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Abstract: This review describes a cloud-based intelligent power management system that uses
analytics as a control signal and processes balance achievement pointer, and describes operator
acknowledgments that must be shared quickly, accurately, and safely. The current study aims to
introduce a conceptual and systematic structure with three main components: demand power (direct
current (DC)-device), power mix between renewable energy (RE) and other power sources, and a
cloud-based power optimization intelligent system. These methods and techniques monitor demand
power (DC-device), load, and power mix between RE and other power sources. Cloud-based power
optimization intelligent systems lead to an optimal power distribution solution that reduces power
consumption or costs. Data has been collected from reliable sources such as Science Direct, IEEE
Xplore, Scopus, Web of Science, Google Scholar, and PubMed. The overall findings of these studies are
visually explained in the proposed conceptual framework through the literature that are considered
to be cloud computing based on storing and running the intelligent systems of power management
and mixing.

Keywords: power management; state of charge; battery aging; dc-device; power consumption;
renewable energy; cloud computing

1. Introduction

In the last decade of industrial progress, the world economy has shifted from cheap en-
ergy to expensive fuel consumption. However, industrialization necessitates an increasing
amount of energy, which is a condition for humanity’s economic prosperity and sustain-
ability [1]. Awareness of the relative constraints of traditional energy resource exhaustion
is essential; however, the restricted energy supply from RE sources is necessary. Thus,
these two factors have not only a two-fold influence on energy and economic development
only, but also on the environment. A cyber-physical system in which electrical components
are controlled by a computer and connected to a network of other computer-controlled
physical equipment is known as a power grid [2]. The power grid includes the move-
ment of electricity and information between the power grid and control centers [3]. Safe
and reliable grid operation requires controlling the energy flow such that the supply and
demand can be well balanced in real-time [4]. It is necessary to ensure that information
flows as intended as any disruption in information flow will affect the correct conduct
of energy flow and the system’s safe and dependable functioning [5,6]. In traditional
power networks, the supply and demand balancing are generally achieved by adjusting the
output of centralized generating units [5]. When consumption rises, the production must
increase to keep up. Similarly, as demand falls, the created production must be reduced [7].
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The power system has witnessed significant modifications in recent years due to the
rapid growth of a distributed generation (DG). DG, unlike centralized generators, are
mostly weather-dependent and hence have limited controllability to meet demand. Due
to their various sizes and network tiers to which they are attached, they also add more
unpredictability to the entire operation [8]. Recent environmental worries about growing
carbon dioxide emissions (CDE), expanding energy needs, and the liberalization of the
electrical industry have drawn the world’s attention to renewable energy technology [9].
Although the integration of intermittent RE generation into electrical power systems is still
relatively new in the evolution of electrical systems, it is popular all over the world due
to its technical advantages such as improved voltage profile, power quality (PQ), voltage
stability, reliability and grid support [8]. According to the modern grid initiative study
from the United States Department of Energy (USDOE), a modern smart grid (SG) must
be capable of self-healing and distributing high-quality power in order to avoid wasting
money due to outages [9].

This study focuses on the uses of a variety of RE sources, including unlimited and
other power sources. Moreover, it focuses on conserving energy and spending it wisely
following its direction and location. Furthermore, reducing costs by using suitable energy
sources depends on prioritizing using a multi-heuristic technique for intelligent power
systems. All these processes and data will be saves and controlled by a cloud computing
framework using a cloud sim. Cloud computing can be a great addition to any system
aiming for an optimal solution for power distribution to reduce cost and waste power
and time.

1.1. Smart Energy Systems

Societies on a global scale have reached a tipping point from fossil fuel power gen-
eration to sustainable alternatives. However, wireless connectivity plays a critical role in
this transformation by enabling innovative smart energy systems (SESs) [9]. SES is a novel
solution, which integrates energy generating and storage technologies with ‘intelligent’
applications, regulating and optimizing their usage. Cloud computing can use combined
multiple energy sources with storage systems to manage them [10]. Furthermore, signif-
icant points to improve SES require real-time performance decisions based on technical
features and climatic data, surplus renewable power generation, and building decentral-
ized energy systems with excellent efficiency and lower cost [11]. In addition, to reduce
rising environmental hazards such as increasing global mean temperature and greenhouse
gas emissions, energy systems are experiencing a rapid transition toward low-carbon intel-
ligent systems [12]. Unlike traditional energy systems, which dispatch various generators
to meet changing demand, future energy systems include two-way energy flows between
providers and consumers and active engagement of customers as prosumers in various
electrical markets [13]. Under the suggested micro-market, not completely controllable
loads were rescheduled by changing specific lectures, research timelines and optimization
by a self-crossover genetic algorithm (GA) [14]. The numerical findings revealed that the
suggested micro-market and algorithm efficiently increased load flexibility and resulted in
increased cost savings for intelligent energy systems [15,16], as shown in Figure 1.
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Figure 1. The schematic illustrates the smart energy system.

1.2. Background

The fast development of power stockpiling has received considerable attention lately [17].
The power stockpiling technique represents a popular system used in the most widely
fixed and portable way [18]. Technique energy distribution consists of production, con-
veyance, allocation, scattered network methods, demand, administration [19]. Modern
gadgets generally include many detectors to regulate and manage process variables di-
rectly. The detectors may recognize and prevent possible system faults. It is impossible to
improve energy management strategies on the future route until accurate information is
available [19]. As a result, the obvious visibility, high detection levels, and improved level
of performance have attracted much interest. Artificial intelligence (AI) has become the
focus of interest, particularly in industrial sectors, for its smart and precise natural deposit
administration [20]. AI integration of fog will vastly improve the range of computing and
execution speed of its base sensors in the industry [21]. However, a significant issue in
using such energy-hungry gadgets, battery aging, and intolerable delays on the portable
appliance is a traditional and inefficient fair distribution of precise natural trends. Demand-
ing power management and control are critical to enhancing safety [20], reliability [17],
performance, and cost [22]. Demanding power management is a choking technique due
to a complicated process that is difficult to observe. Thus, it is a significant method for
managing batteries to concentrate on developing a cloud-based battery for managing bat-
teries based on an intelligent system that employs a machine-learning technique capable of
operating consistently during changing environmental settings [23]. Enhanced freightage
techniques are essential to later development predictions of more intelligent batteries, as
the freightage efficiency has a significant impact on customer approval or rejection [24].
Technology-managing batteries on the cloud are proposed to enhance systems through
enhancing arithmetic power ability, amount of data, and information stored on the internet.
The internet-connected battery data is examined and analyzed and it is highly reliant on
the supervision center framework for computation and connections and uses a cloud-based
application server to assure procedure continuation independent of local infrastructure
access and availability [21]. In addition, the growing demand for electricity worldwide,
the environmental pressures, and the large-scale penetration of intermittent renewable
energy sources (RESs) are compromising the operation of the electricity grid and creating
new technical and economic challenges for network operators [25]. The worrying rise in
power usage, natural pollution, global warming, and the exhaustion of coal and oil sources
is pushing today’s academics to make renewable electricity gathering easier [26]. The
insertion of integrating solar panels in traditional electricity transmission lines has been
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proved fruitful [27]. However, variables such as solar irradiance, coverage of clouds, time
of sunlight hours, and heat in the surroundings wreak havoc on renewable output power
and total energy efficiency, which may be mitigated by combining renewable panels with
energy storage devices [28,29]. The large penetration of solar power can cause significant
voltage swings, through the use of energy storage devices. Solar power with a manageable
energy storage system device also saves money for customers by reducing power consump-
tion [30,31]. The collected information and data are conveyed to the cloud smoothly, which
leads to creating a battery system’s digital twin, as well as the battery analytical techniques
that will evaluate the information and provide insight into the battery-grade level and ag-
ing [18,32]. To explore the advancement of information of data and connection technology,
combining fossil fuels with clean power, and implementing energy management using the
cloud, powered pivot, and gathered loads were used to enhance power economization in a
smart society [24].

2. Smart Grids System

The growing energy demand has led researchers to establish a new energy manage-
ment mechanism or find alternate energy resources [33]. For this purpose, the utility
transforms its infrastructure into intelligent smart grids (SGs) by using bi-directional
communication technologies to make wise decisions [34]. SGs mix electric power and bidi-
rectional communication that supply the end-user with a high-performance and efficient
mechanism by combining integration and communication technologies [35,36]. In this
section, five of the major aspects will be discussed to show the best scope of these systems
based on smart grid benefits, opportunities and components as depicted in Figure 2. These
aspects are demand response (DR), power supply (PS), distributed energy resource (DER),
microgrid trading (MT) and virtual power plants (VPPs) [37].
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2.1. Demand Response (DR)

The world’s most pressing concern today is energy. As a backup generator, fos-
sil fuels are frequently employed, although their production of CO2 affects life and
the environment [38,39]. A novel technique called DR makes virtual generation better
DR [40,41]. Users may program their gadgets using this approach. There are several
issues with traditional smart-grid design (without the cloud) [42], which is the master-slave
design that led to a risk of distributed denial of service (DDoS). However, any error may
cause the entire system to fail [43]. There is a limit on how many clients may serve due to
memory storage limitations, stability, and management [44]. Besides, information and data
management challenges, which millions of intelligent meters necessitate for an effective
method for handling massive amounts of data [45]. Cloud computing may provide a
cost-effective alternative for data analytic and storage methods [46,47]. Recently, the high
insertion of green power, the advancement and implementation of new technology such
as electricity storage methods and electronics technologies, and the effective engagement
of (DR) from the user aspect, the intelligent network is currently succumbing to a deep
change [48]. Customers’/clients’ power consuming routines are changed by DR due to the
current power cost, benefit plans, and whenever the device dependability is threatened [49].
DR’s elastic scheduling may be tailored to customers’ economy and power use goals, that
have been used over time to help business, manufacturing, and housing customers reduce
their power consumption [50]. DR scheduling is classified depending on reward and cost.
These two groups are intertwined, and many of their activities are customized to reach
mutually beneficial objectives [51]. DR is the favored procedure of participation among
clients and the electricity network in the electricity marketing development. In addition
to minimizing the variance among maximum load and maximum valley, the load profile
could be developed; these lead to making the device’s cost cheaper, and to the system pres-
sure being relieved to obtain more money to be invested in raising the load. DR lowers the
price of their energy usage for energy users, impacting their pleasure [52]. The home load
has the highest ability to profoundly alter the requirement peak load amid the weights that
may successfully involve DR [53]. Users may be overseeing and administering personal
electricity using DR services. Consumers are motivated to employ clean power and allocate
energy-saving technologies to conserve electricity, lower personal power costs, and make
money by selling their extra electricity to the system through DR programs [54,55]. It is
essential to provide a reliable, accurate, cost-effective, and safe electricity energy. The above
technological advances should be able to combine the behaviors of many participants,
buyers, suppliers, and prosumers efficiently [56,57]. The demand response procedure’s
success in regulating supply, conservation, call for cooperation, and lowering energy costs
is proven based on a prototype electrical system [58,59]. For instance, the energy informa-
tion administration’s last annual energy outlook study predicted that household power
demand will rise in the next few years [60–62].

2.2. Power Supply

An electrical device transforms electricity (the proper voltage, current, and frequency)
from a source to an electrical load [63]. This section describes the relationship between
power and energy, and their management techniques; as seen in Equation (4) and (5).
Both power and energy are defined in terms of the work that a system accomplishes. It is
critical to understand the distinction between power and energy. A reduction in power
consumption does not always imply a reduction in the amount of energy utilized. For
example, reduce central processing units (CPU) performance by lowering voltage and
frequency led to reduced power consumption. It may take longer to complete the program
execution in this situation. The amount of energy consumed may not be reduced even
with reducing power usage [64]. As explained in the next parts, energy consumption
may decrease through implementing static power management (SPM), dynamic power
management (DPM), or by combining the two solutions and services [65,66]. Furthermore,
electricity consumption may be divided into three categories:
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First: The energy consumed via parts of the system due to leaking electricity in the
supplied technique is called SPM. It is unaffected by clock rates and does not rely on use
situations dictated by the device type and architecture used in the service’s CPU [67].

Second: Dynamic power consumption (DPC): This type of energy usage is caused
by device action and is largely influenced by clock rates, I/O traffic, and the utilization
situation. DPC is caused by two factors: changed capacity and short circuit current [68,69].
To identify basic terms: Charge can be defined as the quantity of electricity responsible
for electric phenomena in Coulombs (C). Current is defined as the passage of electric
signals through a network for each component during a given period, measured in am-
peres (A), which is expressed in Equation (1) [70]. Voltage is the amount of effort or
energy necessary to move an electric charge, measured in volts (V) and expressed in
Equation (2). Power is the system’s rate of work, measured in watts (W), described in
Equation (3). Compute power is the element current multiplied by the element voltage,
expressed in Equation (4). Energy is the entire quantity of tasks finished during a period of
time, measured in watt-hours (WH), described in Equation (5).

a =
∆c
∆t

(1)

where a is ampere, ∆c is change of current and ∆t is change of time.

v =
∆w
∆c

(2)

where v is Volt and ∆w is change of watt and ∆c is change of current.

p =
∆w
∆t

(3)

where p is power, ∆w is change of watt, ∆t is change of time.

P =
∆w
∆t

=
∆c
∆t

∗ ∆w
∆c

= a ∗ v (4)

via derivation and substitution of variables, P = a ∗ v

E = P ∗ ∆t (5)

where E stands for energy, P for power, and ∆t stands for alteration of time.

2.2.1. Battery Management

The battery management is worked from different perspectives, such as automatically
controlling the SoG and the system that maintains battery aging and health. The rest of
the research society considered the authority of the power consumption and reduced the
costs of PS [71]. (GA) [72], particle swarm optimization (PSO) [73], fuzzy logic (FL) [74],
metaheuristic optimization algorithms (MOA) [27], etc. have all been used to preserve
battery life and control the charging process, which includes charging from 20% and
stopping when it reaches 95%. These methods and algorithms use a mix of energy sources
ranging from wind energy, fossil energy, solar energy, and RE [75,76]. However, the focus
is to resolve the issues between battery control and energy supplies used during freightage
(see Figure 3).
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State of Charge (SoC)

A cell (SoC) depicts current capacity as a function of its rated capacity. The SoC’s
value ranges from 0 to 100 percent. The cell is fully loaded if the SoC is 100 percent,
whereas an SoC of zero percent shows that the cell is entirely discharged [77]. In practical
applications, the percentage or level that defines the start or end of the charging process is
varied according to the charging system, whether it is manual or automatic. The beginning
SoC is assigned as 0% and target charging SoC as 80% to compare improvements. In the
same study, the optimal charging current series for 0–80% SoC with different setting time
had charging times that ranged from 1 to 3 h, with a step of 0.5 h. Knowing the battery
beginning SoC, the target SoC, and the charging time, it has been found that the current
charging command can be easily calculated by the database-based method. Compared with
the constant current charging strategy, the proposed method can effectively decrease the
charging loss [72]. Furthermore, electrochemical techniques and post-mortem examination
allowed the samples kept at 30%, 60%, and 100% SoC and 55 ◦C to be comprehensively
examined. It was determined that the most severe capacity fading occurred when the
batteries were kept at 55 degrees Celsius and 100% SoC [78]. In addition, higher stored SoC
resulted in a more substantial rise in bulk resistance (Rb) and charge–transfer resistance
(Rct) of a full battery at 55 ◦C. Still, the discharge rate capability of the stored battery
remained unchanged [73]. Furthermore, higher stored SoC resulted in a more substantial
rise in bulk resistance (Rb) and charge–transfer resistance (Rct) of a full battery at 55 ◦C. Still,
the discharge rate capability of the stored battery remained unchanged [78]. However, the
minimum SoC in the study never fell below 20% to avoid reducing battery life. Therefore,
there was always 20% energy in the batteries in this study [73]. Factors such as charge,
discharge rate, and charging/discharging hours played a significant role in correcting
the load characteristic of the grid, and the islanded micro-grid was the optimal operation
of energy systems [73]. The numerical simulations were used to evaluate the system’s
net savings for various SoC settings in the control strategy. Considering expanding data
samples, the proposed approximate dynamic programming approach beat the classic
dynamic programming approach [79]. The proposed approximate dynamic programming
approach for microgrid power system optimization problems is a computationally efficient
tool [80,81] (Figure 4).
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Battery Life

Determining battery aging is a crucial issue to predict the available charge in battery-
operated systems [82]. According to the literature, the batteries were charged and dis-
charged in 5 h to produce a 5 kilowatt (KW) average, while the battery life was anticipated
to be around ten years [73]. In comparison to the standard charging method, the results
showed that the multi-stage constant current charging technique could significantly reduce
charging time by 56.8%, extend battery life by 21%, and enhance energy efficiency by
roughly 0.4 percent of constant current and constant voltage [83]. Moreover, we used four
cells for experiments to ensure the consistency of the results and to reduce the effect of
the cell-to-cell variations [84]. The cells were new and uncycled and stored in a thermally
managed storage chamber at 10 ◦C at 50% SoC before experiments to minimize their calen-
dar aging [84]. In addition, different temperatures, charge–discharge rates, and the depth
of discharge can give rise to the evolution of the dominant aging reactions that can offer
guidance in selecting a reasonable factor range when designing accelerated aging tests [85].
However, the autoregressive recurrent Gaussian process regression (GPR), which considers
current and historical voltage, current, and temperature measurements, as well as the
prior SoC estimate, increased the estimation performance [86]. In addition, this battery
management system (BMS) with FL controller method improved the battery’s function
and life [87].

Power Consumption

Reducing energy costs is another subject in battery management, as many researchers
considered reducing power consumption in their studies. The electricity needed to operate
the system is not produced by the deployed MG system [88]. Therefore, a sizing method
based on the system’s consumption profile and the site’s weather conditions was introduced
to upgrade the MG system to produce the total electricity needed by the load [89]. Moreover,
they found that integration of a photovoltaic system leads to the reduced economic viability
of the battery by reducing the revenues generated by the battery while performing peak
shaving [89]. In addition, we proposed a scheme that creates three clusters of various
objective functions to coordinate charging and discharging cycles; the first cluster uses time
of use tariffs to reduce grid-integrated energy storage batteries (GIESBs) power charging
costs. The second cluster uses per-unit generation from photovoltaics (PVs) and wind
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turbines (WTs) to reduce GIESBs charging power. The third cluster, however, reduces the
GIE’s discharge capacity [90].

2.2.2. Renewable Energy (RE)

Integrating RE with other power sources is considered to achieve many objectives:
(1) reduce the carbon footprint; (2) reduce costs of power consumption [91]. This selection
must assure user safety, efficiency, and cost savings for a given application. As a result,
criteria such as power consumption, application deployment area, cable size, and line
transmission losses are considered. This method was used to create a 48 V DC bus in a
small-scale laboratory system with minimal power usage [91]. Furthermore, an electric
bus management system (EBMS) considers variables that may have an impact on distri-
bution network or bus efficiency, such as the power tariff. To counteract the negative
effects of opportunity charging systems, RE-based charging stations can be installed. The
number of possibilities for configuring connections to be lowered during the hours of
22:00–23:00 h, encourages discussion about linked DC motor load with wind and solar
power-based hybrid power systems based on a simulated outcome [92]. A battery-based
energy storage system is used to control the excess power generation to maximize the
utilization of these energy sources based on the required load [93]. The switching transients
of renewable sources and batteries do not affect DC motor speed (load), and hence constant
output power as per requirement is available. The adaptability of artificial neural networks
(ANNs) allows the system to be tested in a different scenario. The controller can be trained
for any change in the signal. The training accuracy is 94% [94]. It will also require city utility
authorities combining novel grid elements on the Internet of RE domain in order to actual-
ize a sustainable, transformed smart city. In the future, power business, pure renewable
electricity grid structural assets, and Internet of RE technology will become increasingly
valued [95]. The primary motivation for this expected paradigm shift toward renewable
power grids on the Internet is to manage electricity storage [96]. The cross-cutting na-
ture of solely renewable electricity grid architecture on the Internet of RE platforms and
intelligent city elements will help shape future environmentally friendly towns [94]. En-
ergy management systems (EMS) for various RESs target small DC grids for remote rural
communities with unstable load conditions [97].The technology can be used to electrify
rural settlements with the greatest possible use of RESs and storage devices. The power
dissipates to the consumer through maximum RE penetration and batteries throughout
the day without any divergence in the system, according to simulation and experimental
investigations of the DC micro-grid with the suggested EMS [97]. Micro-grid implementa-
tion is a viable method for improving supply quality while lowering sustainable energy
implementation costs.

For a hybrid micro-grid (HMG), a control scheme presents a structure for ensuring
continuous PS to consumers in fifteen different modes of operation. PV, fuel cells, wind, and
battery storage with configurable characteristics that were all investigated. The supervisory
controller sets the reference values for the generation subsystems using the state machine
approach by following a predetermined path. The discrepancy between the generated and
demanded power, as well as SoC, are considered by the fuzzy controller during charging
and discharging battery banks. As a result, in order to obtain the best system configuration
and component sizing by defining objective functions for energy cost and power loss
probability, the multi-objective particle swarm optimization (MOPSO) methodology was
utilized. The modeling findings show an increase in the price of electricity, which leads
to a significant increase in the use of HMG based on renewable resources. As a result,
harnessing renewable resources to create electric power in India’s remote places is a viable
option [98]. Based on the literature, algorithms of battery management, RE, and cloud
computing are summarized in Tables 1 and 2.
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Table 1. Summary of the literature algorithms of battery management, renewable energy, and cloud computing.

Category Algorithm & Tools Battery Categories Ref.

Battery Management

Constant current/Constant voltage
(CC/CV)

Several types of batteries,
Lithium-ion Battery [99,100]

Arbitrage optimization algorithm

Non-Available
(NA)

[22,27,101,102]

CubeSat battery algorithm (CubeSat)

Maximum efficiency tracking (MEET)

MOA

First access first charge (FAFC)
scheduling

Lithium-ion Battery

Flat feeder profile

[72,103,104]
(GA)

JAYA algorithm

Pontryagin’s minimum principle
(PMP)

PSO Electric vehicles batteries,
Lithium-ion Battery [28,73,75]

Orthogonal least squares algorithm Lithium-ion Battery [86]

MATLAB algorithm Variety of batteries [105]

Liquid cold plate control equation LiFePO4 battery [106]

Stochastic algorithm Electric vehicles batteries [107]

Renewable energy

(GA)
NA [108,109]

Markov decision process (MDP)

Levenberg–Marquardt algorithm
(LMA)

Several of batteries [110]Gaussian algorithm

Forgetting factor algorithm

Trust-region reflective

Cloud Computing

BMS-Master and BMS-Slave Lithium-ion and
lead-acid batteries [18]

The home energy management
system (HEMS) Electric vehicles batteries

[111,112]
Branch and bound algorithm

NA
Smart home energy management

system (SHEMS)
[113,114]Energy-performance trade-off multi

resource cloud task scheduling
algorithm (ETMCTSA)
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Table 2. Assessment and analysis of the literature studies for battery management (BM), renewable energy (RE), and cloud
computing (CC).

Tools/Algorithm Achievement
Implementation

Ref.BM
Dc-Device RE CC

Constant current
(CC)/constant
voltage (CV)

Reduce the number of battery chargers to
Improvements battery charging and management. � × × [99]

GA Propose a new charging algorithm to reducing the
charge energy and loss. � × × [72]

MEET algorithm
Three types of battery energy storage systems

(BESSs) were used to improve the system’s
availability and energy efficiency.

� × × [102]

Orthogonal least
squares algorithm

Provide a feature stemming from (GPR) for deduces
the unknown SoC value’s probability allocation � × × [86]

Scheduling algorithm
The numerical analysis illustrates adaptive resonant
beam charging (ARBC) led to 61% battery charging

energy and 53–60% supplied power.
� × × [22]

GA
used optimum charging methods are reduced

charge times, performance improved, and extended
battery life

� × × [83]

MATLAB algorithm
The sorting and cumulative voltage summation

(SCVS) was shown to perform the best through the
solar energy option of charging the battery.

� × × [105]

PSO developed based
on standard IEEE
69-Buses network

A hybrid approach uses to manage the electric
vehicle charging station (EVCS) to peak shaving and

the most efficient charging/discharging of EVs
applied to a standard network (IEEE 69 buses).

� × × [73]

PSO Scheduling controllers can reduce the power
consumption and costs of grids. � × × [28]

Arbitrage optimization
algorithm

A battery energy storage system (BESS) capable of
discharging for 1.5–2 h at maximum power and
provides quick response and energy arbitrage.

� × × [115]

CubeSat battery
algorithm

Choosing electric power system (EPS) architectural
converters for solar panels and unregulated dc-bus

have the maximum efficiency.
� × × [101]

MOA
A double-layer metaheuristic optimizer provides a

novel stochastic technique for optimizing solar
hosting capacity in distribution networks.

� × × [27]

Stochastic algorithm
Propose a simple statistical model to breaking a

battery energy storage system up into minor
segments that lead to significant increases.

� × × [107]

JAYA algorithm
Compact and optimized SOC estimating model for

statistical error values such as SOC error used to
validate the model’s performance.

� × × [104]

NA Reduce the amount of data sent by extracting
features voltage descriptive. � × × [116]

NA
Clean electric power using information and

communication technology (ICT), the user can
monitor the load, battery, and panel current.

� � × [117]

GA

The household load control system that included
(RESs) led to lowered cost of electricity from (228 to
51) USD and the peak-to-average ratio (PAR) from

2.68 to 1.12.

× � × [108]

LMA, Gaussian
algorithm and
Trust-Region

Reflective Algorithm
(TRRA)

Established microgrid system for testing and
simulation, focusing on dimensioning and control
techniques, the residue discovered less than 5%.

� � × [110]
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Table 2. Cont.

Tools/Algorithm Achievement
Implementation

Ref.BM
Dc-Device RE CC

(SHEMS)
The smart monitoring and control system preserves

and manipulates data from the PV, wind energy
conversion system (WECS), and batteries.

� � × [113]

Branch and bound
algorithm

Propose an energy-efficient approach that can
operate in an online fashion ANN-based approach

outperforms all benchmarks.
× × � [111]

BMS-Master and
BMS-Slave

Propose a cloud control strategy to enhance the
analytical electrical energy and information storage

in the cloud using lithium-ion and
lead-acid batteries.

� × � [18]

NA
Propose a closed-loop program for an effective

management strategy for lithium-ion batteries by
concurrently changing factors.

� × � [118]

ETMCTSA

Propose the energy-efficient hybrid (EEH) scheme
for increasing electrical energy consumption

efficiency using a single strategy to minimize energy
usage in terms of power use effectiveness (PUE) and

data center energy productivity (DCEP).

× × � [114]

NA

Design embedded network platform using smart
sensor gadgets with telecommunication functions

and molecular channel systems to maintain
battery health.

× × � [119]

Optimization
algorithm of
the HEMS

The combine between a smart thermostat and
(HEMSs) a 53.2 percent decrease in daily costs is

obtained (TOU)
× × � [112]

2.3. Distributed Energy Resource

DER are energy generating and storage systems that supply power where required.
DER systems, which produce less than 10 megawatts (MWs) of power, may generally
be scaled to fit your specific needs and can be installed on-site. Therefore, one single
source is limited and can probably be costly, whereas to achieve efficient energy storage, a
combination of all technologies is required. Power conversion systems for storage purposes
must also be considered [120]. This is required to increase their control and dependability,
as well as to ensure that storage systems are properly integrated into power networks [121].
A next-generation SG without energy storage is similar to a computer without a hard drive—
severely limited [122]. A suitable EMS is required to obtain the optimum performance for
clusters of distributed energy resources (DERs). The multi-agent systems (MASs) paradigm,
as utilized and described, may be used to organize distributed control methods [123]. Some
of the benefits of employing MASs for successful, intelligent grid operation in the energy
market are discussed in [124,125]. The MAS application reduces the overall cost of power
system production, integrated microgrids, comprised dispersed resources, and lumped
loads [126]. To maximize the hybrid RE production system’s economic performance and
energy quality, a hybrid immune-system-based PSO was presented and applied to reduce
fuel cost in the generating process [126].

Conversely, the distribution system operator (DSO) can dispatch at least a portion of
the DERs; implementation of a coordinated integration of the various DERs recommends
a centralized method. The best operating strategy of the DER system is generally ana-
lyzed by using a multi-objective linear programming methodology in centralized control
methods [127]. The combination of the energy costs with the reduction of environmen-
tal effects suggest reducing operational costs, including energy losses, curtailed energy,
reactive support, and shed energy [128,129]. Additionally implemented is a two-stage
short-term scheduling process. The first task is to create a day-ahead scheduler to optimize
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DER production for the next day. In the second step, an intra-day scheduler that modifies
scheduling every 15 min is also proposed, which considers the distribution network’s
operation needs and restrictions, as shown in Figure 5 [130].
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2.4. Microgrid Trading

Microgrids are small-scale power networks that provide a more flexible and reliable
energy distribution in limited geographic regions [131]. For fulfilling local demands, they
generally use DERs such as distributed generating units and energy storage facilities. As
a result, they can minimize dependency on the traditional centralized power grid (also
known as a microgrid or primary grid in power system literature) that generally relies on
massive central station generation [132]. Besides, the environmental benefits of using locally
accessible RESs such as solar panels, fuel cells, or WTs also have economic benefits because
if DERs and loads are physically close together, microgrids can minimize transmission
and distribution losses [133–135]. A microgrid system was used to maintain the energy
arbitrage, balance, reserve frequency regulation and transmission-level for voltage control,
investment deferral, grid capacity support at the distribution level, time-of-use (TOU)
cost management, etc. [136–138]. Furthermore, it considered as a detection device from
the connected grid and operate autonomously in island mode if technical or economic
situations demand, which is considered as local energy in the surrounding area [139].
Power delivery from a distance is inefficient because part of the electricity—as much as 8%
to 15%—evaporates in route. A microgrid solves this inefficiency by generating power close
to the people it serves; the generators are either nearby or within [140,141]. A microgrid
system warrants research attention for several reasons: first, it is local, making electricity
close to the people you serve; generators are near or within the building or on the roof
in solar panels. The tiny network addresses inefficiencies in significant networks, which
lose energy during transmission from producing units to transmission and distribution
lines across vast distances. Second, it is independent and can be disconnected from the
primary grid and run on its own. When the electrical system goes down due to a storm or
other disaster, they must deliver power to their consumers. Third, the generators, batteries,
and surrounding building energy systems are all controlled by microgrid intelligence. In
addition, the controller coordinates a variety of resources in order to meet the energy goals
of the microgrid’s consumers, which can be searching for the cheapest energy, the cleanest
energy, the most reliable electricity, or something else entirely. The controller accomplishes
these objectives by raising or decreasing any of the microgrid’s resources or combinations
of those resources for optimum impact, as shown in Figure 6 [142].
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2.5. Virtual Power Plants (VPPs)

Electrical energy has a significant impact on people’s lives all around the world. As
the demand for electricity grew, the power infrastructure and the global environment
were placed under additional strain [143,144]. Buildings are a substantial producer of
greenhouse gases (GHGs) [145,146]. An effective EMS is required to address the fast in-
crease in demand [147]. Furthermore, several nations have committed to submitting an
annual GHG emission reduction plan under the Paris agreement, making the use of (RESs)
essential [148,149]. Due to the network’s new topology RESs, traditional EMSs are no longer
effective. In order to aggregate and accommodate RESs while considering geographic dis-
tribution and uncertainties, an optimal scheduling algorithm must be developed [150,151].
The VPP concept is one of the most promising and practical energy management solutions,
allowing for unique features by integrating embedded technology and communication net-
works into the energy system. Despite the fact that Awerbuch and Preston proposed VPP
in 1997, there is still no clear description for the VPP [152]. From a variety of perspectives,
VPPs have been proposed in the literature. At the same time, the usual inclination is to
aggregate DERs for energy management purposes [146]. Many research has concentrated
on business and marketing factors [153]. Other publications, however, have emphasized
technological viewpoints such as Internet of energy (IoE) [154], EMS [155], combination
of RESs [156], an independent microgrid [110], or a data and connection system [117]. A
trading platform used by DERs to make wholesale market contracts is known as VPP. VPP
is a DER aggregator that considers the impact of the network on their output [157]. VPP
is a control system for DERs, flexible loads, and storage that is defined as an information
and communication system. According to the investigation, a VPP is a collection of DERs,
controllable loads, and storage units combined to operate as a single power plant, with an
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EMS at its core [158]. VPP is defined as an aggregation of several DERs distributed at the
distribution network’s medium voltage (MV) level [159].

In general, several solutions have been presented in recent years to overcome the afore-
mentioned difficulties. The VPP concept is one of the most promising energy management
concepts, allowing for unique features through the integration of embedded technologies
and communication networks into the energy system. VPP uses a bidirectional energy
flow to provide real-time monitoring and energy efficiency. As a result, they were able to
exchange their excess electrical energy on the market without the involvement of a third
party [160]. Prosumers, conversely, who install any small-scale RES, or storage (batteries)
can trade because the scheduling algorithm maximizes their surplus energy. Customers
without RES or storage can also contribute by moving loads, trimming peaks, and filling
valleys, among other things. Lastly, through enhancing operating planning, VPP may
conform with power administration rules [161,162], as well as the five main areas that best
illustrate the scope of the intelligent grids system, such as DR, PS, DER, MT and VPPs, as
shown in Table 3.

Table 3. Main scope of the smart grids system.

Main Scope Description

Demand Response
A novel technique makes virtual generation better. Users may program their gadgets for

interaction with the power grid to improve load profile, and user power usage costs should
be reduced without compromising their pleasure.

Power supply An electrical device transforms electric current from a source to the proper voltage, current,
and frequency to power an electrical load.

Distributed Energy Resource Systems for producing and storing energy for efficient storage and production that distributes
electricity where it is needed.

Microgrid Trading

Small-scale power networks provide more flexible and reliable energy distribution in limited
geographic regions for fulfilling local demands. As a result, it can minimize dependency on
the centralized power grid by detaching and operate autonomously to reduce transmission,

distribution losses, energy arbitrage, balance.

Virtual Power Plants
It is the most important future solution that can be applied in energy management, and

integrating systems and networks into the energy system is a system of telecommunication
and information that controls DERs, loads that are adaptable, and storage.

3. Cloud Computing

Cloud computing is an useful computing paradigm that provides on-demand access
to facilities and shared resources over the Internet [163]. Infrastructure as a service (IaaS),
platform as a service (PaaS), and service as a service (SaaS) are three notable services it
offers, while storage, virtualization, computing and networking are supported [164,165].
Implementing cloud computing applications is a top priority, especially in today’s environ-
ment, for things such as providing appropriate financing for social services and purchasing
programs. Grids are geographically distributed platforms for computation. They provide
high computational power and merge extremely heterogeneous physical resources into
a single virtual resource [166,167]. Grid computing is a set of resources; the primary re-
source is the central processing unit (CPU), which is mainly used to perform massive and
complicated calculations. Cloud computing technology is used by the majority of existing
information technology (IT)-based enterprises. Cloud computing is a rapidly evolving
technology, and companies are constantly adding new services to their cloud environments
to stay competitive and fulfill customers’ expanding demands [168]. Furthermore, many
different organizations are moving their IT-based systems to cloud-based models [169].
Customers can use cloud computing resources in the form of virtual machines (VMs) that
are deployed and run-in data centers. The data centers are composed of several physical
servers, each with its own set of resources [114]. The cloud computing ecosystem for energy
management is described in Figure 7.
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3.1. Cloud Computing and Storage of Data

The IaaS model of cloud computing provides consumers with storage services. People
have begun to save their data on clouds due to the large storage capacity [170,171]. Through
virtualization, the issues around the storage of user data IoT applications can be solved by
providing storage, processing, and networking resources [172]. In mission development,
two-measure CPU usage and storage capacity are the best typical capabilities of the cloud
to reduce local storage overheads [173]. These parameters’ significance may minimize
computation cost, communication, CPU usage reduction, and battery and data redundancy
elimination in terms of storage and computing by performing task scheduling. Research
on storage techniques has gained momentum due to the significant advantages of quick
storage services in the cloud. Still, these techniques have specific challenges because there
is a higher demand for quick access and secure storage. Cisco predicts, that by 2021, cloud
computing systems will account for around 94 percent of all computing. Furthermore, by
2025, the size of data created and altered is expected to reach 175 zettabytes, according
to International Data Corporation (IDC) [174]. The aforementioned necessitates cloud
suppliers to establishing and simplifying additional services [114,169].

3.2. Cloud Computing and Software Services

Cloud computing using virtualization technology offers end-users computational
resources, on-demand resources, flexibility, dependability, dynamism, scalability, and bet-
ter availability wherever and at any time, which are examples of different services [175].
Elasticity is one of the keys characteristics of cloud computing, which refers to the system’s
capacity to respond to changes in workload [176]. Cloud services are now employed
in most applications via the internet, which has become the contemporary economy’s
backbone. As a result, resource scheduling has become a hot topic in the cloud because
ineffective scheduling techniques can lead to a variety of issues, including long compu-
tation times, reduced profit, poorer throughput, higher cost, and inappropriate resource
usage, which are all examples of an uneven workload at resources (over-utilization or
under-utilization) [177]. Resource usage in cloud computing is directly related to power
consumption when resources are not used properly (over-utilization or under-utilization)
due to high processing demand from end users and no service delays from the cloud.
Integrating energy-sensitive servers has become a popular topic in the cloud world [178].
Therefore, future research is required to address the challenges and meet end-user demand
within a reasonable timeframe. Reducing power consumption by switching underused
hosts to sleep or hibernation without violating service level agreements (SLAs), which are
digital contracts between end users and cloud services, ensures quality of service while
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resources are ready. Therefore, several energy-conscious server integration methods have
been proposed in the last decade [179]. Either of the two scenarios is intended to achieve
server consolidation. Most of the suggested scheduling methods must strive toward greater
resource utilization and energy efficiency. However, most available algorithms are still in
their infancy due to constraints [180]. Most algorithms focus on a single parameter (energy)
and ignore other factors such as cost, reaction time, elasticity during run time, etc. [181].

3.3. Cloud Computing and Energy Savings

Local or green power sources are considered an excellent method to conserve energy
at a data center by locating it near where the electricity is generated to reduce transmis-
sion losses [182]. Shutdown, hibernation, and sending in various low-power stages are
examples of cloud computing approaches. At the same time, cloud computer energy
consumption should be managed to optimize energy consumption for a specific computing
task. When it comes to reducing energy usage per unit of work, cloud computing is a more
energy-efficient option [183]. According to studies, employing the cloud might result in a
38 percent reduction in global data center energy expenditures by 2020, but a 31 per-
cent reduction in data center power usage (from 201.8 terawatt-hours (TWh) in 2010 to
139.8 (TWh) in 2020). According to another report [183], cloud computing might help
businesses save billions of dollars on their energy expenses. This equates to a reduction in
carbon emissions of millions of metric tons each year [184].

3.4. Cloud Computers as VPPs

A VPP is a network of multiple tiny power stations (a cluster of dispersed generation
facilities, such as microchips, WTs, small hydro, backup gensets, etc.) that operate as if they
are one power unit [185]. There is a necessity to check the cloud computing entity linked to
the power network in multiple locations, frequently given by several suppliers, connected
to different distributors, and operating in multiple countries at the same time [186]. Energy
consumption can be managed with specialist software designed for cloud computers
and based on the VPP concept; generators are seen as resources and flexible users in
the same way that cloud computers are [187]. Furthermore, the cloud computer is a
potentially adaptable consumer. The cloud computer software already aggregates and
controls its consumption; therefore, it performs the function of a VPP [187]. Existing cloud
systems as consumers and energy systems as producers are separate systems that typically
operate in parallel with little cooperation during one-way PS. To attain higher overall
performance, such parallel networks require more complicated interaction [188]. The load
provided by cloud computer centers provides a reliable picture of consumption demand.
This energy storage device is an effective way for owners to reduce electric power prices
while also reducing demand on the power grid [189]. The SG should be sensitive to the
electricity system’s present load. The computational cost of methods to minimize power
consumption is determined by the required delay and the amount of load to be reduced.
These application execution and scheduling models will need to account for cloud resource
availability [190,191]. This strategy could include launching more VMs as demand for
power rises, or expanding cumulative bandwidth capacity to handle a higher sampling
rate of streaming data [185].

4. Big Data

With the increased use of numerous digital devices that generate heterogeneous, struc-
tured, or unstructured data in recent years, the volume of data has exploded, culminating
in what is now known as huge data [192]. Traditional database systems have proven
inefficient when it comes to storing, processing, and analyzing large amounts of data [193].
As a result, handling big data is a critical component of business and management ri-
valry. Nonetheless, it has posed a new challenge for both science and industry in terms
of information and communication technologies, driving the development of data-centric
architectures and operational models [194,195].
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Since normal tools and methods are not built to manage such huge data quantities, the
emergence of big data has highlighted a serious management dilemma [196]. At the same
time, conventional infrastructures are unable to meet the distributed computational needs
of managing vast amounts and types of data. This is owing to the increasing number and
complexity of data sets, as well as their volatility, which makes processing and analysis
difficult to perform using standard data management approaches and technology [197].
Current infrastructure struggles to keep up with massive amounts of data, yet it is a difficult
task [198]. The current methods and technology for handling big data management issues
place a premium on volume, variety, and pace [199].

Moreover, big data comprise complex data that are massively produced and managed
in geographically dispersed repositories [200]. To handle enormous data difficulties, in-
novative management strategies and technologies are motivated by this complexity [201].
Although there have been several studies on giant data management, none have been
thoroughly investigated. Giant data mechanisms are summarized in Figure 8.
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4.1. Big Data in Smart Grid

An intelligent grid architecture model includes a framework from three dimensions
that combines layers, zones, and in the realms of generation, transmission, distribution,
DER, and customer premises, there are several domains to evaluate a SG [202]. An energy
network with an embedded information layer generates a large amount of data in the grid,
such as measurement techniques and monitoring instructions, which must be collected,
transmitted, stored, and analyzed quickly and comprehensively [203]. The data analysis
platform also presented several opportunities and difficulties [202,204]. The massive data
characteristics in SG in many studies are consistent with the widespread 5 V vast data
paradigm as shown in the Table 4 [205,206].

Table 4. Main features of big data in smart grids as revealed.

Features of Big Data Description

Volume
Smart meters and advanced sensor technologies are becoming more widely used in the SG generates
a tremendous quantity of data. As a result, standard database technology can’t store or interpret data

sets that are too big.

Velocity The rate at which new data are created and moved while the demand for real-time data sharing is
growing and posing a new issue.

Variety Words, digital images, detector data, and video are examples of unstructured data that may be
integrated with typical structured data utilizing big data technology.

Veracity
The messiness and trustworthiness of the data. The effective management of the electricity system is
based on data analysis and state estimate. Therefore, the data transfer faults or devices and a large
amount of big data lead to problems in the data analysis results, as well as measurement mistakes.

Virtual The capability to draw out important data from massive amounts of data while maintaining a clear
sense of its worth. Big data makes obtaining valuable information harder.

4.1.1. Data Sources in Smart Grids

SGs, similar to intelligent energy and information system, have a variety of data
sources. Data is collected from sub-stations, distribution switch stations, and power
meters [207]. In addition, nonelectrical data such as trade, economic data, etc. are included
in the information source. For power plant scheduling, subsystem functioning, essential
power equipment maintenance, marketing business behavior, data collecting and analysis
are considered critical [208]. Measurement, business, and outer data are the three types
of data sources described above [209]. Most power system operating characteristics are
assessed using installed sensors and smart meters that offer data on the system’s present
and historical condition [210]. Social activity such as carnivals and weather conditions are
examples of data from outside sources that cannot be monitored by smart meters, yet still
affect the work and design of the electricity system. The data for business mainly consist of
trading techniques and customer demand [211].

4.1.2. Techniques Collecting Data in Smart Grids

The intelligent grid collects and sends data from intelligent meters, providing energy
information to all companies and customers [212]. The amount of intelligent meter readings
for residential customers is anticipated to increase from 24 million per year to 220 million
per day for a prominent utility provider [210]. In high voltage (HV)/MV transformers
for voltage control, the present magnitude data is required for the automated on-load tap
changer [213]. A standard intelligent meter measures voltage at the node, current at the
feeder, load conditions, reactive power flow, and energies over time, complete concord
alteration, and load up demand and among other things [214].
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4.1.3. Techniques Transmission Data in Smart Grids

The smart grid’s foundation communication is divided into home space networks,
district space networks, and wide-space networks [215,216]. The most common forms of
communication methods for intelligent meters are wired and wireless infrastructures [217].
The technique of wireless connectivity allows acquiring measurement data from intelligent
meters at low prices and simple interfaces while the data center may encounter a magnetic
challenge [218].

4.2. Data Analysis Techniques

Data analysis is the most crucial stage of the hug system for data processing that
provides the foundation for uncovering useful information and assisting in decision mak-
ing [219]. Data analytics, often known as data mining, is a computer process that uses
techniques such as database, statistician, design detection, and expert system to uncover
the possible relationships between variables [220]. However, the resulting data sets may
have varied performance in terms of noise, repetition, and uniformity due to the many
sources [221].

4.2.1. Data Preprocessing

Data integration strategies seek to effectively combine data from several sources into a
single picture [222,223]. Densification of data preprocessing techniques to eliminate highly
linked variables and minimize dataset size due to some algorithms for analysis of the
data can be sensitive to imbalanced data [220]. A logarithm helps correct the distribution
form of data with severe weakness if the original dataset only contains the highest and
minimum temperature values [219]. Additional features such as temperature differential
might be computed through the preprocessing stage if the source dataset only has the most
significant and lowest temperature values. These characteristics are frequently beneficial in
improving the accuracy of data analytic findings [221].

4.2.2. Data Analytics Techniques

The model for data analytics may be developed based on the provided data to identify
the relationship between aspects and the associated types or values using supervised
learning techniques. When analyzing an unnamed data approach, it is typically designed
to identify the different classes across all objects [224].

4.2.3. Procedures of Data Mining in Smart Grids

The fundamental purpose of data analytics in the SG is to extract useful information
from historical data and compare it with real-time data to guide operation and main-
tenance [225]. Data management strategies are used to organize and store the massive
amounts of data gathered through intelligent meters and sensors. Following that, a math-
ematical model may be created using data mining techniques and clean data [226]. The
status may be assessed in the generated model using real-time data, which gives potential
strategies for guiding actual activities and resolving any issues [227,228].

4.3. Big Data Analytics in Smart Grid
4.3.1. Fault Detection

The SG is considered the driving force in the distribution arrangement system to
reduce carbon release and create environmental sustainability [229]. Using distributed
generation units in current power distribution networks enables the optimal use of widely
available RESs such as wind and solar energy [224]. Furthermore, the microgrid’s proximity
to the generator power delivery dependability is improved, and power transmission
loss is reduced. The ability to operate in island mode also protects the load from harm
caused by power system issues such as voltage fluctuation, frequency deviation, etc. [229].
However, RE has an intermittent nature, which adds to the grid’s unpredictability. When a
large quantity of temperature or energy damages microgrids, the typical sized generators
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are unable to identify and fix the problem in a timely manner due to their low load
capacity, posing a serious threat [230]. Most standard approaches, which focus on detecting
overcurrent and negative sequence currents in large-scale centralized power systems,
appeared ineffective in microgrids [231].

4.3.2. Method of Troubleshooting/Safety Assessment

Distribution automation (DA) focuses on the distribution level’s functioning and
system reliability. A successful DA can locate and isolate distribution system issues,
resulting in faster restoration times and more customer satisfaction [232]. A growing
amount of operational data is being collected via supervisory control and data acquisition
(SCADA) or sophisticated metering infrastructure for status monitoring and problem
diagnosis advanced metering infrastructure (AMI) [231]. A significant amount of data may
be captured through AMI and communication foundations due to the advancement of green
information and communications technology (ICT) technologies in energy systems [233]. A
data-driven model of failure phenomena based on a hybridization of evolutionary learning
and clustering methodologies is the input of a one-class, power system operational data,
weather data, and relay protection device log data [234]. For accurate online identification of
dangerous occurrences in the power system, the extreme learning machine (ELM) algorithm
is used in an intelligent early warning system. The learning speed of ELM training is
significantly quicker than traditional algorithms since the weights are arbitrarily generated
and then calculated by matrix computing lacking iterative parameter modification [235].
The data-driven framework’s ideal balance between earning precision and warning acuity is
also explored. Using a ranking system, it extracted electrical features from high-impedance
fault current and voltage data and generated an effective feature set (EFS) [236]. Thus,
a statistical classifier for defect detection may be made using a limited number of signal
channels. It also shows how to minimize many phasor measurement units (PMU) of data
while keeping the important information for power system failure detection [237].

4.3.3. Transient Stability Analysis (TSA)

Transient stability is a key issue that is closely linked to the power system’s safe oper-
ation. However, rising electricity consumption, rising RE penetration, and a deregulated
market all drive the power grid to operate at or near its safe operational limitations [238].
According to the SG concept, massive data gathering by AMI contributes to the situation
evaluation of energy systems, while assisting with energy administration, functioning of
a system, and decision making [239]. As a result, effective recapitulation algorithms are
necessary for identifying meaningful patterns and uncovering important information from
the duplicate evaluation in the power system [240,241].

In addition to green energy sources deployed via the SG, wind farms are being imple-
mented to utilize abundant and emission-free natural resources and the extensive installa-
tion of wind energy in the grid by addressing possible deterioration and instability caused
by the extensive installation of wind power into the electricity network [242]. Energy fluctu-
ation is the swing of the energy stream on the transport line caused by concurrent machine
rotor angles advancing or regressing to each other, which produces high interruptions.
High-pressure dropping, engine activation, and clearing short-circuit problems are all pos-
sible causes [243]. However, using a decision tree (DT)-based technique for defect detection
and categorization within the half-cycle time during power swing [244], the DT-algorithm
was used with 21 possible characteristics derived from phasor measurement unit (PMU)
data following the Kalman filter procedure for smart relaying in the power system [245].
The DT and graded aggregate created a probability frame for the dynamic performance of
energy systems following a disturbance [246]. The unbalanced groupings that may break
synchronism could be identified effectively. Although the PMU and wide area monitoring
system (WAMS) give clarity information for designers to uncover patterns of stable and
unstable operation, the low likelihood of events occurring in the power grid has resulted
in a significant issue of class disparity [247]. It is difficult to discern the characteristics of
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uncommon instability from significant synchro phasor observations using traditional data
analytics [248]. A systematic one-sidedness learning appliance for short online voltage
evaluation is being developed to fully utilize enormous electricity grid data [237]. To show
the power system parameters and external data such as meteorological information, the
random matrix theory was combined with a high-order data-driven model [249,250]. The
eigenvalue-based analysis method has been shown to be effective for analyzing online
transient states [251]. Based on parallel computing and K-nearest neighbors learning
methods, a live monitor of instantaneous electromechanical dynamics in transmission
systems is given [252]. The suggested framework is used to handle the massive amount
of PMU data from the power grid and extract information showing time-varying power
generation and consumption [253,254]. For an online assessment evaluation of the (TSA)
problem, the core vector machine (CVM) model is trained offline using 24 characteristics
taken from the raw data [234]. A statistical nonparametric regression methodology based
on the critical clearing time was used to examine the temporary stability boundary of
large-scale power systems in order to assess if a steady-state condition can recover after
a particular fault [255].

4.3.4. Electric Device State Estimation/Health Monitoring

Power transformers are critical components for electrical energy conversion, and their
failure can result in catastrophic blackouts in the power system. As a result, research into the
life-cycle administration of power transformers founded on precise estimates has sparked
considerable interest in a more stable and dependable power system [256]. Three traditional
methods for association rule mining, including apriori, aprioriTid, and aprioriHybrid, are
presented to obtain data about system processes and climatic circumstances into state
estimate examinations [257]. For possible failure prediction, rule mining approaches
are coupled with a probabilistic graphical model. Building automation systems (BAS)
are developed and implemented in most commercial buildings to regulate the heating,
ventilation, and air conditioning (HVAC) system to repair optimum heat and humidity for
the inhabitants [258]. FL was used to offer a unique health monitoring system for detecting
abnormal operating conditions [259]. In a power system, the number of aged assets grows,
and various failure models based on variables such as aging time or circumstances have
been developed. As a result, lifetime data such as service age, maintenance, and health
index were used to create a failure rate model for general electric power equipment [260].
The stratified proportional hazards model (PHM) for processing and classifying lifetime
data into multi-type frequent occurrences was created to make the most effective use of
this data [261]. This PHM technique may be used to predict possible risk issues and health
conditions [262].

4.3.5. Power Quality Monitoring

Electric PQ is the magnitude, frequency, and waveform of voltage and current in
power systems, and it is closely linked to the power grid’s safe functioning and consumer
satisfaction [263]. In the electrical grid, nonlinear, power electronics-based loads, generators,
harmonic distortions, and unstable situations are becoming more common [264]. In some
residential areas, traditional electromechanical analog meters still work, and data analytics-
based PQ analysis cannot be used effectively [264].

4.3.6. Topology Identification

Using information layers in the SG to address the problems posed by RESs in supply-
ing the network is a viable solution [265]. SGs are becoming more sensitive and perceptible
by improving sensors and gadgets that measure, monitor, communicate, and regulate
them [266]. Because of the unpredictability of RES and the uncertainty of the load, a
comprehensive decision based on a large quantity of data collection and analysis is re-
quired [267]. The SCADA and WAMS systems provide intelligent grid voltage and power
data at sampling rates that are close to real-time [268]. The network model is built using
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both graph theoretical and probabilistic optimal DC power flow technologies that are low
in carbon, which is being pushed by the government using warmth pumps, photovoltaics,
electric cars, and other intelligent appliances in little voltage (LV) sharing networks to
create a greener society [269,270]. As a result, there is increasing interest in visualizing LV
networks using restricted metering and data collecting equipment [271]. A cost-effective
option is network load profiling, based on identifying typical load profiles of LV systems.
A three-stage network load profiling technique described by clustering, classification,
and scaling seeks to analyze the current LV networks’ capacities to accommodate the
technologies that are low in carbon [272].

4.3.7. Renewable Energy Forecasting

Wind and solar energies are expected to be the essential sources of energy for the
power grid, due to the plentiful and environmentally beneficial generation of energy [273].
Conversely, randomness and intermittent features are constant roadblocks to the constant
largescale use of RES. The precise and reliable RES predicting technique has been the hot
point worldwide to cope with such massive difficulties and to enhance dispatch planning,
maintenance scheduling, and regulation [274]. The meteorological data is utilized to
categorize the days into distinct groups. Then, a neural network is qualified to obtain
wind energy forecasting data [275,276]. PV diffusion is forecasted using a data-driven
approach. The suggested regular neural network (RNN) model is designed for ultra-short-
term solar power forecast by deconstructing time-series information using distinct wavelet
transform [277,278].

4.3.8. Load Forecasting

The actual short-term load projecting such as the RES estimation is the foundation
for energy administration, system process, and market analysis [279]. Improving fore-
casting accuracy may result in several advantages and cost savings, as stated in [280].
The dynamic and highly efficient electricity of marketplace is constructed on accurate
forecasts of energy consumption as customers frequently use smart networks to avoid
neural network installation issues with a unique level of integration that overcomes load
profile instability and uncertainty [281,282]. As part of the newest deep understanding
approaches for residential load forecasting, a recurrent neural network-based framework
with long short-term memory is used [283]. A hidden-mode Markov decision model is
developed to predict user behavior in real time [284] and to analyze the latest phase of
leveraging societal mass media via cell phone applications to increase consumer interaction
and load forecasting [285]. In addition, the developing trends and obstacles examine the
influence of social activities on prosumers’ creation and consumption habits and the whole
effect on final load and network usage [286].

4.3.9. Load Profiling

Load profiling refers to the process of describing the usual behavior of electric con-
sumption [287]. In general, demand–load forecast management and capital planning in
the time domain are expressed as an effective method of energy management [288,289].
The rationale for the best DR mechanism is to break down household energy consumption
into three portions: stable, controlled and deferred loads [290]. DR is used to encourage
consumers to modify their usage or feed-in patterns with a stimulant of charges or eco-
logical data [291,292]. A good consideration of the unchangeable energy used by clients
is the foundation for DR, that could relieve the distribution system’s burden in terms of
temperature and voltage constraints [293]. Knowing the charging load type of electric
vehicles (EVs) is limited to be a critical phase for the constancy of power grids as they
become more widespread [294]. To extract the charge–load model of an (EV) by measuring
the actual power, Bayesian maximum probability is utilized to check the pliability of the
collective EV charging demand [295]. Increasing the acceptance of smart meters placed
according to the home standard, emphasizes the problem of enormous load profile data,
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which poses problems to measurement data transfer and storage, along with important
data extraction out of the vast records [294–296].

4.3.10. Load Disaggregation

Non-intrusive load monitoring (NILM) is a type of load that separates general load
profiles at the home standard from the power usage of specific machines [297]. NILM, out
of just one smart meter, placed in the house is effortless to accept by clients than direct
appliance monitoring framework [298]. The various types of residential electric machines
possess varying possibilities for participation in the DR program, leading to a better
understanding of their customers’ behavior and a more energy-efficient approach [299,300].
NILM early approaches were mostly centered on detecting an edge in power transmission
to indicate whether a recognized device is on or off [301,302].

4.3.11. Nontechnical Lack Detection

Non-technical lack (NTL) most often results in electrical rubbery or accounting mis-
takes of power system companies [303,304]. Non-cooperative game models for nontech-
nical lack examination of micro-distribution systems applied to AMI [305]. A report by
Northeast Group, Limited Liability Company (LLC), shows annual losses due to power
theft that were more than USD 89.3 billion worldwide [303]. Furthermore, large-scale
electricity theft has the potential to generate dangerous power system imbalances. As a
result, many researchers are interested in developing a practical outline to identify the NTL
in a composite energy system, which is an approach constructed on the DT and backed
by suggest vector machine (SVM) [292]. DT is programmed with various parameters
such as heavy appliances, the number of people in the house, and climate circumstances
to calculate the predicted rate of power used for the client at any given moment. The
computed consumption is then sent to an SVM classifier that has previously been trained
on the gathered data set to assess if the customer’s conduct is regular or fraudulent. Fraud
recognition is triggered, as a difference is found between power provided by the energy
system and gathered data out of the smart meters. Therefore, the fuzzy clustering technique
is used to find abnormalities in consumption patterns [292].

4.4. Big Data Platform for Intelligent Meter
4.4.1. Smart Grids and Meter Data

SGs are classified into three parts, which are the information infrastructure (data
stream in the smart grid’s cyber portion), computer networks (exchange control signals
and measurement data) [306], and power infrastructure (energy distribution in the physical
component of smart grids), which includes intelligent meters and energy devices such as
towers, generator and adapters [307]. IT components include modeling, analysis, profitable
transactions, information exchange, and management [308]. Big data management and
analytics are the key problems in the SG [202]. Smart metering is causing a huge growth
in the volume of data available. For example, in the United Kingdom, approximately
100 million data points are gathered biannual for energy companies to register for the
27 million residential power users. Power suppliers will be essential to absorb, store,
and fully analyze 4500–9000 times more data when smart metering is perfectly installed
and operating at a 30-min sample rate. The capacity to cope with massive data problems
in the future will be critical for several essential intelligent grid applications, including
situation awareness, state estimate, event discovery, load forecasting, and claim response
administration [309].

4.4.2. The Analytics of Meter Data

The techniques of mining data are used to analyze the meter data of a variety of
applications. These may support energy managers in uncovering knowledge and obtaining
insights from large data [310]. The majority of the research is proven via utilizing com-
paratively modest data collections, such as claim or carry out forecasts [311], customer
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segmentation, pattern categorization, recommendations of power tariff, power consump-
tion of equipment in particular homes, and demand-side management [312]. One of the
most recent huge data sets published was over one million data points—still far from the
predicted future [313,314].

5. Challenges

This section highlights three energy issues that remain unresolved in cloud comput-
ing applications for smart grids: energy distribution, energy mix and battery charging.
Therefore, there is a challenge of migrating SG to cloud computing for energy manage-
ment, information management, and cloud applications [315]. First, open issues for energy
management, similar to clouds, have a variety of heterogeneous applications. The mi-
crogrids lead to challenging transmission of data between the cloud and the microgrids
with/without real-time data. Therefore, it is urgent to install a virtual power stream con-
troller to optimize the energy that can operate in any realistic and efficient mode for the
smart grid. However, to reduce a claim from micro-grids during summit hours, it a neces-
sary to mix and share energy storage with a cloud [316]. Second, problems for managing
information, despite cloud computing being effective at managing smart-meter data, still
have several obstacles to overcome [317]. Solving data-sharing issues is an excellent idea for
combining public and private clouds for cost-effective communication in smart grids. In ad-
dition, the integration of mobile multi-agents in cloud computing may achieve an effective
intelligent network process, which is still a problem due to heterogeneous communication
architecture. It must be able to accommodate diverse energy sources while also allowing for
large-scale interactive collaboration via cloud services and a reduction in cloud app delays.
As in billing, users need dependable and cost-effective services. A single protocol failure
may bring the entire intelligent grid system down [318]. Third, long-term evolution (LTE)
allows for better coverage and lower latency, which presents challenges to existing cloud
computing platforms. Platforms that address some of the long-term evolution problems
related to quality of service (QoS) improve with the radio access network, network of
mobile core, and datum center to supported virtualized infrastructural resources. Coordi-
nation and synchronized function are encouraged facilities for monitoring, preprocessing,
dissemination, storage, analysis, and alerting metrics supported between different clouds,
which is a unified and suitable interface. The world’s most pressing concern is energy. As a
backup generator, fossil fuels are frequently employed, although their production of CO2
affects life and the environment [39]. A novel technique called DR makes virtual generation
better. Users may program their gadgets using this approach. There are several issues with
a traditional smart-grid design (without the cloud), which is the master–slave design that
leads to a risk of DDoS [41,42]. Any error may cause the entire system to fail. There is a
limit on how many clients can be served due to memory storage limitations, stability, and
management. Furthermore, information and data management challenges include millions
of intelligent meters necessitating effective handling of massive data. Cloud computing
may provide a cost-effective alternative for data analytic and storage methods, as shown in
Table 5 [319].



Appl. Sci. 2021, 11, 9820 26 of 41

Table 5. Main features of big data in smart grids.

Category Challenges

Smart grid

• Heterogeneous
• Energy storage systems are insufficient.
• Not combining energy storage with the cloud and sharing it
• Big data management and analytics

Cloud computing

• Data-sharing issues
• Lack of integration of multiple mobile agents with the cloud
• Dependability not sufficient
• Insufficient platform Implementation for offering long-term evolution
• Unsynchronized function
• Risk of DDoS
• Any error leads the system to fail
• Insufficient methods data analytic and storage methods

Big data

• Memory storage limitations
• Stability
• Management
• Insufficient methods for handling massive amounts of data
• Information and data management challenges

6. The Framework of the Charge Controller System

Overall, after the long review illustrated in this paper, the proposed framework
contains an EMS stored on the cloud computing service. This system serves three different
goals. The first is to monitor and combine different energy sources in order to obtain the
best optimized system. The second goal is to control the switches in the energy hub, and
the third goal is to manage the charging and discharging process. The system will yield
many benefits:

a. Reduce the carbon footprint by including RESs such as solar plants (photovoltaic),
WTs, and other RESs;

b. Enhance the demand power by monitoring and controlling the power balance at the
same time;

c. Introduce an intelligent system and cloud computing to the power management
field, and make the system manageable.

It is difficult to carry out an actual optimization charge controller on an intelligent
power system via cloud computing, as it is based on numerous nonlinear parameters
and contains many genuine bonds and limitations. Furthermore, because many actual
characteristics are stochastic, handling a power system as a plant (dynamic systems) is
problematic. Therefore, there are two suggestions: the first is to plan the optimization
algorithm for the charge controller based on the real parameters; the next is to implement
this proposed algorithm as a practical system that offers optimal interventional treatment
solutions for all protection requirements. Therefore, this study focuses on presenting a
final chart of the model that will consider three aspects: power demand management, RE,
and cloud computing, which will be the main contribution of the future study conducted
in Figure 9.
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The study summarized the recently published literature that focuses on methods to
reduce power consumption and costs. Furthermore, the recent literature discussed using
cloud computing to store EMSs and managing them intelligently. Furthermore, it discussed
how a well-maintained system of power mixing (power used to charge the batteries) can
lead to better environmental results by reducing the carbon footprint. Furthermore, it
discussed the recent literature that used cloud computing to store EMSs and manage them
intelligently. As a result of this extensive literature review, the researcher proposed a
final chart of the model that will consider three aspects: battery management, RE, and
cloud computing, which will be the main contribution of the future study conducted by
the researcher.
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Abbreviations

In this review, the following abbreviations are used:

Abbreviations The Details
VPPs Virtual Power Plants
DC Direct Current
CDE Carbon Dioxide Emissions
RE Renewable Energy
USDOE United States Department of Energy
SG Smart Grid
SGs Smart Grids
SES Smart Energy Systems
AI Artificial Intelligence
DR Demand Response
PS Power Supply
DER Distributed Energy Resource
MT Microgrid Trading
DDoS Distributed Denial of Service
CPU’s Central Processing Units
SPM Static Power Management
DPM Dynamic Power Management
DPC Dynamic Power Consumption
C Coulomb
A Amperes
V Volts
W Watts
WH Watt-Hours
GA Genetic Algorithm
PSO Particle Swarm Optimization
FL Fuzzy Logic
MOA Metaheuristic Optimization Algorithms
SoC State of Charge
KW kilowatt
GPR Gaussian Process Regression
GIESBs Grid-Integrated Energy Storage Batteries
PVs Photo Voltic’s
WTs Wind Turbines
EBMS Electric Bus Management System
ANNs Artificial Neural Networks
EMS Energy Management System
HMG Hybrid Micro-Grid
MOPSO Multi-Objective Particle Swarm Optimization
PMP Pontryagin’s Minimum Principle
MEET Maximum Efficiency Tracking
FAFC First Access First Charge
MDP Markov Decision Process
HEMS Home energy management system
SHEMS Smart Home Energy Management System
BMS Battery Management system
MWs Mega Watts
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ETMCTSA Energy-Performance Trade-off Multi-Resource Cloud Task Scheduling Algorithm
IT Information Technology
VMs Virtual Machines
TWh Tera Watt-hours
HV High Voltage
MV Medium Voltage
SCADA Supervisory Control and Data Acquisition
AMI Advanced Metering Infrastructure
ELM Extreme Learning Machine
SCVS Sorting and Cumulative Voltage Summation
EVCS Electric Vehicle Charging Station
EPS Electric Power System
EFS Effective Feature Set
PMU Phasor Measurement Units
WAMS Wide Area Monitoring System
TSA Transient Stability Analysis
CVM Core Vector Machine
BAS Building Automation Systems
HVAC Heating, Ventilation, and Air Conditioning
PHM Proportional Hazards Model
PQ Power Quality
LV Little Voltage
RNN Regular Neural Network
NILM Non-Intrusive Load Monitoring
NTL Non-Technical Lack
LLC Limited Liability Company
SVM Suggest Vector Machine
DT Decision Tree
SaaS Service as a Service
ICT Information and Communication Technology
PAR Peak-to-Average Ratio
WECS Wind Energy Conversion System
DCEP Data Center Energy Productivity
TOU Time-Of-Use
MASs Multi-Agent Systems
GHGs Green House Gases
IoE Internet of Energy
IaaS Infrastructure as a Service
PaaS Platform as a Service
LMA Levenberg–Marquardt Algorithm
TRRA Trust-Region Reflective Algorithm
PUE Power Use Effectiveness
RESs Renewable Energy Sources
EFS Effective Feature Set
BESSs Battery energy storage systems
EEH Energy-Efficient Hybrid
ARBC Adaptive Resonant Beam Charging
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246. Papadopoulos, P.N.; Guo, T.; Milanović, J.V. Probabilistic framework for online identification of dynamic behavior of power
systems with renewable generation. IEEE Trans. Power Syst. 2018, 33, 45–54. [CrossRef]

247. Deng, X.; Bian, D.; Wang, W.; Jiang, Z.; Yao, W.; Qiu, W.; Tong, N.; Shi, D.; Liu, Y. Deep learning model to detect various
synchrophasor data anomalies. IET Gener. Transm. Distrib. 2020, 14, 5816–5822. [CrossRef]

248. Tan, B.; Yang, J.; Tang, Y.; Jiang, S.; Xie, P.; Yuan, W. A Deep Imbalanced Learning Framework for Transient Stability Assessment
of Power System. IEEE Access 2019, 7, 81759–81769. [CrossRef]

249. Wei, L.; Dongxia, Z.; Xinying, W.; Daowei, L.; Qian, W. Power system transient stability analysis based on random matrix theory.
Proc. CSEE 2016, 36, 4854–4863.

250. Xu, X.Y.; He, X.; Ai, Q.; Qiu, C.M. A correlation analysis method for operation status of distribution network based on random
matrix theory. Power Syst. Technol. 2016, 40, 781–790.

251. Malbasa, V.; Zheng, C.; Chen, P.C.; Popovic, T.; Kezunovic, M. Voltage Stability Prediction Using Active Machine Learning. IEEE
Trans. Smart Grid 2017, 8, 3117–3124. [CrossRef]

252. Zhang, J.; Chung, C.Y.; Wang, Z.; Zheng, X. Instantaneous Electromechanical Dynamics Monitoring in Smart Transmission Grid.
IEEE Trans. Ind. Inform. 2016, 12, 844–852. [CrossRef]

253. Zhao, J.; Zhang, G.; Das, K.; Korres, G.N.; Manousakis, N.M.; Sinha, A.K.; He, Z. Power system real-time monitoring by using
PMU-based robust state estimation method. IEEE Trans. Smart Grid 2016, 7, 300–309. [CrossRef]

254. Shah, Z.; Anwar, A.; Mahmood, A.N.; Tari, Z.; Zomaya, A.Y. A Spatiotemporal Data Summarization Approach for Real-Time
Operation of Smart Grid. IEEE Trans. Big Data 2020, 6, 624–637. [CrossRef]

255. Lv, Z.; Song, H.; Basanta-Val, P.; Steed, A.; Jo, M. Next-Generation Big Data Analytics: State of the Art, Challenges, and Future
Research Topics. IEEE Trans. Ind. Inform. 2017, 13, 1891–1899. [CrossRef]

256. Reinhardt, A.; Reinhardt, D. Detecting anomalous electrical appliance behavior based on motif transition likelihood matrices. In
Proceedings of the 2016 IEEE International Conference on Smart Grid Communications, SmartGridComm 2016, Sydney, NSW,
Australia, 6–9 November 2016; pp. 680–685. [CrossRef]

257. Sheng, G.; Hou, H.; Jiang, X.; Chen, Y. A novel association rule mining method of big data for power transformers state parameters
based on probabilistic graph model. IEEE Trans. Smart Grid 2018, 9, 695–702. [CrossRef]

258. Png, E.; Srinivasan, S.; Bekiroglu, K.; Chaoyang, J.; Su, R.; Poolla, K. An internet of things upgrade for smart and scalable heating,
ventilation and air-conditioning control in commercial buildings. Appl. Energy 2019, 239, 408–424. [CrossRef]

259. Allen, W.H.; Rubaai, A.; Chawla, R. Fuzzy Neural Network-Based Health Monitoring for HVAC System Variable-Air-Volume
Unit. IEEE Trans. Ind. Appl. 2016, 52, 2513–2524. [CrossRef]

260. Azmi, A.; Jasni, J.; Azis, N.; Kadir, M.Z.A.A. Evolution of transformer health index in the form of mathematical equation. Renew.
Sustain. Energy Rev. 2017, 76, 687–700. [CrossRef]

261. Goyal, R.; Whelan, M.J.; Cavalline, T.L. Characterising the effect of external factors on deterioration rates of bridge components
using multivariate proportional hazards regression. Struct. Infrastruct. Eng. 2017, 13, 894–905. [CrossRef]

262. Moradi, R.; Groth, K.M. Modernizing risk assessment: A systematic integration of PRA and PHM techniques. Reliab. Eng. Syst.
Saf. 2020, 204, 107194. [CrossRef]

263. Balouji, E.; Salor, O. Classification of power quality events using deep learning on event images. In Proceedings of the 3rd
International Conference on Pattern Analysis and Image Analysis, IPRIA 2017, Shahrekord, Iran, 19–20 April 2017; pp. 216–221.
[CrossRef]

264. Borges, F.A.S.; Fernandes, R.A.S.; Silva, I.N.; Silva, C.B.S. Feature Extraction and Power Quality Disturbances Classification Using
Smart Meters Signals. IEEE Trans. Ind. Inform. 2016, 12, 824–833. [CrossRef]

265. Potter, C.W.; Archambault, A.; Westrick, K. Building a smarter smart grid through better renewable energy information. In
Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, Seattle, WA, USA, 15–18 March 2009.
[CrossRef]

266. Alonso, M.; Amaris, H.; Alcala, D.; Florez, D.M.R. Smart sensors for smart grid reliability. Sensors 2020, 20, 2187. [CrossRef]
[PubMed]

267. Jimada-Ojuolapea, B.; Teh, J. Surveys on the reliability impacts of power system cyber–physical layers. Sustain. Cities Soc. 2020,
62, 102384. [CrossRef]

268. Brijesh, P.; Lal, A.G.; Manju, A.S.; Joseph, A. Synchrophasors evaluation and applications. In Proceedings of the 2018 IEEE Texas
Power and Energy Conference, TPEC 2018, College Station, TX, USA, 8–9 February 2018; Volume 2018, pp. 1–6. [CrossRef]

269. Olvera, J.P.; Green, T.; Junyent-Ferre, A. Using Multi-Terminal DC Networks to Improve the Hosting Capacity of Distribution
Networks. In Proceedings of the Proceedings—2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-
Europe 2018, Sarajevo, Bosnia and Herzegovina, 21–25 October 2018. [CrossRef]

270. Elbreki, A.M.; Sopian, K.; Fazlizan, A.; Ibrahim, A. An innovative technique of passive cooling PV module using lapping fins and
planner reflector. Case Stud. Therm. Eng. 2020, 19, 100607. [CrossRef]

271. Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the Smart City Transformation
Framework. Technol. Forecast. Soc. Chang. 2020, 153, 119281. [CrossRef]

272. Haben, S.; Arora, S.; Giasemidis, G.; Voss, M.; Greetham, D.V. Review of Low-Voltage Load Forecasting: Methods, Applications,
and Recommendations. 2021. Available online: http://arxiv.org/abs/2106.00006 (accessed on 7 October 2021).

http://doi.org/10.1109/TPWRS.2017.2688446
http://doi.org/10.1049/iet-gtd.2020.0526
http://doi.org/10.1109/ACCESS.2019.2923799
http://doi.org/10.1109/TSG.2017.2693394
http://doi.org/10.1109/TII.2015.2492861
http://doi.org/10.1109/TSG.2015.2431693
http://doi.org/10.1109/TBDATA.2017.2691350
http://doi.org/10.1109/TII.2017.2650204
http://doi.org/10.1109/SmartGridComm.2016.7778840
http://doi.org/10.1109/TSG.2016.2562123
http://doi.org/10.1016/j.apenergy.2019.01.229
http://doi.org/10.1109/TIA.2015.2511160
http://doi.org/10.1016/j.rser.2017.03.094
http://doi.org/10.1080/15732479.2016.1217888
http://doi.org/10.1016/j.ress.2020.107194
http://doi.org/10.1109/PRIA.2017.7983049
http://doi.org/10.1109/TII.2015.2486379
http://doi.org/10.1109/PSCE.2009.4840110
http://doi.org/10.3390/s20082187
http://www.ncbi.nlm.nih.gov/pubmed/32294923
http://doi.org/10.1016/j.scs.2020.102384
http://doi.org/10.1109/TPEC.2018.8312052
http://doi.org/10.1109/ISGTEurope.2018.8571622
http://doi.org/10.1016/j.csite.2020.100607
http://doi.org/10.1016/j.techfore.2018.04.024
http://arxiv.org/abs/2106.00006


Appl. Sci. 2021, 11, 9820 40 of 41

273. Hossain, M.S.; Madlool, N.A.; Rahim, N.A.; Selvaraj, J.; Pandey, A.K.; Khan, A.F. Role of smart grid in renewable energy:
An overview. Renew. Sustain. Energy Rev. 2016, 60, 1168–1184. [CrossRef]

274. Wu, W.; Peng, M. A Data Mining Approach Combining K-Means Clustering with Bagging Neural Network for Short-Term Wind
Power Forecasting. IEEE Internet Things J. 2017, 4, 979–986. [CrossRef]

275. Yang, M.; Lin, Y.; Han, X. Probabilistic Wind Generation Forecast Based on Sparse Bayesian Classification and Dempster-Shafer
Theory. IEEE Trans. Ind. Appl. 2016, 52, 1998–2005. [CrossRef]

276. Khodayar, M.; Kaynak, O.; Khodayar, M.E. Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting. IEEE Trans.
Ind. Inform. 2017, 13, 2770–2779. [CrossRef]

277. Zhao, T.; Zhou, Z.; Zhang, Y.; Ling, P.; Tian, Y. Spatio-Temporal Analysis and Forecasting of Distributed PV Systems Diffusion:
A Case Study of Shanghai Using a Data-Driven Approach. IEEE Access 2017, 5, 5135–5148. [CrossRef]

278. Nazaripouya, H.; Wang, B.; Wang, Y.; Chu, P.; Pota, H.R.; Gadh, R. Univariate time series prediction of solar power using a hybrid
wavelet-ARMA-NARX prediction method. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution
Conference, Dallas, TX, USA, 3–5 May 2016. [CrossRef]

279. Tayab, U.B.; Zia, A.; Yang, F.; Lu, J.; Kashif, M. Short-term load forecasting for microgrid energy management system using
hybrid HHO-FNN model with best-basis stationary wavelet packet transform. Energy 2020, 203, 117857. [CrossRef]

280. Ding, N.; Benoit, C.; Foggia, G.; Besanger, Y.; Wurtz, F. Neural network-based model design for short-term load forecast in
distribution systems. IEEE Trans. Power Syst. 2016, 31, 72–81. [CrossRef]

281. Liu, D.; Zeng, L.; Li, C.; Ma, K.; Chen, Y.; Cao, Y. A Distributed Short-Term Load Forecasting Method Based on Local Weather
Information. IEEE Syst. J. 2018, 12, 208–215. [CrossRef]

282. Shi, H.; Xu, M.; Li, R. Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN. IEEE Trans. Smart Grid 2018,
9, 5271–5280. [CrossRef]

283. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting based on LSTM Recurrent
Neural Network. IEEE Trans. Smart Grid 2017, 10, 841–851. [CrossRef]

284. Meyn, S.; Samad, T.; Hiskens, I.; Stoustrup, J. Energy Markets and Responsive Grids. Modeling, Control, and Optimization. The IMA
Volumes Mathematics Its Applications; 2018; 518p. Available online: https://link-springer-com.proxy.libraries.uc.edu/content/pdf/
10.1007%2F978-1-4939-7822-9.pdf (accessed on 16 August 2021).

285. Moreno-Munoz, A.; Bellido-Outeirino, F.J.; Siano, P.; Gomez-Nieto, M.A. Mobile social media for smart grids customer engage-
ment: Emerging trends and challenges. Renew. Sustain. Energy Rev. 2016, 53, 1611–1616A. [CrossRef]

286. Cai, Y.; Huang, T.; Bompard, E.; Cao, Y.; Li, Y. Self-sustainable community of electricity prosumers in the emerging distribution
system. IEEE Trans. Smart Grid 2017, 8, 2207–2216. [CrossRef]

287. Al-Otaibi, R.; Jin, N.; Wilcox, T.; Flach, P. Feature Construction and Calibration for Clustering Daily Load Curves from Smart-Meter
Data. IEEE Trans. Ind. Inform. 2016, 12, 645–654. [CrossRef]

288. Peng, W.; Deng, Z.; Zhu, Y.; Lu, J. An analytical method for intelligent electricity use pattern with demand response. In Proceedings
of the China International Conference on Electricity Distribution, CICED, Xi’an, China, 10–13 August 2016. [CrossRef]

289. Khan, I.; Huang, J.Z.; Masud, M.A.; Jiang, Q. Segmentation of factories on electricity consumption behaviors using load profile
data. IEEE Access 2016, 4, 8394–8406. [CrossRef]

290. Li, R.; Li, F.; Smith, N.D. Load Characterization and Low-Order Approximation for Smart Metering Data in the Spectral Domain.
IEEE Trans. Ind. Inform. 2017, 13, 976–984. [CrossRef]

291. Zhang, D.; Li, S.; Sun, M.; O’Neill, Z. An Optimal and Learning-Based Demand Response and Home Energy Management System.
IEEE Trans. Smart Grid 2016, 7, 1790–1801. [CrossRef]

292. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision Tree and SVM-Based Data Analytics for Theft Detection in
Smart Grid. IEEE Trans. Ind. Inform. 2016, 12, 1005–1016. [CrossRef]

293. Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart
meter data. IEEE Trans. Smart Grid 2016, 7, 136–144. [CrossRef]

294. Munshi, A.A.; Mohamed, Y.A.R.I. Extracting and defining flexibility of residential electrical vehicle charging loads. IEEE Trans.
Ind. Inform. 2018, 14, 448–461. [CrossRef]

295. Li, R.; Gu, C.; Li, F.; Shaddick, G.; Dale, M. Development of Low Voltage Network Templates—Part II: Peak Load Estimation by
Clusterwise Regression. IEEE Trans. Power Syst. 2015, 30, 3045–3052. [CrossRef]

296. Wang, Y.; Chen, Q.; Kang, C.; Xia, Q.; Luo, M. Sparse and Redundant Representation-Based Smart Meter Data Compression and
Pattern Extraction. IEEE Trans. Power Syst. 2017, 32, 2142–2151. [CrossRef]

297. Gopinath, R.; Kumar, M.; Joshua, C.P.C.; Srinivas, K. Energy management using non-intrusive load monitoring techniques—State-
of-the-art and future research directions. Sustain. Cities Soc. 2020, 62, 102411. [CrossRef]

298. Devlin, M.A.; Hayes, B.P. Non-Intrusive Load Monitoring and Classification of Activities of Daily Living Using Residential Smart
Meter Data. IEEE Trans. Consum. Electron. 2019, 65, 339–348. [CrossRef]

299. Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy Efficient Integration of Renewable Energy Sources
in the Smart Grid for Demand Side Management. IEEE Access 2018, 6, 77077–77096. [CrossRef]

300. Kong, W.; Dong, Z.Y.; Ma, J.; Hill, D.J.; Zhao, J.; Luo, F. An Extensible Approach for Non-Intrusive Load Disaggregation with
Smart Meter Data. IEEE Trans. Smart Grid 2018, 9, 3362–3372. [CrossRef]

http://doi.org/10.1016/j.rser.2015.09.098
http://doi.org/10.1109/JIOT.2017.2677578
http://doi.org/10.1109/TIA.2016.2518995
http://doi.org/10.1109/TII.2017.2730846
http://doi.org/10.1109/ACCESS.2017.2694009
http://doi.org/10.1109/TDC.2016.7519959
http://doi.org/10.1016/j.energy.2020.117857
http://doi.org/10.1109/TPWRS.2015.2390132
http://doi.org/10.1109/JSYST.2016.2594208
http://doi.org/10.1109/TSG.2017.2686012
http://doi.org/10.1109/TSG.2017.2753802
https://link-springer-com.proxy.libraries.uc.edu/content/pdf/10.1007%2F978-1-4939-7822-9.pdf
https://link-springer-com.proxy.libraries.uc.edu/content/pdf/10.1007%2F978-1-4939-7822-9.pdf
http://doi.org/10.1016/j.rser.2015.09.077
http://doi.org/10.1109/TSG.2016.2518241
http://doi.org/10.1109/TII.2016.2528819
http://doi.org/10.1109/CICED.2016.7576062
http://doi.org/10.1109/ACCESS.2016.2619898
http://doi.org/10.1109/TII.2016.2638319
http://doi.org/10.1109/TSG.2016.2552169
http://doi.org/10.1109/TII.2016.2543145
http://doi.org/10.1109/TSG.2015.2409786
http://doi.org/10.1109/TII.2017.2724559
http://doi.org/10.1109/TPWRS.2014.2371477
http://doi.org/10.1109/TPWRS.2016.2604389
http://doi.org/10.1016/j.scs.2020.102411
http://doi.org/10.1109/TCE.2019.2918922
http://doi.org/10.1109/ACCESS.2018.2866461
http://doi.org/10.1109/TSG.2016.2631238


Appl. Sci. 2021, 11, 9820 41 of 41

301. Henao, N.; Agbossou, K.; Kelouwani, S.; Dube, Y.; Fournier, M. Approach in Nonintrusive Type i Load Monitoring Using
Subtractive Clustering. IEEE Trans. Smart Grid 2017, 8, 812–821. [CrossRef]

302. Chung, J.; Gillis, J.M.; Morsi, W.G. Non-intrusive load monitoring using wavelet design and co-testing of machine learning
classifiers. In Proceedings of the 2016 IEEE Electrical Power and Energy Conference, EPEC 2016, Ottawa, ON, Canada, 12–14
October 2016. [CrossRef]

303. Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans.
Smart Grid 2016, 7, 216–226. [CrossRef]

304. Zhan, T.S.; Chen, S.J.; Kao, C.C.; Kuo, C.L.; Chen, J.L.; Lin, C.H. Non-technical loss and power blackout detection under advanced
metering infrastructure using a cooperative game based inference mechanism. IET Gener. Transm. Distrib. 2016, 10, 873–882.
[CrossRef]

305. Guerrero, J.I.; Monedero, I.; Biscarri, F.; Biscarri, J.; Millan, R.; Leon, C. Non-Technical Losses Reduction by Improving the
Inspections Accuracy in a Power Utility. IEEE Trans. Power Syst. 2018, 33, 1209–1218. [CrossRef]

306. Yu, X.; Xue, Y. Smart Grids: A Cyber-Physical Systems Perspective. Proc. IEEE 2016, 104, 1058–1070. [CrossRef]
307. Shahinzadeh, H.; Moradi, J.; Gharehpetian, G.B.; Nafisi, H.; Abedi, M. IoT Architecture for smart grids. In Proceedings of the

International Conference on Protection and Automation of Power System, IPAPS, Tehran, Iran, 8–9 January 2019; pp. 22–30.
[CrossRef]

308. Diamantoulakis, P.D.; Kapinas, V.M.; Karagiannidis, G.K. Big Data Analytics for Dynamic Energy Management in Smart Grids.
Big Data Res. 2015, 2, 94–101. [CrossRef]

309. Alahakoon, D.; Yu, X. Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Trans. Ind. Inform.
2016, 12, 425–436. [CrossRef]

310. Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev.
2016, 56, 215–225. [CrossRef]

311. Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA
models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1–16. [CrossRef]

312. Valogianni, K.; Ketter, W. Effective demand response for smart grids: Evidence from a real-world pilot. Decis. Support Syst. 2016,
91, 48–66. [CrossRef]

313. Candanedo, L.M.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a low-energy house.
Energy Build. 2017, 140, 81–97. [CrossRef]

314. Chou, J.S.; Ngo, N.T. Smart grid data analytics framework for increasing energy savings in residential buildings. Autom. Constr.
2016, 72, 247–257. [CrossRef]

315. Naveen, P.; Ing, W.K.; Danquah, M.K.; Sidhu, A.S.; Abu-Siada, A. Cloud computing for energy management in smart grid—
An application survey. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Miri, Malaysia, 6–8
November 2015; Volume 121. [CrossRef]

316. Dakkak, O.; Nor, S.A.; Sajat, M.S.; Fazea, Y.; Arif, S. From grids to clouds: Recap on challenges and solutions. AIP Conf. Proc. 2018,
2016, 020040. [CrossRef]

317. Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges.
IEEE Trans. Smart Grid 2019, 10, 3125–3148. [CrossRef]

318. Lin, W.; Peng, G.; Bian, X.; Xu, S.; Chang, V.; Li, Y. Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource
Load Balancing Algorithm and Time Balancing Algorithm. J. Grid Comput. 2019, 17, 699–726. [CrossRef]

319. Bera, S.; Misra, S.; Rodrigues, J.J.P.C. IEEE Transactions on Parallel and Distributed Systems Cloud Computing Applications for
Smart Grid: A Survey. 2015. Available online: http://www.ieee.org/publications_standards/publications/rights/index.html
(accessed on 16 August 2021).

http://doi.org/10.1109/TSG.2015.2462719
http://doi.org/10.1109/EPEC.2016.7771763
http://doi.org/10.1109/TSG.2015.2425222
http://doi.org/10.1049/iet-gtd.2015.0003
http://doi.org/10.1109/TPWRS.2017.2721435
http://doi.org/10.1109/JPROC.2015.2503119
http://doi.org/10.1109/IPAPS.2019.8641944
http://doi.org/10.1016/j.bdr.2015.03.003
http://doi.org/10.1109/TII.2015.2414355
http://doi.org/10.1016/j.rser.2015.11.050
http://doi.org/10.1016/j.aei.2017.11.002
http://doi.org/10.1016/j.dss.2016.07.007
http://doi.org/10.1016/j.enbuild.2017.01.083
http://doi.org/10.1016/j.autcon.2016.01.002
http://doi.org/10.1088/1757-899X/121/1/012010
http://doi.org/10.1063/1.5055442
http://doi.org/10.1109/TSG.2018.2818167
http://doi.org/10.1007/s10723-019-09499-7
http://www.ieee.org/publications_standards/publications/rights/index.html

	Introduction 
	Smart Energy Systems 
	Background 

	Smart Grids System 
	Demand Response (DR) 
	Power Supply 
	Battery Management 
	Renewable Energy (RE) 

	Distributed Energy Resource 
	Microgrid Trading 
	Virtual Power Plants (VPPs) 

	Cloud Computing 
	Cloud Computing and Storage of Data 
	Cloud Computing and Software Services 
	Cloud Computing and Energy Savings 
	Cloud Computers as VPPs 

	Big Data 
	Big Data in Smart Grid 
	Data Sources in Smart Grids 
	Techniques Collecting Data in Smart Grids 
	Techniques Transmission Data in Smart Grids 

	Data Analysis Techniques 
	Data Preprocessing 
	Data Analytics Techniques 
	Procedures of Data Mining in Smart Grids 

	Big Data Analytics in Smart Grid 
	Fault Detection 
	Method of Troubleshooting/Safety Assessment 
	Transient Stability Analysis (TSA) 
	Electric Device State Estimation/Health Monitoring 
	Power Quality Monitoring 
	Topology Identification 
	Renewable Energy Forecasting 
	Load Forecasting 
	Load Profiling 
	Load Disaggregation 
	Nontechnical Lack Detection 

	Big Data Platform for Intelligent Meter 
	Smart Grids and Meter Data 
	The Analytics of Meter Data 


	Challenges 
	The Framework of the Charge Controller System 
	Conclusions 
	References

