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Abstract: The traditional Linear quadratic regulator (LQR) control algorithm depends too much on
expert experience during the selection of weighting coefficients. To solve this problem, we proposed
a Genetic K-means clustering Linear quadratic (GKL) algorithm. Firstly, a 2-DOF 1/4 vehicle model
and road input model are established. The weights of an LQR controller are optimized using a
genetic algorithm. Then, a possible weighting space is constructed based on this optimal solution.
Random weighting coefficients of each performance index are generated in this space. Next, LQR
control for the 1/4 vehicle model is performed, and the simulation data are recorded automatically,
with these random weighting values, different road classes, and driving speed. A machine learning
dataset is built from these simulations. Finally, a K-means clustering algorithm is used to classify the
LQR control active suspension into three performance modes: safety mode, comprehensive mode,
and comfort mode. The optimal weighting matrix of each performance mode is determined to satisfy
requirements for different types of drivers. The results show that the new GKL algorithm not only
improves the suspension control effect but also realizes different performance modes. It can better
adapt to the changes in driving conditions and drivers.

Keywords: active suspension; machine learning; LQR control; K-means clustering; genetic algorithm

1. Introduction

The suspension is an important part of the vehicle chassis system, and its performance
has a great influence on the handling stability, ride comfort, and driver’s driving experience.
Compared with passive suspension, the active suspension has a better control effect in
vibration. It can realize dynamic adaptive adjustments according to the driving conditions
and ensure the suspension system is always in the best damping state, which significantly
improves the ride comfort and handling stability of the vehicle. Therefore, the control algo-
rithms of active suspension have become the research hotspot in the automotive industry.
Many experts have conducted many studies on the algorithms, including adaptive PID
control [1], fuzzy control [2], sliding mode control [3], neural networks [4], reinforcement
learning [5], etc. Besides, the LQR theory, as one of the earliest and most mature control
algorithms in modern control theory, has been studied deeply [6–10].

In the design of the LQR controller of active suspension, the design requirements of
comfort, safety, and deflection conflict with each other. The selection of the weighting
coefficients of the function indexes plays a very important role in suspension performance.
Usually, multiple performance indexes are weighted to calculate an optimal solution.
Therefore, how to select the weighting coefficients becomes the key in the design of the
LQR controller. At present, many researchers realized that the traditional weights selection
relies too much on the designer’s experience, so they have made many attempts to solve this
subjective problem. Compared with the various analytic hierarchy process methods [11–13],
genetic algorithm (GA) can eliminate more subjective components. Chen Shuang et al. [14]
proposed a genetic particle swarm optimization algorithm by combining the advantages of
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the genetic algorithm and particle swarm optimization (PSO), which is used to optimize
the weighting coefficients of performance indexes in the LQR control algorithm. Ranjan
et al. [15] proposed an adaptive predator–prey optimization algorithm, which solved
the problem of premature convergence of particles in PSO and the imbalance between
the exploration and exploitation of particles in global optimization. In references [16,17],
more genetic algorithms are applied to the optimal control of the active suspension. The
weighting coefficients are searched in given weighting ranges by using the population
search strategy and global search characteristics. The comprehensive performance of
suspension is improved obviously by using these genetic algorithms. However, most of
these algorithms have poor local search capability and may take quite a long time to run a
globe searching. Li et al. [18] combined a qualitative analytic hierarchy process with GA to
the LQR controller, which can increase the global optimization speed efficiently. Most of
these PSO, GA, and other algorithms in references [14–18] adopt the idea of longitudinal
iterative to find the optimal solution, so they must meet high requirements on iterative
convergence. In addition, we can only obtain one unique solution from these algorithms,
which obviously conflict with three compromised indexes.

More importantly, individual differences in driving styles are not considered in the
above algorithms. Therefore, how to judge a driver’s feature and classify it into different
modes are valuable. Many machine learning algorithms, even the simplest clustering
approaches, have shown good applications on this topic. Constantinescu et al. [19] used a
hierarchical clustering and a principal component analysis to identify and classify driving
styles. In references [20–22], a K-means clustering algorithm was used to classify driving
styles into normal type, soft type, and aggressive type. Although this above classification
is aimed at the behaviors of longitudinal acceleration and deceleration, or the lateral
lane-change maneuver, this classification idea, concentrating on the driver’s psychology,
physiology, personality, and other human factors, is much valuable for suspension control.
Therefore, proper clustering may provide a more accurate response for suspension control
or be better adaptive to the drivers and roads. We may solve the conflict between the
multi-indexes and the uniqueness of the solution by providing optimizations for each
driving style.

Different from the longitudinal iteration principle, the clustering algorithm in machine
learning is a horizontal algorithm, which could replace global optimization with local
solutions. The popular K-mean clustering can classify objects effectively according to the
correlation degree of attributes among objects [23,24]. This provides a new idea for solving
the weighting coefficients of the LQR controller and designing the suspension control mode
that adapts to the driving style. In references [20–22], data such as throttle open-angle and
vehicle speed are used to classify drivers. Their datasets are collected from real vehicles.
However, due to the lack of a commercial active suspension system, it is very hard for us
to obtain the test data of a real suspension controller. Thus, it is necessary to explore a
reasonable construction approach of the simulation dataset, generating enough suspension
data to provide for the K-means clustering algorithm.

Therefore, a new Genetic K-means clustering Linear quadratic (GKL) algorithm for
suspension classification control is proposed in this paper. At first, an optimal global
solution of LQR control weighting coefficients is calculated using traditional GA. Then,
according to this unique solution, a weighting space of suspension performance indexes is
set up with variable scaling factors. Next, a Two-dimensional data points of q1 and q2 are
randomly generated according to this newly designed weighting space. While changing
the road class and driving speed, and the 1/4 vehicle model controlled by LQR is run for
simulation. A machine learning dataset for the LQR active suspension is constructed. The
dataset consists of 60 thousand points with 15 elements, including simulation results of
three suspension indexes, among others. Finally, the simple K-means clustering algorithm
is used to classify different suspension performance modes. For each mode, a locale
optimal solution of the weighting coefficients is obtained. The simulation results show that
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these optimizations for three modes are adaptive to various driver types and improve the
suspension responses in different driving conditions.

2. Active Suspension Systems and Control Systems
2.1. GKL Control Principle

In order to solve the above problems, a new GKL algorithm is proposed, and its
principle is shown in Figure 1. The basic of suspension control is the traditional LQR
algorithm on a 1/4 vehicle model. The control force is the K gain of the state vector
by solving the Riccati equation. By aiming at a more objective weighting coefficients
selection, a genetic algorithm program is used to search for a unique optimal solution for
the comprehensive performances, shown in the top-right of Figure 1. A possible weighting
space of q1 and q2 is constructed based on the scaling of this unique solution. Plenty
of the active control simulations are carried out by randomly selecting weights within
the weighting space and changing the road class and driving speed. Thus, a machine
learning dataset for active suspension could be built with these input parameters and
output indexes records. Finally, a K-mean clustering algorithm is used to classify the
individual’s requirement on suspension performances into three modes, as shown in the
left-bottom of Figure 1. A solution set of optimal weighting coefficients is offered for
different types of drivers. Except for the integral optimal unique solution solved by GA,
two new optimal solutions are provided in this set, which emphasizes more safety and
comfort, respectively.
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2.2. 2-DOF 1/4 Vehicle Model

The vehicle suspension dynamics model is the basis for suspension system design
and performance analysis. In this paper, a 2-DOF 1/4 vehicle dynamics model is built, as
shown in Figure 2.
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Where mb and mw are the sprung mass and the unsprung mass, Ks is the suspension
stiffness, Kt is the tire stiffness, Cs is the suspension damping, Ua is the active control force
of suspension, when Ua = 0, it is passive suspension.

According to the suspension model, the dynamic equation of the system is established
by Newton’s law, which is:

mb
..
zb = Ks(zw − zb) + Cs(

.
zw −

.
zb) + Ua (1)

mw
..
zw = Kt(zg − zw) + Cs(

.
zb −

.
zw)− Ks(zw − zb)−Ua (2)

where zb is the vertical displacement of the car body, zw is the vertical displacement of the
wheel, zg is the road displacement,

.
zb is the body vertical speed,

.
zw is the wheel vertical

speed,
..
zb is body vertical acceleration, and

..
zw is the wheel vertical acceleration.

The vehicle model parameters are listed in Table 1.

Table 1. Vehicle model parameters.

Model Parameter Parameter Value Model Parameter Parameter Value

mb/kg 320 Cs/(N·s·m−1) 1000
mw/kg 40 n0/Hz 0.1

Ks/(N·m−1) 22,000 f0/Hz 0.1
Kt/(N·m−1) 200,000 u/(m·s−1) 20

2.3. Road Input Model

The road input model is the basis of the dynamic response and control of the vehicle,
which is closely related to the suspension performance. Usually, the greater the road
roughness is the worse the suspension performance responses.

For vehicles, most driving conditions can be regarded as random road inputs. There-
fore, a filtered white noise of Gaussian distribution is used to generate the random road
profile, and the time domain expression of road displacement is obtained:

.
zg(t) = −2π f0zg(t) + 2πn0

√
G0uw(t) (3)
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where f0 is the lower cut-off frequency, and the value is 0.1 Hz; n0 is the space reference
frequency, and the value is 0.1 m−1; G0 is the road roughness coefficient; u is the driving
speed; w is the Gaussian white noise with a mathematical expectation of zero; zg is the
road displacement.

In the previous study of suspension control algorithms, the simulation and test are
usually only carried out under a single road class. It is hard to describe the actual driving
conditions in one simulation. Therefore, we establish a composite road model for active
suspension controls.

A-class to D-class roads are recorded for 10 s in turn to build this composite road. The
time domain response curve is shown in Figure 3.
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2.4. LQG Controller Design of Active Suspension

The two main functions of the vehicle suspension are to ensure that the vehicle has
good ride comfort and handling stability when driving. At the same time, the working
space of suspension needs to be controlled within a certain range and meet the requirements
of body posture during accelerating, decelerating, braking, or steering. Therefore, for the
2-DOF 1/4 vehicle suspension model, the three parameters of body vertical acceleration
(BA), suspension working space (SWS), and dynamic tire deflection (DTD) are selected as
performance indexes to quantitatively evaluate the suspension performance.

The state vector of the system is:

X =
[ .

zb
.
zw zb zw zg

]T (4)

The output vector of the system is:

Y =
[ ..

zb zb − zw zw − zg
]T (5)

where
..
zb is body vertical acceleration, zb − zw is suspension working space, zw − zg is

dynamic tire deflection.
By combining Equations (1)–(3), and writing the system motion equation and the

road input equation in the form of a matrix, the space state equation of the system can be
obtained: .

X = AX + BU + FW (6)

Y = CX + DU (7)
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where, A =


− Cs

mb

Cs
mb

− Ks
mb

Ks
mb

0
Cs
mw

− Cs
mw

Ks
mw

−Kt−Ks
mb

Kt
mw

1 0 0 0 0
0 1 0 0 0
0 0 1 0 −2π f0

, B =


1

mb

− 1
mw

0
0
0

, F =


0
0
0
0
2πn0

√
G0u

,

C =

 − Cs
mb

Cs
mb
− Ks

mb

Ks
mb

0
0 0 1 −1 0
0 0 0 1 −1

, D =

 1
mb
0
0

.

where A is the state matrix of the system, B is the input matrix of the control vector, F is
the road input matrix, C is the output matrix, D is the transfer matrix, U = [Ua(t)] is the
control input matrix of active suspension, and W = [w(t)] is the gaussian white noise input
matrix.

The comprehensive index J of the LQR controller is defined with the three performance
indexes as follows:

J = lim
T→∞

1
T

∫ T

0
[q1(zw(t)− zg(t))

2 + q2(zb(t)− zw(t))
2 + q3

..
zb(t)]dt (8)

where, q1, q2, and q3 are the weighting coefficient of DTD, SWS, and BA. The selection of
the weighting coefficient reflects the designer’s tendency towards different performances.
Due to these three weights essentially representing the relative values among them, the
weighting coefficient q3 of BA is usually set to 1 for the convenience of calculation.

Rewrite the above expression (8) into a matrix form:

J = lim
T→∞

1
T

∫ T

0
(XTQX + UT RU + 2XT NU)dt (9)

where, Q =



C2
s

m2
b

− C2
s

m2
b

CsKs
m2

b
−CsKs

m2
b

0

− C2
s

m2
b

C2
s

m2
b

−CsKs
m2

b

CsKs
m2

b
0

CsKs
m2

b
−CsKs

m2
b

K2
s

m2
b
+ q2 − K2

s
m2

b
− q2 0

−CsKs
m2

b

CsKs
m2

b
− K2

s
m2

b
− q2

K2
s

m2
b
+ q2 + q1 −q1

0 0 0 −q1 q1


, R = 1

m2
b
, N = 1

m2
b


−Cs
Cs
−Ks
Ks
0

.

where Q is the weighting matrix of state variables, R is the weighting matrix of control
variables, and N is the weighting coefficient of cross terms.

When vehicle parameters and weighting coefficients values are determined, the opti-
mal control feedback gain matrix can be solved by the Riccati equation, and its form is as
follows:

PA + AT P− (PB + N)R−1(BT P + NT) + Q = 0 (10)

The optimal control feedback gain matrix is determined by vehicle parameters and
weighting coefficients, and its form is as follows:

K = R−1(BT P + NT) (11)

The optimal control force Ua at time t can be calculated as the negative gain of the
state vector:

Ua(t) = −KX(t) (12)

3. GA Optimization on LQR Weighting Coefficients

According to the LQR control principle, the optimal solution of the controlled system
depends on the selection of weighting matrix Q and R. However, these two matrixes cannot
be solved by an analytic method. These matrix parameters can only be selected qualitatively,
which makes the selection of weights of the LQR controller more subjective and dependent too
much on the designer’s experience. Additionally, if the selection of Q and R is not appropriate,
the optimal solution would have no practical significance and application value.
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GA is a global search algorithm developed by imitating the mechanism of biological
evolution, which is based on natural selection and genetic theory. This algorithm adopts
the principle of survival of the fittest, elimination of inferior. In the iterative process, the
population evolves towards the optimal direction through the steps of selection, crossover,
and mutation and finally obtains the optimal solution that meets the requirements. There-
fore, we applied GA to optimize the LQR controller of active suspension and take the
solution as the reference value for the weighting space construction in our GKL algorithm.

3.1. Genetic Algorithm

Due to the orders of magnitude and units of the three performance indexes of suspen-
sion being different, it needs a normalization comparison. The root mean square (RMS)
values of three active suspension performance indexes are divided by their corresponding
RMS value of the passive suspension and then added together as a fitness function of GA:

minL =
rmsBAa

rmsBAp
+

rmsSWSa

rmsSWSp
+

rmsDTDa

rmsDTDp
(13)

where rmsBAa, rmsSWSa, rmsDTDa are the RMS values of BA, SWS, DTD of active sus-
pension; rmsBAp, rmsSWSp, rmsDTDp are the RMS values of BA, SWS, DTD of passive
suspension.

The constraint conditions are:

s.t.


rmsBAa < rmsBAp
rmsSWSa < rmsSWSp
rmsDTDa < rmsDTDp

(14)

The optimization process of GA is shown in Figure 4. Additionally, the steps are as follows:

1. Generate initial population of weighting coefficients;
2. The values of individuals in the population are assigned to the weighting coefficients

q1, q2, and q3 of the LQR controller in turn. The optimal gain feedback matrix K is
solved by Riccati Equation (10), and then the optimal control force Ua(t) is solved by
Formula (12). Then the control force is acted on the active suspension model, and the
RMS values of the three performance indexes are calculated;

3. On the premise that the constraint conditions (14) are satisfied, the fitness function
value of each individual in the population is calculated by the Formula (13). If the
termination condition is met, the GA is exited, and the optimal individual value is
returned; if not, it is transferred to step 4;

4. GA continues with selection, crossover, and mutation to produce a new population
and then proceeds to step 2 to repeat the cycle until the termination conditions are
met and exit the cycle.
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3.2. Simulation Analysis

In the optimization process of GA, to guarantee the control effect of BA and reduce the
number of iterations, the weighting coefficient of BA is set to 1. We took the optimization
results of the literature [14] as references and expanded the range of weighting coefficients
q1 and q2 intervals as larger as possible to ensure the reliability of the optimization search
results. For GA, the main parameters are the population size, the number of interactions,
the crossover fraction, and the mutation fraction. We set these parameters of GA using
the values set in the literature [16,17] as references. As can be seen from Figure 5a, the
value of the fitness function has reached the optimum at the 12th iterations. Therefore,
it is sufficient to set the generations and termination generation to 20. Furthermore,
the selection of crossover fraction and the genetic fraction is crucial to the performance
of genetic algorithms. The larger the crossover fraction, the faster new individuals are
generated. However, when the crossover fraction is too large, there is a possibility of
the genetic pattern being destroyed, making the structure of individuals with high fitness
destroyed. Additionally, if the crossover fraction is too small, the search process is slow, and
the search time is prolonged. For the mutation fraction, if its value is too small, it is not easy
to generate new individuals. If the mutation fraction is too large, the randomness of the
genetic algorithm search is too large. Therefore, we used the values in the literature [16,17]
as references, and the two parameters were fine-tuned to simulation. Finally, the crossover
fraction is set to 0.4 and the mutation fraction to 0.05. The parameters of the GA are shown
in Table 2.
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The variation in fitness function value is shown in Figure 5a. The optimal solution of
weighting coefficients is shown in Figure 5b.

From the simulation results in Figure 5, it can be seen that the fitness function value is
optimized with the population evolving and finally converges to 2.42819. The weighting
coefficients’ optimal solution is: q1 = 68680, q2 = 9259, q3 = 1.

Simulations are performed when the road input is the A-class to D-class composite
road, simulation speed is 20 m/s, and simulation time is 40 s. The time domain curves of
1/4 vehicle model’s BA, SWS, and DTD are obtained, as shown in Figure 6a–d.
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In Figure 6, the solid lines are the results of a passive suspension, and the dot–dash
lines are those for active control. Compared with passive suspension, the vibration range of
each performance index is reduced after the optimization and control. To quantitatively de-
scribe the improvement effect, the RMS values and improvement rate of each performance
index are calculated, as shown in Table 3.
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Table 3. RMS values and improvement rate of suspension performance indexes.

Road Class Suspension Type
RMS Values

BA SWS DTD

A
Passive 0.3377 0.0034 0.0011

GA-LQR 0.2900 0.0023 0.0010
Improvement/% −14.14% 1 −32.94% −7.30%

B
Passive 0.6755 0.0068 0.0023

GA-LQR 0.5780 0.0043 0.0021
Improvement/% −14.44% −36.62% −7.32%

C
Passive 1.3526 0.0135 0.0045

GA-LQR 1.1616 0.0091 0.0041
Improvement/% −14.12% −32.94% −7.19%

D
Passive 2.7168 0.0271 0.0093

GA-LQR 2.3298 0.0182 0.0086
Improvement/% −14.25% −32.87% −7.58%

1 The negative changing rate represents optimization, and the positive changing rate represents deterioration.

Comparing the RMS values in Table 3, we can find that the BA decreases about 14%,
which effectively refines the comfort for the driver; the improvement rate of SWS is about
34%, which can ensure the working space of suspension meets the requirements of the
space structure; the optimization rate of DTD is about 7.3%, which guarantee the tire
adhesion for safety. In summary, the LQR controller optimized by GA has significantly
improved the comprehensive performance of the vehicle.

4. GKL Algorithm of Active Suspension

The GA mentioned in the previous section can only obtain one optimal solution for
the LQR controller. The adaptability to variable working conditions is poor. It cannot meet
the different requirements of different drivers for vehicle performance either. Therefore, in
this paper, we introduce a machine learning approach to solve these problems.

4.1. Active Suspension Machine Learning Dataset

The performance of vehicle suspension is affected by many factors, which can be
divided into internal and external factors. In terms of the internal factors, according to the
LQR control principle, the selection of weighting coefficients has a great influence on the
control effect. In terms of the external factors, the performance of suspension is affected
by road roughness and vehicle motion state. Therefore, we take these two kinds of factors
into account together. We selected five factors, including road class, vehicle speed u, DTD
weighting coefficient q1, SWS weighting coefficient q2, and BA weighting coefficient q3 as
independent variables to carry out simulations and build the machine learning dataset of
LQR control active suspension.

In the sample simulation, the BA weighting coefficient q3 is set as 1 for simplification,
and the other four factors are selected as independent variables. The construction process
of the machine learning dataset is shown in Figure 7.
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1. Generate random numbers

A possible weighting space is constructed based on the optimal solution optimized by
GA. Two scaling factors, 1.75 and 1.1 in this case, are used to limit the range of weighting
coefficients q1 and q2, that is q1 ∈ [0, 120000], q2 ∈ [0, 10000]. Then, 50 random numbers
are generated in their respective intervals to form 2500 combinations of the weights. The
random numbers are generated with the Linear congruential method as follows.

Generate random seeds:
S0 = seed; (15)

Generate random numbers:

Si+1 = aSn + b[MOD(M)] (16)

where A, B, and M are integer constants, MOD is the remainder operation.
The generated Two-dimensional random data points, (q1i, q2j) in this case, are listed

in Table 4;
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Table 4. Two-dimensional random data points (q1i, q2j).

Parameters Values

q1i

3738 5703 7397 7440 8461 13,050 14,934 18,738 20,772 23,063
23,571 29,017 31,616 34,455 34,885 41,372 41,987 45,985 46,489 46,568
53,650 57,407 58,815 60,134 65,260 69,988 72,053 75,262 76,333 78,009
80,244 81,324 81,546 82,576 83,398 83,887 83,932 84,101 87,958 89,062
91,815 92,447 93,655 95,776 108,877 110,035 110,872 111,768 113,821 119,888

q2j

322 425 1021 1119 1945 2222 2261 2619 2620 2853
2869 2963 3957 4269 4375 4478 4675 4945 5078 5154
5183 5230 5417 5518 5585 5601 5645 5803 6948 7264
7283 7311 7327 7447 7588 7594 7604 8140 8254 8551
8616 8796 9041 9059 9213 9229 9460 9549 9950 9974

2. Select road class

According to the ride comfort test standards of passenger cars (ISO2631-1), the road
roughness coefficient G0 of four road classes (A, B, C, and D) is selected in turn;

3. Select driving speed

Select six driving speeds (5, 10, 15, 20, 25, and 30 m/s) in turn;

4. Select the weighting coefficients of performance indexes

Select the weights q1 and q2 of DTD and SWS in turn;

5. Model simulation

After all independent variables have been selected, the 1/4 vehicle model is run for
simulation;

6. Construct the machine learning dataset of LQR active suspension

The results of each simulation are output and saved in the form of a matrix to construct
the machine learning dataset of LQR active suspension (4 × 6 × 50 × 50 = 60,000 samples
in total).

Each machine learning sample point contains 15 elements, including road roughness
coefficient G0, driving speed u, three weighting coefficients of performance indexes, three
performance RMS values for active control and three for passive suspension, three changing
rates of the performances, and the suspension integral control effect index L.

The sample vector Sample i is as follows:

Sample i =
[

G0 u q1 q2 q3 rmsBAa rmsSWSa rmsDTDa rmsBAp rmsSWSp rmsDTDp dBA dSWS dDTD L
]

(17)

The changing rate of three performance indexes are as follows:

dBA =
rmsBAa − rmsBAp

rmsBAp
(18)

dSWS =
rmsSWSa − rmsSWSp

rmsSWSp
(19)

dDTD =
rmsDTDa − rmsDTDp

rmsDTDp
(20)

where dBA, dSWS, dDTD are the changing rate of BA, SWS, DTD.
The suspension integral control effect index L is as follows:

L =
rmsBAa

rmsBAp
+

rmsSWSa

rmsSWSp
+

rmsDTDa

rmsDTDp
(21)
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4.2. Data Analysis Based on K-means Clustering Algorithm

Clustering analysis is one of the popular algorithms in machine learning algorithms;
it has the advantages of simplicity, practicality, and efficiency. Therefore, we chose a cluster
analysis to analyze the data of the machine learning dataset constructed in the previous
section. The cluster analysis process is shown in Figure 8, which mainly includes feature
selection, clustering algorithm selection, clustering results evaluation, and physical analysis
of clustering results.
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4.2.1. Selection of Feature and Clustering Algorithm

Feature selection refers to the selection of several effective features from all the original
features in the dataset to optimize the specific indexes of the system. Through a good feature
selection, we can reduce the dimensions of the dataset and improve the efficiency of the
machine learning algorithm. In this case, the RMS values of the three performance indexes
of active suspension are chosen as the effective characteristics for clustering analysis.

K-means clustering algorithm [25] is subordinate to the partition clustering algorithm,
which generally uses European distance as an index to measure the similarity between data
objects. It has the advantages of simple process, fast operation speed, and good clustering
effect. Therefore, we use the K-means clustering algorithm to analyze the machine learning
dataset.

The process of the K-means clustering algorithm is shown in Figure 9:
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1. Initialization

K objects are randomly selected as the initial cluster centers;

2. Set iteration termination conditions
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The maximum number of cycles N or the sum of the squares of errors of the cluster
center SSE are usually set as the termination conditions. The calculation formula of SSE is:

SSE =
K

∑
i=1

∑
c∈Ci

|d(x, Ci)|
2

(22)

where, x is the data object, Ci is ith cluster center, K is the number of clusters;

3. Update the cluster of the sample object

d(x, Ci ) =

√√√√ m

∑
j=1

(xj − Ci j)
2 (23)

where m is the dimension of the data object, xj and Cij are the jth attribute values of x and
Ci.

The Euclidean distance dij of each data object to the cluster center Ci is calculated by
Equation (23), and the data object is allocated to the cluster close to the Ci according to the
distance criterion;

4. Update the center of the cluster

ui =
1
|Ci| ∑

x∈Ci

x (24)

where ui is the new cluster center.
The new cluster center ui is recalculated for all sample points in Ci by formula (24);

5. Repeat steps 3 to 4 until the termination conditions in step 2 are met. Then, the
iteration is stopped, and the clustering is completed.

4.2.2. Evaluation of Clustering Results

The active suspension LQR controller studied in this paper changes 4 kinds of road
classes, 6 kinds of speed, 50 weighting coefficients of DTD, and 50 weighting coefficients of
SWS. The sample data of the machine learning dataset constructed after the simulation are
so large that the clustering analysis cannot be carried out directly. Thus, keeping the road
class and driving speed unchanged, a control variable method is used to divide the dataset
into 24 subsets (i.e., 24 working conditions).

In this paper, the subset of B-class road under 20 m/s (B-20 subset for short) is taken
as an example for cluster analysis, which is used to explore the rule information between
the weighting coefficients and LQR control effect. The other subsets have the same analysis
steps and similar clustering characteristics, which will not be repeated here. A K-means
clustering program is written and run to cluster the sample data of the B-20 subset. This
subset is divided into seven clusters according to the similarity of the three performance
indexes. The clustering results are shown in Figure 10:

As can be seen from Figure 10, the sample data of the B-20 subset are divided into seven
clusters, but there is lacking accurate data information to evaluate and analyze the results.
Therefore, to accurately describe the clustering effect, the averages of each variable in each
cluster are calculated, and all data are processed in ascending order according to the value
of the suspension integral performance index L. Finally, all the control results are classified
into three different suspension requirement modes, which are safety mode, comprehensive
mode, and comfort mode. The optimal solutions for the weighting coefficients of each
mode are computed. The clustering results are shown in Table 5.
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Table 5. Averages of clustering results of B-20 subset.

Cluster Number q1 q2 BA/(m·s−2) SWS/m DTD/m dBA dSWS dDTD L Mode

5 462 100,819 7448 0.6105 0.0046 0.0021 −9.87% −31.06% −10.65% 2.4842 safety
4 651 83,348 5899 0.5809 0.0048 0.0021 −13.70% −28.50% −7.92% 2.4988
1 497 62,033 5133 0.5474 0.0049 0.0022 −18.60% −25.71% −3.50% 2.5219 Comprehensive
7 369 36,170 5662 0.5191 0.0053 0.0022 −27.15% −29.69% −3.05% 2.5533
3 276 19,078 5693 0.4596 0.0053 0.0026 −31.65% −19.80% 15.34% 2.6389

Comfort6 174 10,904 4452 0.4137 0.0057 0.0029 −38.70% −14.75% 27.71% 2.7426
2 71 6744 2112 0.3476 0.0064 0.0034 −48.23% −3.30% 47.01% 2.9548 –

Compared with the RMS values of passive suspension, the optimization effect of BA
in Cluster 2 is very good, and the optimization rate is as high as 48.23%. However, the DTD
deteriorates significantly, and the deterioration rate is as high as 47.01%. Therefore, Cluster
2 should be deleted. For Cluster 5 and Cluster 4, the optimization effect of DTD is the best,
which could be classified as safety mode. For Cluster 1 and Cluster 7, the optimization
effect of each performance is good, which could be classified as comprehensive mode. For
Cluster 3 and Cluster 2, the optimization effect of BA is the most prominent, which is
classified as comfort mode.

The clustering results of the remaining 23 kinds of working conditions and the op-
timal weights of three performance modes can be obtained by the same clustering steps.
Tables 6–8 are the optimal solution and simulation results of safety mode, comprehensive
mode, and comfort mode under B-class road, respectively. Table 9 is the optimal solution
and simulation results of comfort mode under C-class road. The others are not listed for
simplification.

Table 6. Optimal solution and simulation results of safety mode under B-class road.

Road Class Speed q1 q2 BAa/(m·s−2) SWSa/m DTDa/m dBA dSWS dDTD L

B

5 99,211 7328 0.3039 0.0023 0.0010 −10.01% −30.63% −10.37% 2.4899
10 100,830 7493 0.4319 0.0033 0.0015 −9.86% −31.25% −10.66% 2.4823
15 99,191 7433 0.5272 0.0040 0.0018 −9.99% −30.85% −10.43% 2.4873
20 100,819 7448 0.6105 0.0046 0.0021 −9.87% −31.06% −10.65% 2.4842
25 97,983 7389 0.6783 0.0052 0.0023 −10.33% −30.96% −10.30% 2.4841
30 98,991 7473 0.7451 0.0057 0.0025 −10.12% −31.03% −10.43% 2.4842
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Table 7. Optimal solution and simulation results of comprehensive mode under B-class road.

Road Class Speed q1 q2 BAa/(m·s−2) SWSa/m DTDa/m dBA dSWS dDTD L

B

5 56,998 5298 0.2701 0.0025 0.0011 −19.71% −25.56% −2.37% 2.5236
10 63,974 5208 0.3890 0.0035 0.0015 −18.27% −26.15% −4.03% 2.5155
15 59,460 5158 0.4703 0.0043 0.0019 −19.31% −25.72% −2.92% 2.5206
20 62,033 5133 0.5474 0.0049 0.0022 −18.60% −25.71% −3.50% 2.5219
25 55,367 5247 0.6019 0.0056 0.0025 −20.10% −25.37% −1.95% 2.5258
30 59,849 5224 0.6671 0.0061 0.0027 −19.17% −25.78% −3.07% 2.5198

Table 8. Optimal solution and simulation results of comfort mode under B-class road.

Road Class Speed q1 q2 BAa/(m·s−2) SWSa/m DTDa/m dBA dSWS dDTD L

B

5 10,307 4148 0.2018 0.0029 0.0015 −39.85% −13.98% 29.63% 2.7580
10 12,278 4882 0.2999 0.0040 0.0020 −36.99% −16.10% 24.41% 2.7132
15 10,919 4359 0.3549 0.0049 0.0025 −38.73% −13.87% 27.82% 2.7522
20 10,904 4452 0.4137 0.0057 0.0029 −38.70% −14.75% 27.71% 2.7426
25 10,588 4329 0.4571 0.0064 0.0033 −39.19% −14.41% 28.50% 2.7489
30 10,941 4608 0.5072 0.0069 0.0036 −38.47% −15.31% 26.97% 2.7319

Table 9. Optimal solution and simulation results of comfort mode under C-class road.

Road Class Speed q1 q2 BAa/(m·s−2) SWSa/m DTDa/m dBA dSWS dDTD L

C

5 11,263 4771 0.4188 0.0056 0.0029 −37.89% −15.67% 26.27% 2.7271
10 11,334 4830 0.5933 0.0079 0.0041 −37.72% −15.93% 25.79% 2.7214
15 9812 4193 0.6983 0.0099 0.0051 −39.91% −13.53% 30.17% 2.7673
20 10,551 4378 0.8198 0.0114 0.0059 −39.09% −14.37% 28.53% 2.7507
25 11,566 4607 0.9319 0.0126 0.0064 −37.99% −15.18% 26.23% 2.7307
30 10,387 4259 0.9970 0.0141 0.0072 −39.64% −14.18% 28.92% 2.7510

In Tables 6–8, the six different rows represent the changes in driving speed. For each
row, we performed 2500 simulations with random weighting coefficients. The listed q1 and
q2 are the weight’s mean values after mode clustering. Then three performances, BA, SWS,
and DTD, are calculated using these q1 and q2. Therefore, the weights would change a lot
in different modes, that is to say, the same row’s q1 and q2 are much different among the
three tables. However, for the same mode (table), each weight matrix at a different speed
may have close values. The analysis on the road changing is similar, comparing Table 8
with Table 9.

Comparing the data in Tables 6–8, different modes have different changing rates of
dBA, dSWS, and dDTD. The vehicle speed has less influence on the changing rate. There
are diverse control effects of different modes. Comparing the data in Tables 7 and 8, it can
be known that the three changing rates change very little with road conditions and driving
velocities. It may prove that our classification with the GKL algorithm could guarantee a
stable control effect. Therefore, we could assume that the average values of weight q1 and
q2 can be used securely. This assumption also shows good adaptability for the new GKL
control. The final values of the optimal weighting coefficients for the three performance
modes are shown in Table 10.

Table 10. The optimal solution of the three performance modes.

Performance Mode q1 q2 q3

Safety mode 99,971 7434 1
Comprehensive mode 60,829 5154 1

Comfort mode 10,973 4511 1
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4.3. Simulation Analysis

Using the weighting coefficients list in Table 10, active suspension control with the
GKL algorithm is simulated by changing the road conditions and performance modes. The
former GA-LQR control is also illustrated for comparison.

4.3.1. Active Control Force

Figure 11 represents the active control force response curves for the four suspension
types. In order to qualitatively evaluate the effect of active control, the RMS values of
active control force and power consumption are calculated at a vehicle speed of 20 m/s, as
shown in Tables 11 and 12.
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Table 11. RMS values of active control force of each suspension type under different roads.

Suspension Type
RMS Ua/N

A-Class Road B-Class Road C-Class Road D-Class Road

GA-LQR control 40.46 75.04 156.83 336.19
Safety mode 39.73 74.19 155.25 326.87

Comprehensive mode 43.62 82.52 170.82 357.94
Comfort mode 62.17 118.33 242.54 516.61

As can be seen from Tables 11 and 12, the RMS values of active control force and power
consumption in the same mode increase with the road roughness. For the same road input,
the active force of safety mode, comprehensive mode, and comfort mode increases in order,
which is related to the value of the weighting coefficient of each performance index for
different performance modes. With the improvement of comfort requirements, the suspension
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is required to be soft, so the active control force needs to be larger. The force consumption
using GA-LQR is similar to the safety mode but better than the other two modes.

Table 12. RMS values of power consumption of each suspension type under different roads.

Suspension Type
RMS Power/W

A-Class Road B-Class Road C-Class Road D-Class Road

GA-LQR control 28.55 87.16 407.87 1668.42
Safety mode 27.25 83.41 388.06 1614.46

Comprehensive mode 32.58 100.51 460.66 1942.44
Comfort mode 51.10 168.48 745.41 3268.29

4.3.2. Safety Mode Performances

The optimal solution of weighting coefficients of safety mode is as follows: q1 = 99971,
q2 = 7434, q3 = 1. The comparison curves of time domain response of passive suspension
and safety mode are shown in Figure 12a–c, and the RMS values of each performance index
are shown in Table 12.

As can be seen from Table 13, no matter how the road excitation changes, the safety
mode of active suspension designed by the GKL algorithm has similar optimization effects
for each performance. This is similar to the discussion in the former clustering evaluation.
In the safety mode, the optimization rates of BA, SWS, and DTD are about 10.7%, 33.9%,
and 10.7%. In reference [14], the optimization rates of BA, SWS, and DTD for the LQR
controller designed based on PSO are around 6.2%, 31%, and 6.5%, respectively. Compared
with the active suspension based on PSO-LQR control, there is better optimization in
BA, SWS, and DTD. Compared with the active suspension based on GA-LQR control,
the improvement effect of DTD is more obvious. This mode can effectively improve the
vehicle’s tire grip, which is suitable for aggressive drivers who like to change lanes and
overtake.

Table 13. RMS values and improvement rate of performance indexes for safety mode.

Road Class Suspension Type
RMS Values

BA SWS DTD

A
Passive 0.3377 0.0034 0.0011

GKL (Safety mode) 0.3012 0.0023 0.0010
Improvement/% −10.81% −33.04% −10.67%

B
Passive 0.6755 0.0068 0.0023

GKL (Safety mode) 0.6027 0.0043 0.0021
Improvement/% −10.79% −36.70% −10.56%

C
Passive 1.3526 0.0135 0.0045

GKL (Safety mode) 1.2016 0.0091 0.0040
Improvement/% −11.16% −33.04% −10.61%

D
Passive 2.7168 0.0271 0.0093

GKL (Safety mode) 2.4227 0.0182 0.0083
Improvement/% −10.83% −32.82% −11.07%
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4.3.3. Comprehensive Mode

The optimal solution of weighting coefficients of comprehensive mode is as follows:
q1 = 60829, q2 = 5154, q3 = 1. The comparison curves of time domain response of passive
suspension and comprehensive mode are shown in Figure 13a–c, and the RMS values of
each performance index are shown in Table 14.
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From Table 14, it can be observed that no matter how the road excitation changes, the
comprehensive mode of active suspension designed by the GKL algorithm has different
degrees of improvement in all performance. In the comprehensive mode, the optimization
rates of BA, SWS, and DTD are about 20%, 30%, and 4%, respectively. Compared with the
active suspension based on PSO-LQR control [14], the optimization effect of BA is more
significant, which greatly improves the comfort of the vehicle. Compared with the passive
suspension, this mode effectively improves the comfort and safety of the vehicle. This
mode is suitable for the normal type of drivers who pay attention to all performance.
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Table 14. RMS values and improvement rate of performance indexes for comprehensive mode.

Road Class Suspension Type
RMS Values

BA SWS DTD

A
Passive 0.3377 0.0034 0.0011

GKL (Comprehensive mode) 0.2714 0.0024 0.0011
Improvement/% −19.64% −29.24% −3.92%

B
Passive 0.6755 0.0068 0.0023

GKL (Comprehensive mode) 0.5420 0.0045 0.0022
Improvement/% −19.76% −32.67% −3.97%

C
Passive 1.3526 0.0135 0.0045

GKL (Comprehensive mode) 1.0827 0.0096 0.0043
Improvement/% −19.96% −29.24% −3.92%

D
Passive 2.7168 0.0271 0.0093

GKL (Comprehensive mode) 2.1897 0.0195 0.0089
Improvement/% −19.40% −28.11% −4.04%

4.3.4. Comfort Mode

The optimal solution of weighting coefficients of comfort mode is as follows: q1 = 10973,
q2 = 4511, q3 = 1. The comparison curves of time domain response of passive suspension
and comfort mode are shown in Figure 14a–c, and the RMS values of each performance
index are shown in Table 15.

Table 15. RMS values and improvement rate of performance indexes for comfort mode.

Road Class Suspension Type
RMS Values

BA SWS DTD

A
Passive 0.3377 0.0034 0.0011

GKL (Comfort mode) 0.2061 0.0027 0.0014
Improvement/% −38.98% −19.62% 25.02%

B
Passive 0.6755 0.0068 0.0023

GKL (Comfort mode) 0.4000 0.0052 0.0028
Improvement/% −40.79% −23.38% 21.15%

C
Passive 1.3526 0.0135 0.0045

GKL (Comfort mode) 0.8334 0.0109 0.0056
Improvement/% −38.39% −19.62% 26.37%

D
Passive 2.7168 0.0271 0.0093

GKL (Comfort mode) 1.6673 0.0224 0.0117
Improvement/% −38.63% −17.31% 25.83%

From Table 15, it can be known that no matter how the road excitation changes, the
comfort mode of active suspension designed by the GKL algorithm has the most significant
improvement in BA. In the comfort mode, the optimization rates of BA and DTD are
near 40% and 20%, respectively. Compared with the passive suspension and the active
suspension based on GA-LQR, the comfort mode can effectively improve the comfort of
the vehicle. This mode is suitable for soft drivers who pay more attention to the body’s
vibration response.
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5. Conclusions

In this paper, a new GKL method is proposed for suspension control. Based on the
traditional LQR control and genetic algorithm, the machine learning idea is introduced to
obtain more objective weighting coefficients for different driver types.

The following conclusion can be drawn:

1. The proposed GKL algorithm may offer good weight coefficients for the suspen-
sion control system’s optimization, and these weights are independent of expert
experiences;

2. It could be proved that the construct method of weighting space is reasonable. The
generated random weights are important to build the machine learning dataset. The
dataset could provide 60 thousand sample points for suspension control engineers.
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Automotive developers can directly select an appropriate weight matrix according to
this dataset, which can greatly improve design efficiency by reducing the optimization
process of repeated trial and error;

3. Through K-means clustering, the active suspension is classified into safety mode,
comprehensive mode, and comfort mode, which can adapt to three driving styles:
aggressive, normal, and soft. This method offers the LQR control system with two
extra solutions, except for the unique value optimized by GA. In future research, we
can also use similar ideas combing the support vector machine or deep convolution
network with the dataset for parameter optimization;

4. The GKL control could improve the suspension performance. The adhesion between
the tires and ground increase by 11% in safety mode, and the body acceleration
refines by 40% in comfort mode. Moreover, the three performance indexes show good
stability for the road input and driving velocity;

5. The LQR controller designed based on machine learning ideas has more intuitive
design results and richer performance modes. It can meet the different requirements
of different drivers for suspension performance or recommend appropriate weighting
coefficients according to the different purposes of the vehicle.
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