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francesco.schillaci@eli-beams.eu (F.S.); giada.petringa@lns.infn.it (G.P.); D.Margarone@qub.ac.uk (D.M.)
4 Laboratori Nazionali del SUD, Istituto Nazionale di Fisica Nucleare (LNS-INFN), 95125 Catania, Italy;

catalano@lns.infn.it (R.C.); pablo.cirrone@infn.it (G.A.P.C.)
5 Physics and Astronomy Department “E Majorana”, University of Catania, 95125 Catania, Italy
6 Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University of Belfast,

Belfast BT7 1NN, UK
* Correspondence: ming@zhaw.ch

Abstract: ELIMED has been developed and installed at ELI beamlines as a part of the ELIMAIA
beamline to transport, monitor, and use laser-driven ion beams suitable for multidisciplinary ap-
plications, including biomedical ones. This paper aims to investigate the feasibility to perform
radiobiological experiments using laser-accelerated proton beams with intermediate energies (up
to 30 MeV). To reach this goal, we simulate a proton source based on experimental data like the
ones expected to be available in the first phase of ELIMED commissioning by using the G4-ELIMED
application (an application based on the Geant4 toolkit that simulates the full ELIMED beamline).
This allows the study of transmission efficiency and the final characteristics of the proton beam at
the sample irradiation point. The Energy Selector System is used as an active energy modulator
to obtain the desired beam features in a relatively short irradiation time (around 6 min). Further-
more, we demonstrate the capability of the beamline to filter out other ion contaminants, typically
co-accelerated in a laser-plasma environment. These results can be considered as a detailed feasibility
study for the use of ELIMED for various user applications such as radiobiological experiments with
ultrahigh dose rate proton beams.

Keywords: Monte Carlo simulations; Geant4; laser-accelerated ion beams

1. Introduction

High power laser-plasma interaction is a new and innovative approach to produce and
accelerate particle beams [1]. The interaction of ultrahigh laser intensities (>1019 W/cm2)
with a thin (~µm) solid target results in the generation of extremely high magnetic and
electric fields that produce a plasma and relativistic electrons (known as “hot electrons”)
propagating into the vacuum and creating a quasi-static sheath electric field at the target-
vacuum interface. Such a field ionizes the target rear side and accelerates the ions outwards.
The characteristics of the laser-accelerated ion beam will depend on the used laser and
target parameters.

A laser-plasma ion accelerator can be considered as a “multi-color” source where dif-
ferent kinds of ionizing radiations (protons/ions, gamma/X-rays, electrons, and neutrons)
can be produced simultaneously. Additionally, such accelerators are expected to generate
ultra-high dose rate beams, which are orders of magnitude higher than those currently
being proposed for the “FLASH” radiotherapy approach [2,3]. Moreover, a laser-based
approach could potentially reduce the overall size and cost of an accelerator installation.
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In this framework, the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion
Acceleration) beamline [4] at the ELI Beamlines (Extreme Light Infrastructure) Centre aims
to provide ion beams accelerated by high repetition-rate petawatt-class lasers suitable
for multidisciplinary user applications. The two major subsystems of ELIMAIA are the
Ion Accelerator and ELIMED (ELI Beamlines MEDical and multidisciplinary applications)
sections [5,6]. ELIMED, in turn, consists of three main sub-sections: (i) the ion collection
and focusing part, (ii) the ion energy selection, and (iii) the in-air transport section. The
collection and focusing section aims to collimate the laser-accelerated ion beam and re-
duce its peculiar large divergence. This part is made of a set of five Permanent-Magnet
Quadrupoles (PMQs). As described in [7], the PMQs have different lengths (one is 160 mm
long, two are 120 mm, and the other two 80 mm) and a field gradient of around 100 T/m
over a 36 mm magnetic bore. The PMQs are used to properly inject the accelerated particles
downstream into the Energy Selection System (ESS). Hence, the full section from the target
to the first collimator of the chicane is arranged in a way that the matching condition
between collection and selection sections are respected. This means that the drift between
quadrupoles is chosen to keep the emittance and Twiss Parameters within the required
values of the chicane (Table 1). Also, the transport matrix conditions to have a waist on the
horizontal axis and a parallel beam on the vertical axis are respected (it means M12 = 0 and
M44 = 0). The ESS is a chicane made of four laminated resistive dipoles [8]. The technology
used for the laminated yokes of the magnets (98% of packing factor) allows fast changes
(1 Hz) in the magnetic field intensity based on the required ion species, ion energy, and en-
ergy bandwidth. This allows to change the selected ion energy between different shots, i.e.,
the ESS can be used as an active energy modulator. This is a unique feature of the ELIMED
beamline not available at other laser-based accelerator facilities. Downstream of the ESS, a
set of electromagnets (two electromagnetic quadrupoles and two steerers) are available
to allow a final shaping of the particle beam and to correct for systematic misalignments
prior to its final delivery onto the user sample in the in-air dosimetry end-station, which is
separated from the in-vacuum section by a thin kapton window. A detailed description of
the ELIMAIA beamline, along with the ELIMED transport magnetic elements can be found
here [4,6,9].

Table 1. ESS acceptance parameters. The parameters are defined in [8] and summarized here.

Xθx Yθy XY

α 0.8401 0.3556 0.0002
β (mm/π·mrad) 2.7094 2.4484 0.9112

Emit. Norm (rms) π mm·mrad 2.9506 3.9324 24.15 mm2

Xmax Ymax θx, max θy, max

14.97 mm 14.99 mm 8.632 mrad 7.162 mrad

The ion and proton beams transported along ELIMED are characterized and monitored
online in terms of energy, fluence, and spatial profile through a set of in-line detectors [10].
Diamond and silicon carbide detectors are extensively used in a Time-Of-Flight (TOF)
configuration [11,12] to rapidly retrieve the beam energy spectra at different positions
along the beamline. Furthermore, accurate shot-to-shot measurements of the dose released
at the end of the beamline (where the user samples are placed) can be performed. ELIMED’s
absolute dosimetry systems are independent of the ultra-high dose rate (up to 109 Gy/s)
and allow to perform online absolute dose determination with an accuracy better than 5%,
thus satisfying the internationally established clinical requirements [13–15]. The ELIMED
dosimetry system is based on three main devices: (i) a Secondary Electron Monitoring
(SEM), (ii) a Multi-Gap Ionization Chamber (MGIC), and (iii) a Faraday Cup (FC) for
absolute dosimetry. Passive detectors, such as CR39 and radiochromic films (RCF), are
also used to benchmark active ion diagnostic and dosimetry devices. The entire ELIMED
beamline (considering the initial ion source as an input) can be fully simulated using the
developed ELIMED application of the Geant4 Monte Carlo toolkit [16–18].
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In this study, the capability of the G4-ELIMED application was exploited to optimize
the transmission efficiency along the beamline and the dosimetric characteristics of the
final beam. The beamline configuration was optimized to obtain a final beam suitable for
pilot radiobiology experiments by using laser-generated proton beams centered around
20 MeV. A Spread-Out Bragg Peak (SOBP) was generated using the ESS as an active
energy modulator, which was the main aim of this study and at the same time producing a
depth-dose profile similar to the ones required to carry out radiobiological experiments.
Additionally, the removal of unwanted ion species accelerated in the laser-generated
plasma, such as carbon ions, was studied to assure the capability of the beamline to filter
out ion beam contaminants that can be detrimental for accurate dosimetric studies.

2. Materials and Methods
2.1. The G4-ELIMED Application

A dedicated Monte Carlo application has been developed to simulate the full ELIMED
beamline and, in particular, to assess the dosimetric features of the ion beam on the user
sample [16]. The Geant4 (GEometry ANd Tracking) toolkit [19–21], version 10.03, was se-
lected as the most appropriate code for the ELIMED transport and dosimetry beamline sim-
ulation for its robustness, versatility, and reliability of the implemented physical processes.

The G4-ELIMED application realistically reproduces each element of the beamline,
both in terms of geometry and magnetic features; it includes the detectors for the beam
diagnostics and dosimetry (e.g., the SEM detector and the Faraday cup) and allows to
retrieve complementary key information, such as secondary radiation emission along the
beam transport section, ion dose distributions at the irradiated sample, and many others.

Since the ELIMED beamline was designed and realized to work in a wide range
of applications (e.g., radiation chemistry like pulsed radiolysis of water [22,23], nuclear
physics for generation of isotopes for Positron Emission Tomography (PET) [24,25], cultural
heritage using proton activation analysis (PAA) techniques [26], and material science
through radiation stress-tests, including electronics for space application [27,28]), the
beamline setup can be easily modified, thus the simulation tools should support the
exploitation of such beamline modularity. The user-friendly interface of the code allows its
simple use also by non-expert users.

In this work, all the simulations were carried out with 105 initial particles and a
maximum simulation step of 50 µm. These values were chosen to obtain high-quality
results while maintaining a reasonable computational time.

2.2. Source Implementation

Since experimental data from the ELIMAIA-ELIMED source are not available yet,
a realistic experimental source term (based on data from the J-KAREN-P PW-class laser
facility in Japan [29]) was implemented in the simulation. The energy and angular distribu-
tions were based on the data from Dover et al. [30], where they used a laser beam with an
irradiance of 5 ×1021 W·cm−2 and a stainless steel target with a thickness of 5 µm placed
at 450 with respect to the laser direction. On the other hand, the spatial distribution was
assumed to be Gaussian with a standard deviation equal to 10 µm. All the distributions are
presented in Figure 1.
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to the data presented in Dover et al. [30]; (c) Initial position of the protons in the XY plane. 
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Figure 1. Distributions of the implemented source: (a) Initial kinetic energy distribution following
the data presented in Dover et al. [30]; (b) Initial angular distribution. Protons at different energies
have a maximum half-angle between 2.4 (highest energy) and 21 (lowest energy) degrees according
to the data presented in Dover et al. [30]; (c) Initial position of the protons in the XY plane.

2.3. Depth-Dose Profile Generation

Clinical irradiations with ion beams are usually carried out using a Spread-Out Bragg
Peak (or SOBP), i.e., a flat depth dose distribution is needed to uniformly irradiate a
solid tumor.

The SOBP is the result of many beams of different energies and intensities added
up with an appropriate weighting function. Usually, the energy change is done by some
passive energy modulation system (e.g., a wheel modulator [31] or a ridge filter [32]) cou-
pled with additional range shifters. These components are not required along the ELIMED
beamline because the initial energy spectrum of laser-accelerated beams is intrinsically
poly-energetic and the ESS can be used as an active energy modulator.

The only problem with such an approach is that the configuration of the focusing
system needs to be changed to properly inject protons at different kinetic energies into the
ESS. This will increase the time required to perform a certain experiment. For this reason,
only the configurations to focus four different energies (18, 20, 22, and 25 MeV) were
considered in this work. These changes have been calculated keeping the same sequence
of magnets and limiting the displacement as much as possible in order to reduce the time
necessary for repositioning the magnets. In such a way the transmission efficiency is not
optimal, but the full irradiation time is limited to about 6 min. On the other hand, four
setups calculated to maximize the transmission efficiency would require changing the
sequence of the magnets, which means several hours because this operation cannot be
performed under vacuum and involves the manipulation of heavy objects (the weight of
the smaller quadrupole is about 70 kg).

In the simulated configurations, the first and the fourth PMQs have a length equal
to 120 mm and positive polarity, while the second and the third PMQs have a length of
80 mm and negative polarity. The initial positions of the PMQs to transport the different
energies are summarized in Table 2 and the relative distances between elements (D1, D2,
D3, and D4) are clarified in Figure 2 where the generic scheme of the setup is presented.
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Table 2. Initial positions of the four PMQs for the configurations used to focus different energy
beams. The distances are calculated with respect to the position of the source.

Energy (MeV) D1 (mm) D2 (mm) D3 (mm) D4 (mm)

18 56.8 218.4 772.0 901.1
20 60.2 228.3 798.2 924.0
22 59.4 253.1 836.2 956.2
25 61.5 281.7 885.5 1005.5
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Figure 2. Layout of the collection and focusing section configuration. Values of the initial relative
positions of the quadrupoles (D1, D2, D3, and D4) per each energy configuration are given in Table 2.

As mentioned above, the ESS can be used as an active energy modulator. This is
realized by changing the magnetic field, i.e., the current intensity, of the dipoles to select
different energies at different shots. Herein, the magnetic field values used in the energy
selector are 0.243 T, 0.257 T, 0.269 T, and 0.287 T which are the necessary parameters
to obtain protons with energies of 18 MeV, 20 MeV, 22 MeV, and 25 MeV, respectively,
streaming on the reference trajectory. On the other hand, both the energy spread and the
transmission efficiency depend on the aperture of the slit placed in the center of the ESS to
select ions at different kinetic energies. Thus, a slit aperture equal to 30 mm was used to
increase the transmission of protons, except in the 25 MeV case where a 20 mm slit aperture
was used to reduce the energy spread and, hence, the distal fall-off of the SOBP.

2.4. In-Air Configuration of the Beamline

The detectors used for the online beam diagnostic and dosimetry were included in the
simulations to consider the effect that they may introduce into the beam transport section.
A brass scattering foil with a radius of 3 cm and a tantalum in-air collimator with 1.75 and
25 cm of inner and outer radius respectively were added to improve the characteristics
of the final proton beam. To produce a proper SOBP, the thickness of the scattering foil
(used to improve the lateral profiles) was varied between 200 and 320 µm. Furthermore,
the in-air section length was decreased from 200 to 33 cm to reduce the scattering with
the air and the loss of protons, which were important because of the low proton kinetic
energies. A schematic layout of the in-air part configuration is presented in Figure 3.
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Figure 3. Layout of the in-air part of the beamline. The relative distances of the Secondary Electron
Monitor (SEM), the Scattering Foil (SF), the Monitor Chamber (MC), the In-air Collimator, and the
Irradiation Point (IP) are referred with respect to the Kapton Window (KW).

3. Results

Medical applications demand a high control of the beam characteristics. In this
section, several clinically accepted parameters connected to the beam quality [33] were
studied at the irradiation point to verify the capability of using the beamline to perform
radiobiological experiments. The capability of the beamline to filter out unwanted carbon
ions was additionally studied and discussed.

3.1. Lateral Profiles

The lateral profiles represent the relative dose distributions measured along the
transversal axes with respect to the proton beam direction (in our case, the X and Y
axes). To irradiate cells, flat distributions with very sharp lateral penumbras are desirable
to ensure a homogeneous irradiation over all the cells. In this study, to reduce the impact
of the noise produced by a lack of statistics in the quality parameters, the lateral profiles
were normalized to the average value of the signal. The obtained lateral profiles are shown
in Figure 4 and the corresponding beam quality parameters are summarized in Table 3.
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Figure 4. Distributions related with the lateral profiles at the irradiation point: (a) Density of protons
in the XY plane produced by the combination of different energy beams; (b) Normalized lateral dose
profiles on the X-axis obtained by the combination of different energy beams at the irradiation point;
(c) Normalized lateral dose profiles on the Y-axis obtained by the combination of different energy
beams at the irradiation point.
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Table 3. Beam quality parameter tolerances and obtained results of the final lateral dose profiles. The
calculation of quality parameters is defined in detail in [34,35].

Parameter Tolerance X Profile Y Profile

FWHM As close as possible to the
beam diameter 3.57 cm 3.56 cm

Left penumbra ≤1.5 mm 0.85 mm 0.91 mm
Right penumbra ≤1.5 mm 0.82 mm 0.96 mm
Ratio 90%/50% >0.9 0.96 0.95

Flatness ≤3% 4.1% 4.7%
Symmetry 97–103% 101.2% 100.1%

As observed in Table 3, the only parameter which was not falling within the required
tolerances was the flatness. But, as it is observed in Figure 4, the profiles had a certain noise
which was probably generated by a lack of statistics in the simulated proton histories.

3.2. Depth-Dose Profile

The depth-dose profile represents the dose deposited along the beam direction (in our
case, the Z-axis). Herein, as previously mentioned, we tried to reproduce a SOBP with the
combination of four different beam energies. The values of the depth-dose profile quality
parameters are presented in Table 4 and the contribution of each energy together with their
final combination are shown in Figure 5.

Table 4. Beam quality parameter tolerances and obtained results of the final depth-dose profile. The
calculation of quality parameters is defined in detail in [31]. Here, the distal fall-off was defined as
the 80–20% Penumbra.

Parameter Tolerance Result

M95 ≥1 mm 1.96 mm
Distal fall-off <1.5 mm 0.94 mm

Flatness <5% 3.6%

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 12 
 

Table 3. Beam quality parameter tolerances and obtained results of the final lateral dose profiles. 
The calculation of quality parameters is defined in detail in [34,35]. 

Parameter Tolerance X Profile Y Profile 

FWHM 
As close as possible to 

the beam diameter 
3.57 cm 3.56 cm 

Left penumbra ≤1.5 mm 0.85 mm 0.91 mm 
Right penumbra ≤1.5 mm 0.82 mm 0.96 mm 
Ratio 90%/50% >0.9 0.96 0.95 

Flatness ≤3% 4.1% 4.7% 
Symmetry 97%–103% 101.2% 100.1% 

As observed in Table 3, the only parameter which was not falling within the required 
tolerances was the flatness. But, as it is observed in Figure 4, the profiles had a certain 
noise which was probably generated by a lack of statistics in the simulated proton 
histories. 

3.2. Depth-Dose Profile 
The depth-dose profile represents the dose deposited along the beam direction (in 

our case, the Z-axis). Herein, as previously mentioned, we tried to reproduce a SOBP with 
the combination of four different beam energies. The values of the depth-dose profile 
quality parameters are presented in Table 4 and the contribution of each energy together 
with their final combination are shown in Figure 5. 

 
Figure 5. Depth-dose profile obtained at the irradiation point with the contribution of the four 
selected energies: 18 (yellow line), 20 (magenta line), 22 (black line), and 25 (blue line) MeV; while 
the red line corresponds to the combination of all them. 

Table 4. Beam quality parameter tolerances and obtained results of the final depth-dose profile. The 
calculation of quality parameters is defined in detail in [31]. Here, the distal fall-off was defined as 
the 80–20% Penumbra. 

Parameter Tolerance Result 
M95 ≥1 mm 1.96 mm 

Distal fall-off <1.5 mm 0.94 mm 
Flatness <5% 3.6% 

Figure 5. Depth-dose profile obtained at the irradiation point with the contribution of the four
selected energies: 18 (yellow line), 20 (magenta line), 22 (black line), and 25 (blue line) MeV; while
the red line corresponds to the combination of all them.

In this case, all the beam quality parameters were within the tolerances recommended
of the international dosimetry code of practice [33], therefore this depth-dose distribution
would be acceptable for clinically relevant radiobiology irradiation.
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3.3. Transmission Efficiency

Another important aspect to be discussed is the capability of the beamline to efficiently
transport protons around a given energy. The transmission efficiency was defined as the
percentage of transmitted protons within ±10% of the selected kinetic energy (e.g, in the
20 MeV case, we would consider protons with kinetic energy between 18 and 22 MeV). The
transmission efficiencies at diverse positions along the beamline are compiled in Table 5.

Table 5. Transmission efficiency values for different energy configurations and at different points
along the ELIMED beamline.

Energy (MeV) After PMQs (%) After ESS (%) After Kapton
Window (%) Final (%)

18 39 2.93 2.67 0.37
20 42.7 6.38 5.77 0.91
22 37.1 6.56 6.2 0.81
25 34.4 6.31 5.98 0.75

Despite the relatively low transmission efficiency for the given source term [30], it is
important to stress that the low transmission values reported in Table 5 are still acceptable
thanks to the relatively large proton number at the source. Ultimately, considering the
available laser repetition rate, we focus our study on the time required to perform a
sample irradiation experiment, i.e., the time needed to deliver the required dose at the
irradiation point.

In radiobiology experiments, doses of the order of 1–2 Gy are typically required.
Hence, the number of shots necessary to reach a 2 Gy dose level was calculated considering
1010 initial protons in the full energy spectrum (i.e., between 0 and 33 MeV) and the
transmission efficiency of every single energy. A total number of 2812 shots were obtained.
Considering that the L3 HAPLS laser system at ELI Beamlines [36] can deliver PW-class
laser pulses at 10 Hz, approximately 280 s will be needed to reach the required dose on
the user sample. However, this does not consider the time required to change the position
of the PMQs, which was calculated considering a speed of 1 mm/s, thus returning about
110 s. Ultimately, the whole irradiation time is estimated to be approximately 6 min for the
given source term.

3.4. Transmission of Unwanted Ion Species

In all the simulations presented above, only protons were considered. However,
depending on the specific target used to produce the proton beam, some heavier, high-
energy ions may be generated. The presence of such unwanted ion species could be
detrimental for the sample irradiation if they are not properly filtered out by means of the
beamline elements, thus affecting the results of the experiment. Therefore, the heavy-ion
transmission effects must be studied prior to the proton beam irradiation. The transmissions
of carbon ions with different charge states (from C1+ to C6+) were considered at this stage.
Such simulations were performed using a Carbon ion source similar to the proton one, but
with a maximum cut-off energy calculated using the following empirical formula:

En+
cut−o f f = Ep

cut−o f f ·n/2, (1)

where En+
cut−o f f and Ep

cut−o f f = 33 MeV are the maximum cut-off energies for carbon ions
with a charge state equal to n and for protons, respectively.

The simulations were carried out only up to the exit of the ESS where the C1+, C2+, and
C3+ beams were filtered out, while the C4+, C5+, and C6+ beams presented a transmission
over the total initial number of carbon ions of 10−2%, 3 ×10−2% and 5 ×10−2%, respectively.
The simulations could be extended to the whole beamline but, as it is shown in Figure 6, the
maximum kinetic energy after the ESS was around 70 MeV for C5+ ions, and the maximum
range in the air for these ions is around 21 cm (according to ICRU range tables [37]). So,
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these ions would never be able to reach the irradiation point. Therefore, we can conclude
that carbon ions in the given energy range are filtered out in the ELIMED beamline.
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4. Discussion

The presented simulations used a realistic (experimental) high-power laser-accelerated
proton source term as input for modeling its selection and transport. A relatively low
kinetic energy window (centered at 20 MeV) was considered of interest for the pilot, in-
vitro radiobiology experiments at the ELIMAIA-ELIMED beamline. The use of the Energy
Selection System (ESS) as an active energy modulator was proven to be feasible, but it
showed the drawback related to the need to re-positioning the four PMQs to transport
protons with different kinetic energies. However, these changes in the configuration of the
collecting system (PMQs) are not expected to drastically increase the overall irradiation time
(approximately 2 additional minutes), thus it would enable radiobiological irradiations in a
reasonable amount of time (around 6 min). Moreover, it is expected that at higher energies
(around 60 MeV, i.e., already laying in the clinical window) a single configuration of the
beam focusing system would allow a more efficient transport and injection into the ESS,
both for low and high proton energies based on the presence of given resonances [38], thus
potentially shortening the overall sample irradiation time required to create a clinical SOBP.
Finally, it is noteworthy that the experimental source term (laser-driven proton source) can
be improved in terms of total proton flux, thus enhancing the final dose delivered onto the
user sample.

The numerical results presented are promising in terms of final particle beam proper-
ties and demonstrate to fulfill the quality requirements for clinical applications. Further-
more, it was shown that unwanted plasma ion species, such as carbon ions, are properly
filtered out in the ELIMED beamline. Thus, once the experimental characterization of the
proton source at ELIMAIA will be carried out, the ELIMED beamline can be fine-tuned
based on the actual initial proton beam spectral and spatial features at the source, and
ultimately be optimized for pilot radiobiological tests with ultrahigh dose-rate, ultrashort
laser-accelerated beams.
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