gi‖ = max
{

1,
√

υi
}

.

4.2. Definition of Consensus Tracking Errors

We first define the dynamics of the target vehicle, which can be seen as the leader of
the UAVs. {

ξ̇0 = ζ0
ζ̇0 = f0(t)

(16)

where ξ0 = (x0, y0)
>, ζ0 = (ẋ0, ẏ0)

>, f0(t) are the position, velocity and acceleration of the
target vehicle, respectively.

We define the tracking error between the target and i-th UAV to be

ei = ξ i − ξ0 − ξ i0, (17)

where ξ i0 = (xi0, yi0)
> is the predefined position from UAV i to the target. Then the error

dynamic of i-th UAV is obtained as follows{
ėi = ζ i − ζ0
ëi = Gi(ui + fi + di)− f0

(18)

To achieve the formation of UAVs with the consensus protocol, we define the consen-
sus tracking error for each UAV to be

εi =
n

∑
j=1

aij
(
ξ i − ξ j − ξ ij

)
+ bii(ξ i − ξ0 − ξ i0)

=
n

∑
j=1

aij
(
ei − ej

)
+ biiei,

(19)

where aij is the ij-th entry of the adjacency matrix A of the communication graph among
the UAVs, bii is the ii-th entry of the diagonal matrix B, and ξ ij is the predefined position
from UAV i to UAV j, which can be calculated by ξ ij = ξ i0 − ξ j0.

Control Problem: Consider a group of n UAVs with dynamics Equation (14) and
the target vehicle Equation (16), a distributed control law is to be designed such that the
consensus tracking error for each UAV converges to finite bounds with probability.
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5. Main Results

In this section, we first present an offline regression for the unknown dynamics of
UAVs and illustrate the uniform error bounds for GP regression. Then, a learning-based
control law is designed such that the group of UAVs can track the target vehicle in the
predefined formation. Finally, the stability and robustness of the system are analyzed.

5.1. Offline Regression for Unknown Dynamics of UAVs

As shown in Figure 1, the process of modeling unknown dynamics model is divided
into two steps, including flight testing and model training. Flight testing is to collect
enough data via designing maneuvers [12], while model training is to establish GP model.
It is noting that f ′i1, f ′i2 in the framework contains the disturbance, and we need to minimize
it as much as possible.

Figure 1. The framework of the process of modeling unknown dynamics model.

Assume that we obtain the training data set D = {X, Y} through flight testing before
learning unknown dynamic function fi = ( fi1, fi2)

> of i-th UAV, where

X =
{
(υi, θi)

(1), (υi, θi)
(2), · · · , (υi, θi)

(M)
}

, Y =
{

f (1)i , f (2)i , · · · , f (M)
i

}
. Based on the data

set, we choose Equation (8) as kernel function. According to Bayesian principles, the opti-
mal hyperparameters to the observed data are obtained by maximizing the likelihood [34]

ψ∗ = arg max
ψ

log p(Y | X, ψ),

log p(Y | X, ψ) =
1
2

(
YTKY − log det K −M log(2π)

)
.

where ψ is the set of hyperparameters which need to be optimized.
Then we can make use of Equation (9) to obtain posterior mean function µik(υi, θi),

k = 1, 2, which is the prediction value of fik(υi, θi).
Under Assumption 2 and Assumption 3, one can obtain that the estimation error of

fik(υi, θi) is limited in a certain bound with probability 1− δ

P
{

∆τik = | fik(vi, θi)− µik(vi, θi)| ≤
√

βik(ρ, δ)σik(vi, θi) + γik(ρ), ∀(vi, θi)
T ∈ X

}
≥ 1− δ, (20)

which is the basis of design of robust control law, and provides a premise for the proof of
stability. Figure 2 illustrates the flowchart of the GP regression and its application.
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Figure 2. The flowchart of GP regression and its application.

5.2. Learning-Based Control Law

Assume that the acceleration of the target is available to each UAV, we design the
distributed learning control law as follows

ui = −µi + G−1
i

[
−k1

(
n

∑
j=1

aij
(
ei − ej

)
+ biiei

)
− k2

(
n

∑
j=1

aij
(
ėi − ėj

)
+ bii ėi

)
+ f0

]
, (21)

where k1, k2 > 0 are constants, µi = (µi1, µi2)
> is the posterior mean function of unknown

dynamic function fi = ( fi1, fi2)
> based on GP regression. Then theorem 1 will show the

main result in this paper.

Theorem 1. Consider a group of n UAVs with dynamics Equation (14) and the target vehicle
Equation (16), a distributed control law Equation (21) employing predictions based on GP, will make
the consensus tracking error Equation (19) of each UAV converge to certain bound with probability.

Proof of Theorem 1. The second time derivative of the consensus tracking error εi along
Equation (18) is

ε̈i = ∑n
j=1 aij

(
ëi − ëj

)
+ bii ëi

= ∑n
j=1 aij

[
Gi(ui + fi + di)−Gj

(
uj + f j + dj

)]
+ bii[Gi(ui + fi + di)− f0].

(22)
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Define η1 =
(
ε>1 , ε>2 , · · · ε>n

)> ∈ R2n, η2 =
(
ε̇>1 , ε̇>2 , · · · ε̇>n

)> ∈ R2n, and substitute
Equation (21) into Equation (22), we can rewrite Equation (22) as

ε̈i =
n

∑
j=1

aij
[
−k1

(
εi − εj

)
− k2

(
ε̇i − ε̇j

)]
+ bii(−k1εi − k2ε̇i)

+
n

∑
j=1

aij
[(

Gi( fi − µi)−Gj
(

f j − µj
))

+
(
Gidi −Gjdj

)]
+ bii

[(
Gi( fi − µi)−Gj

(
f j − µj

))
+
(
Gidi −Gjdj

)]
,− k1

(
L̃i ⊗ I2

)
η1 − k2

(
L̃i ⊗ I2

)
η2 +

(
L̃i ⊗ I2

)
∆ +

(
L̃i ⊗ I2

)
H,

(23)

where L̃i is the i-th row of L̃, and

∆ =
(
(G1 f1 −G1µ1)

>, (G2 f2 −G2µ2)
>, · · · (Gn fn −Gnµn)

>
)>

,

H =
(
(G1d1)

>, (G2d2)
>, · · · (Gndn)

>
)>

.

Then we can obtain the differential function of the consensus tracking error:[
η̇1
η̇2

]
=

[
0 In ⊗ I2

−k1 L̃⊗ I2 −k2 L̃⊗ I2

][
η1
η2

]
+

[
0(

L̃⊗ I2
)
∆ +

(
L̃⊗ I2

)
H

]
. (24)

Based on Lemmas 1 and 2, the state matrix

S ,
[

0 In ⊗ I2
−k1 L̃⊗ I2 −k2 L̃⊗ I2

]
=

[
0 In
−k1 L̃ −k2 L̃

]
⊗ I2 ≺ 0. (25)

Define η =
(
η>1 , η>2

)>
and Θ =

[
0(

L̃⊗ I2
)
∆ +

(
L̃⊗ I2

)
H

]
, one can obtain that

‖Θ‖ ≤ 2‖L̃‖
n

∑
i=1
‖Gi‖(‖∆τi‖+ ‖di‖)

Since disturbance di is bounded and estimation error ∆τi , (∆τi1, ∆τi2)
> is bounded

with probability (1− δ)2, ‖Θ‖ is bounded with probability.
Consider a candidate Lyapunov function:

V =
1
2

η>η. (26)

The time derivative of V along Equation (24) is

V̇ = η>(Sη+ Θ). (27)

Define λmax as the largest eigenvalue of the matrix S. Since S ≺ 0, λmax < 0, there
exists a constant, κ > 0, that makes λmax < −κ2 < 0.

Then, one can obtain that

V̇ = η>(Sη+ Θ)
≤
(
λmax + κ2)η>η− κ2η>η+ η>Θ

=
(
λmax + κ2)η>η− ‖κη> − 1

2
Θ>

κ ‖
2
+ 1

4
‖Θ‖2

κ2

≤
(
λmax + κ2)‖η‖2 + 1

4
‖Θ‖2

κ2

= 2
(
λmax + κ2)V + 1

4
‖Θ‖2

κ2 .

(28)
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Since λmax + κ2 < 0, ‖η‖ will converge to a certain bound exponentially with proba-
bility, and the bound of ‖η‖ is ‖Θ‖

κ
√
−2(λmax+κ2)

.

Remark 2. If there exists a data set Dend, such that the estimation error P{| fend − µ| = 0} ≥
1− δ, (0 < δ < 1) [35], and the energy of disturbance is bounded, i.e.,

∫ T
0 ‖H‖2dt < c, ‖η‖ will

converge to zero asymptotically.

Remark 3. If the acceleration of the target is not available, the element f0 in the control law
Equation (21) will be eliminated [36]. It can be considered to be the bounded disturbance and the
stability analysis is the same as the Theorem 1.

6. Simulation Results

In this section, we consider a simulation scenario that four UAVs track the target
vehicle in the predefined formation. The simulation is carried out on a personal computer,
which has 6 CPU cores (Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz), and the simulation
environment is Matlab2020a. fitrap function is used for Gaussian process regression.

The unknown parts of dynamic function are given as follows

fi1(υi, θi) = −0.0035|υi − 13| exp(
√

0.8υi),
fi2(υi, θi) = −0.04

√
υi sin 3θi +

ln υi
υ1.5

i
cos 2θi,

(29)

where i = 1, 2, 3, 4. The 2500 training inputs are equally distributed on the set [8, 20]×
[−π, π], since the velocity of the UAV is subject to some constraints. The labels in the
training pairs are the observed value of Equation (29) with Gaussian noise ς, ς ∼ N (0, 0.03).

The parts of disturbance, di1 and di2, are given as the white noise and bounded noise,
respectively, which account for 2% of control input. The trajectory of the target vehicle is
given as follows

x0(t) = 200 cos 0.07t,
y0(t) = 150 sin 0.07t,

(30)

where (x0, y0) is the position of the target vehicle.
Figure 3 shows interactions among the UAVs and the target vehicle, which is chosen

under Assumption 1. The control gains are chosen to be k1 = 1.5, k2 = 0.5, the diagonal
matrix B = diag{1, 1, 0, 0}, the adjacency matrix A and matrix L̃ are given as follows

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

, L̃ =


3 −1 0 −1
−1 3 −1 0
0 −1 2 1
−1 0 −1 2

.

The whole simulation lasts for 200 seconds, during the simulation, the estimation
error of GP model is bounded, which can be seen in Figure 4. It is noting that Gaussian
noise ς is of great importance in the data learning of GP model, since too much noise would
reduce the reliability of the training data.
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Figure 3. The communication graph of the vehicles.
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Figure 4. Estimation error of GP model.

To visually demonstrate the tracking performance, Figure 5 shows the trajectory of
four UAVs and the target in the three-dimensional plots, where all UAVs track the target
vehicle in the predefined formation. Figure 6 illustrates the consensus tracking error of
each UAV, which is defined in Equation (19). It is noting that the consensus tracking error
of each UAV converges to a certain bound exponentially and the final bounds of error in
two directions are 1 m.
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Figure 5. Trajectories of 4 UAVs and Target vehicle.
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Figure 6. Consensus tracking error of four UAVs.

To show the effectiveness of the proposed method, we consider the other three cases,
which include the case based on NNs model, based on polynomial model and based
on nominal model. We employ a two-layer feed-forward network via Neural Net Fitting
APP in Matlab to train NNs model of unknown dynamic, and the number of hidden
neurons is 5 in the training. The polynomial model is trained via Curve Fitting APP in
Matlab, and the degree of the polynomial is 3. Table 1 demonstrates the RMSE of three
models, among which the RMSE of GP model is minimal. Figure 7 shows the accumulated
consensus tracking errors of 4 UAVs, which are defined as ∑4

i=1 εi,j, where j = 1, 2 denotes
two directions. We can find that the tracking performance based on GP model and NNs
model are almost the same, which are better than that based on polynomial model. The
performance based on nominal model, without considering uncertainty, is the worst.
Although the performance based on GP model and NNs model are almost the same, the
uniform error of GP model can be explained based on Lemma 3.
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Table 1. The RMSE of three models.

fi1 fi2

GP model 0.0285 1.2407e− 04
NNs model 0.0471 0.0232

Polynomial model 0.05425 0.9851
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Figure 7. Accumulated consensus tracking errors of 4 UAVs.

7. Conclusions and Future Work

In this paper, we study a tracking problem of fixed-wing UAVs with uncertain dy-
namic. A group of UAVs needs to track the target vehicle in a predefined formation. We
first establish the data-driven model for uncertain dynamic with the technique of Gaussian
process regression. With the help of the main theorem proposed by Armin Lederer [17],
the uniform error of the model is guaranteed to be bounded with a high probability. Then,
we design a consensus protocol for the tracking control of multi-UAVs, where the bounded
disturbance is considered. The stability of the system is proven via Lyapunov analysis, and
the tracking error is guaranteed to be uniform bounded with a high probability. Finally,
we carry out the numerical simulation. In the simulation scenario, we compare four cases,
including the case based on NNs model, based on polynomial model and based on nominal
model. The results demonstrate that the proposed method is effective and robust.
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Nomenclature
The following abbreviations are used in this manuscript:

xi x position of i-th UAV in the inertial frame
yi y position of i-th UAV in the inertial frame
x0 x position of the target in the inertial frame
y0 y position of the target in the inertial frame
θi heading angle of i-th UAV in the inertial frame
υi velocity of i-th UAV in the inertial frame
G undirected graph to describe the interactions among UAVs
GP Gaussian process
GPR Gaussian process regression
NNs neural networks
UAV unmanned aerial vehicle
DOF degree of freedom
MAS multi-agent systems
RMSE root mean squared error
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