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Abstract: Rock masses with a distinct structure may present a transversely isotropic character; thus,
the stress state in a transversely isotropic elastic half-plane surface is an important way to assess the
behavior of the interaction between the distributed loading and the surroundings. Most previous
theoretical analyses have considered a loading direction that is either vertical or horizontal, and the
stress distribution that results from the effect of different loading directions remains unclear. In this
paper, based on the transversely isotropic elastic half-plane surface theory, a stress solution that is
applicable to distributed loading in any direction is proposed to further examine the loading effect.
The consistency between the analytical solution and numerical simulations showed the effectiveness
of the proposal that was introduced. Then, it was utilized to analyze the stress distribution rule
by changing the Poisson’s ratio and Young’s modulus of the model. The effects of the formation
dip angle on the stress state are also examined. The stress distribution, depending on the physical
property parameters and relative angle, is predicted using an analytical solution, and the mechanisms
associated with the transversely isotropic elastic half-plane surface subjected to the loading in any
direction are clarified. Additionally, extensive analyses regarding this case study, with respect
to the mechanical behavior associated with changes in the stress boundary, is available. Hence,
the proposed analytical solution can more realistically account for the loading problem in many
engineering practices.

Keywords: transversely isotropic; elastic foundation; distributed loading; arbitrary direction

1. Introduction

Along with the development of underground engineering construction, layered rock
mass is the most familiar type of rock mass due to the existence of directional structural
planes. The failure modes and deformation behaviors of transversely isotropic rocks are
very different from those of isotropic rock mass under the uniform loading of an arbitrary
angle. Therefore, the influence of the mechanical properties of rock materials, particularly
under transverse isotropic conditions, is a notably important problem for describing the
deformation and failure characteristics of rock masses.

The issues with respect to transversely isotropic rocks are often encountered in mining
engineering. Uniaxial and triaxial cyclic tests were sensitive to being strongly influenced by
the inclination of loading with respect to the isotropy planes [1]. The direct tensile strength
of the initial bedding plane was quantified through laboratory experiments, and the
influence of weak planes on the mechanical behaviors of transversely isotropic rocks under
uniaxial compression was studied [2,3]. In addition, the fracture mode and failure strength
of the rock samples tested in Brazil were characterized with different foliation-loading
angles [4,5], of which the digital image correlation (DIC) method was used to study crack
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initiation and propagation with various anisotropy angles [6]. The relationship among
the tensile strength, specimen size, and loading slice angle of the transversely isotropic
rocks was revealed from the perspective of size effect, which together control the failure
mechanism of transversely isotropic rocks in the Brazilian test [7,8]. The isotropic materials’
response curve was defective because of the neglect of the orthotropic and transversely
isotropic cases, and the classical criteria for isotropic materials were generalized for the case
of orthotropy as well as transverse isotropy [9]. These laboratory studies have provided a
great deal of insight and many valuable results.

In order to identify the distribution of the stress and strength of rock mass affected
by the transversely isotropic laminated layers, a number of physical models have been
reported [10–13]. Moreover, the wave phase velocity [14] and ultrasonic response [15]
across the transversely isotropic layers were employed and analyzed, creating an effective
constitutive model that was capable of describing the bedding plane elastic-plastic matrix
equation [16]. The evolution of the mechanical parameters of bedding planes with the
internal variable was determined, including the isotropic plane direction and dip angle [17],
and the magnitude of the anisotropic elastic constant [18] and its influence under non-
uniform action [19]. The studies revealed that the in situ stress ratio and the orientation
of the bedding plane significantly affected the load distribution. Theoretical derivation
of the anisotropic damage model was given [20], both in the elastic [21] as well as in the
post-failure phases [22]. Hu JT et al. [23] and Vu TM et al. [24] proposed a calculation
of p-wave travel time marching in a three-dimensional transversely isotropic medium
wave step by step. Anisotropic damage models considering loading were induced [25],
continuum damage ([26]) was analyzed, and some suggestions were put forward.

The experiments in the lab and the implementations on the worksite [27] showed that
according to the structure in the direction of principal stress test [28], assembling produced
a set of devices for carrying out an experiment in parallel and perpendicular to the direction
of the bedding, analyzing its influence on tunnel convergence [29], and determining the
influence of the stratification plane directivity on the supporting structure [30]. Meanwhile,
shale stability depended on the direction between the borehole axis and the stratification
at the drilling site [31,32]. The concentrations of stress in the wall of a horizontal well in
transversely isotropic shale were quantified [33], and the lateral pressure sensitivity [34,35]
was obtained.

More recently, the numerical solution of isotropic multilayer viscoelastic porous rock
foundations under vertical circular loading was given [36], the displacement continuity
condition [37] and non-Darcy flow [38] characteristics were analyzed, and the mechanical
and anisotropic characteristics of the rock mass were developed and adopted to explain this
based on Goodman’s stiffness equation [39], the double boundary element method [40], the
three-dimensional continuum model [41], and the Thomsen parameters [42]. They came to
the conclusion that transversely isotropic bedding planes have significant impacts on the
analysis of bedding planes.

The above valuable results obtained were developed based on the assumption that
loading occurred in the vertical or horizontal direction. Considering the fact that there was
a lack of an efficient method to analyze and evaluate the effect of the loading angle with
respect to the horizontal plane applied on structures, based on the previous basic work
by the authors, the angle was adopted as the variable to propose a method to support the
stress distribution. Therefore, the ground responses to distributed loading, considering
the influence of an arbitrary angle, require further analysis. In this paper, based on the
equilibrium equation, geometric equation, boundary conditions and physical equation, a
new analytical model to estimate the stress is established, where the loading inclination
is considered. On this basis, a new model was devised for the arbitrary direction under
various schemes, and an evaluation of the efficiency for arbitrary direction was proposed by
using numerical simulations. The results were given to manifest the analytical computation,
which can be used for the advance predictions of loading action. Thus, this paper proposes
a theoretical foundation for the evaluation of stress distribution results under an arbitrary
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direction and offers valuable insights into both theoretical research and actual engineering
applications.

2. The Transverse Isotropic Model of Layered Rock Mass
2.1. The Transverse Isotropic Elastic Constitutive Model

The analytical solution of the distributed loading on the surface of semi-infinite
isotropic elastomers has been given, while that of the transversely isotropic floor rocks has
not been obtained as layered rock mass is often simplified as a transversely isotropic body
in engineering practices, as shown in Figure 1. More specifically, if XOY is a transversely
isotropic plane, then the constitutive relation of a transversely isotropic elastomer [43] is:

εx
εy
εz

γxy
γyz
γxz


=



A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66





σx
σy
σz
τxy
τyz
τxz


A11 = A22 = 1

E1
, A12 = − µ1

E1
, A13 = − µ2

E2

A33 = 1
E2

, A44 = 2(1+µ1)
E1

, A55 = A66 = 1
G2

(1)

where E1 and E2 are the elastic moduli of the parallel transversely isotropic plane (XOY
plane) and the vertical transversely isotropic plane (z-axis direction), respectively; µ1 and
µ2 are Poisson’s ratios characterizing the lateral strain response in the plane of transverse
isotropy to a stress acting parallel or normal to it, respectively; and G2 is the shear modulus
in the vertical isotropic plane.
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Figure 1. Transversely isotropic constitutive model.

2.2. A Semi-Infinite Plane Subjected to Vertically Distributed Stresses

For the case of the isotropic elastic half-plane subjected to vertical stresses on the point,
the coordinate system is established as shown in Figure 2. The XOY plane is assumed to
the transverse isotropic plane [44]. If F1 is the applied stress, the basic equation can be
obtained as follows:
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(1) Equilibrium differential equation{
∂σx
∂x + ∂τxz

∂z + fx = 0
∂σz
∂z + ∂τxz

∂x + fz = 0
(2)

where fx and fz are the volume forces along the X and Z axes, respectively; σx and σz
are the normal stresses along the X and Z axes, respectively; and τxz is the shear stress
along the X direction.

(2) geometric equation

εx =
∂u
∂x

, εy =
∂w
∂z

, γyz =
∂w
∂x

+
∂u
∂z

(3)

where u and w are the displacements along the X and Z axes, respectively.
(3) physical equations

εx = 1
E1

(
1− µ1

2)σx − 1
E2
(1 + µ1)µ2σz

εz = − 1
E2
(1 + µ1)µ2σx +

1
E2

(
1− E1

E2
µ2

2
)

σz

γxz =
1

G2
τxz

(4)

where E1 and µ1 are the elastic modulus and Poisson’s ratio in the transverse isotropic
plane; E2 and µ2 are the elastic modulus and Poisson’s ratio in the vertical isotropic
plane (z-axis direction); and G2 is the shear modulus in the vertical isotropic plane.

(4) boundary conditions
When z = 0, τxz = 0, σz = −pδ(x).

where: δ(x) is the function of Dirace, δ(x) =
{

∞, x = 0
0, x 6= 0

.

∂2εx

∂z2 +
∂2εz

∂x2 =
∂2γxz

∂x∂z
(5)

Without considering physical strength, the stress component of the transversely
isotropic plane problem is also expressed as:

σx =
∂2 ϕ

∂z2 , σz =
∂2 ϕ

∂x2 , τxz = −
∂2 ϕ

∂x∂z
(6)

where ϕ = ϕ(x, z) is a Airy function.
The stress function ϕ = ϕ(x, z) automatically satisfied the equilibrium Equation (2) [45].

The physical Equation (4) is substituted into the deformation coordination Equation (5),
and then Equation (6) is deduced to obtain the compatible equation, which is expressed by
the stress function as:

1
E1

(
1− u2

1

)∂4 ϕ

∂z4 +

[
1

G2
− 2

E2
(1 + u1)u2

]
∂4 ϕ

∂x2∂z2 +
1

E2

(
1−

E1u2
2

E2

)
∂4 ϕ

∂x4 = 0 (7)

Note that the solution of the transversely isotropic problem is reduced to seek the
stress function satisfying the differential Equation (7) and boundary conditions ϕ = ϕ(x, z)
without regard to physical force. It is very convenient for this differential equation to
use the Fourier transform to solve Equation (7). By applying the Fourier transform of
Equation (7) to X, it can be obtained as follows:

1
E1

(
1− µ2

1
) d4 ϕ(ξ,z)

dz4 − ξ2
[

1
G2
− 2

E2
(1 + µ1)µ2

]
d2 ϕ(ξ,z)

dz2

+ξ4 1
E2

(
1− E1µ2

2
E2

)
ϕ(ξ, z) = 0

(8)
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Equation (8) is a fourth order differential equation with constant coefficients. Consid-
ering that the half plane of z < 0, the general solution is:

ϕ(ξ, z) = cea1|ξ|z + dea2|ξ|z (9)

where c and d are the functions of the Fourier transform parameters, which can be deter-
mined according to the boundary conditions. a1 and a2 are the two positive real numbers
of the roots of the quartic algebraic equation with respect to a, whose equations were:

1
E1

(
1− u2

1

)
a4 +

[
1

G2
− 2

E2
(1 + u1)u2

]
a2 +

1
E2

(
1−

E1u2
2

E2

)
= 0 (10)

By applying the Fourier transform to the boundary conditions in Equation (4), it can
be obtained that the boundary conditions in the image domain are:

When z = 0, τxz = 0, σz = p.
According to the above analysis results, it can be concluded that:

σx =
F1

π

[
K1 A1

3z

x2 + (A1z)2 −
K2 A2

3z

x2 + (A2z)2

]
(11)

σz = − F1

π

[
K1 A1z

x2 + (A1z)2 −
K2 A2z

x2 + (A2z)2

]
(12)

τxz = −
F1

π

[
K1 A1x

x2 + (A1z)2 −
K2 A2x

x2 + (A2z)2

]
(13)

where

A1 =

√
S66/2+S12+

√
(S66/2+S12)

2−S11S22
S11

A2 =

√
S66/2+S12−

√
(S66/2+S12)

2−S11S22
S11

S11 = 1−µ2

E1
S12 = − µ2(1+µ1)

E2
S22 =

(
1− E1µ2

2

E2

)
/E2 S66 = 1

G2

K1 = A2
A1−A2

K2 = A1
A1−A2

Based on Equations (11)–(13) and Figure 3, it can be obtained that the distributed
stress F11 applied vertically on the transverse isotropic plane and the stress distribution
can be expressed as:

∆σx =
F11

π

 K1 A1
2
(

arc tan
(

x+a
A1z

)
− arc tan

(
x−a
A1z

))
−

K2 A2
2
(

arc tan
(

x+a
A2z

)
− arc tan x−a

A2z

)  (14)

∆σz = −
F11

π

 K1

(
arc tan

(
x+a
A1z

)
− arc tan

(
x−a
A1z

))
−

K2

(
arc tan

(
x+a
A2z

)
− arc tan x−a

A2z

)  (15)

τxz = −
F11

π

 K1 A1

[
ln
(
(x + a)2 + (A1z)2

)1/2
− ln

(
(x− a)2 + (A1z)2

)1/2
]
−

K2 A2

[
ln
(
(x + a)2 + (A2z)2

)1/2
− ln

(
(x− a)2 + (A2z)2

)1/2
]
 (16)
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2.3. A Semi-Infinite Plane Subjected to Horizontally Distributed Stresses

There is a semi-infinite body with no physical force, and the concentrated stress F2 is
applied along the plane. The main coordinate is shown as Figure 4.
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The solution process of horizontal stress is the same as that of the vertical stress. As
such, the stress distribution can be obtained as follows:

σx = − F2

π

[
K1 A1x

(z tan α)2 + (A1z)2 −
K2 A2x

(z tan α)2 + (A2z)2

]
(17)

σz = − F2

π

[
−K1

A1

x

(z tan α)2 + (A1z)2 +
K2

A2

x

(z tan α)2 + (A2z)2

]
(18)

τxz = −
F2

π

[
K1 A1z

(z tan α)2 + (A1z)2 −
K2 A2z

(z tan α)2 + (A2z)2

]
(19)

If the horizontal stress is uniformly distributed, the coordinate system can be es-
tablished as shown in Figure 5. Assuming that the width of strip foundation is 2a, and
distributed loading F22 is horizontally applied on the transversely isotropic plane, the
additional stress at any point in the foundation can be obtained by integrating the above
equations in the interval [−a, a], which can be depicted as:

σx =
F22

2π

[
K1 A1 · ln

(x− a)2 + A1
2z2

(x + a)2 + (A1z)2 − K2 A2 · ln
(x− a)2 + A2

2z2

(x + a)2 + (A2z)2

]
(20)

σz = −
F22

2π

[
K1

A1
· ln (x− a)2 + A1

2z2

(x + a)2 + (A1z)2 −
K2

A2
· ln (x− a)2 + A2

2z2

(x + a)2 + (A2z)2

]
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τxz =
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π

[
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(
a tan

x− a
A1z

− a tan
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A1z

)
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(
a tan
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Figure 5. Transversely isotropic elastic half-plane surface subjected to horizontally distributed stress.

2.4. A Semi-Infinite Plane Subjected to Distributed Stresses in Any Direction

Given a semi-infinite body without physical force F, distributed stress in any direction
is applied on its surface, which is decomposed into stress F11 in the vertical direction
and stress F22 in the horizontal direction. The stress states at the area acting on the
loading interface plane is shown in Figure 6. According to the previous analysis, the stress
distribution for any direction can be deduced as follows:

∆σFx = F11
π

[
K1 A1

2
(

arc tan
(

x+a
A1z

)
− arc tan

(
x−a
A1z

))
− K2 A2

2
(

arc tan
(

x+a
A2z

)
− arc tan x−a

A2z

)]
+ F22

2π

[
K1 A1 · ln (x−a)2+A1

2z2

(x+a)2+(A1z)2 − K2 A2 · ln (x−a)2+A2
2z2

(x+a)2+(A2z)2

] (23)

∆σFz = − F11
π

[
K1

(
arc tan

(
x+a
A1z

)
− arc tan

(
x−a
A1z

))
− K2

(
arc tan

(
x+a
A2z

)
− arc tan x−a

A2z

)]
− F22

2π

[
K1
A1
· ln (x−a)2+A1

2z2

(x+a)2+(A1z)2 − K2
A2
· ln (x−a)2+A2

2z2

(x+a)2+(A2z)2

] (24)

τFxz = − F11
π

 K1 A1

[
ln
(
(x + a)2 + (A1z)2

)1/2
− ln

(
(x− a)2 + (A1z)2

)1/2
]
−

K2 A2

[
ln
(
(x + a)2 + (A2z)2

)1/2
− ln

(
(x− a)2 + (A2z)2

)1/2
]
+

F22
π

[
K1

(
a tan x−a

A1z − a tan x+a
A1z

)
− K2

(
a tan x−a

A2z − a tan x+a
A2z

)] (25)
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Figure 6. Transversely isotropic elastic half-plane surface subjected to distributed stress in any direction.

3. Verification against Numerical Simulations

To verify the proposed analytical solutions under distributed loading in any direction,
a model is established with FLAC. The dimensions are 100 m, and the material parameters
are shown in Table 1. The value of the distributed loading is 7

√
2 × 10MPa, and it is

applied on the top of transversely isotropic floor rock at an angle of 45◦ to the horizontal
plane to analyze the effect of the loading direction on the stress distribution of the model.
The 11 measuring points and their positions in the numerical model are shown in Figure 7.
The initial time step is 0.5 µs, the maximum time is 1 µs, and the relative and absolute



Appl. Sci. 2021, 11, 10476 8 of 18

tolerances during the calculation are 1e − 5. It has been noted that the time step was
reasonable enough to guarantee the convergence and resolution accurately.

Table 1. Parameters of the model.

Model Length of the Side/m γ/(kg/m3) E1/GPa E2/GPa µ1 µ2 G/GPa

Parameters 100 2500 3 3 0.3 0.3 1.15
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Prior to stress redistribution under different coefficients, a logical way to validate an
analytical solution is to compare them with numerical solutions. Figure 8 shows several
results of comparing the distribution of the stress fields based on the numerical simulation,
accounting for the various values of the elastic moduli. To illustrate the factor (E) that
affects the stress distribution, take µ1 = µ2 = 0.3, as G2 is related to µ1, µ2, E1, and E2; given
that E1 = 3 GPa set E1/E2 as 1.0, 2.0, and 3.0, respectively, and get the same depth (z = 1 m)
distribution of σz, σx, and τxz, as shown in Figure 8. It indicates that the results, in terms of
distributed stresses based on the proposed analytical solution for the transversely isotropic
floor rock mass when compared with the numerical simulation, found that numerical
solutions align favorably with the analytical solution, even though the amplitude of stress
is not captured. From Figure 8a, it is observed that if the analytical solution is applied to
the transversely isotropic floor rock mass, horizontal stress increases when x ≤ 47, then it
undergoes the region in which there is an obvious decline until the peak stress is reached,
corresponding to an overall decrease due to stress applied. For the case of x > 53, it shows
a tendency to increase. In addition, vertical stress shows a sudden decrease and then
rebounds, and it can be seen that the changes of shear stress are the exact opposite of
vertical stress in Figure 8. Overall, the stress of an analytical solution is slightly greater
than that of numerical simulations when x ≤ 47. On the contrary, the value of an analytical
solution tends to be less than that of numerical simulations when x > 53. The reason
for this phenomenon may be attributed to the influences of the model mesh. The results
confirm the validity of the proposed solution, which can be utilized to estimate the stress
distribution under distributed loading in an arbitrary direction.

The numerical model utilized in the discussion in this section might have been
the same as that on the segment but for the elastic modulus and Poisson’s ratio. Take
E1 = E2 = 3 GPa, as G2 is related to µ1, µ2, E1, and E2, given µ1= 0.3 set µ1/µ2 as 1.0, 2.0
and 3.0, respectively, and obtain the same depth (z = 1 m) distribution of σz, σx, and τxz, as
shown in Figure 9. It is denoted that there is very little difference between them, which
indicates the proposed solution is feasible to obtain the stress concentration zone induced
by stress redistribution with certain accuracy.
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In conclusion, it is observed that there are some differences at the edge of the loading
area in terms of the variation trend more specifically, which may be due to tension effects of
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the numerical model grid. Comparisons of results confirmed the validity of the proposed
analytical solution, which is effective for capturing the characters of rock mass.

4. The Transverse Isotropic Stress Distribution Law
4.1. The Effect of E1/E2 on Stress Distribution

As can be seen from Figure 10a, the curve displayed a positive and negative stage.
Obvious stress concentration is formed in the loading area, in which the value reached the
peak stress, then it attenuates with the stress propagation along the X [46]. It is observed
that with the increasing values of E1/E2, the magnitude of stress became bigger. The peak
stress values are 62, 78, and 93 MPa, corresponding to the values of E1/E2 of 1, 2, and 3,
respectively. This is due to stress that may be prone to propagation easily under higher
values of E1/E2. As shown in Figure 10b, the peak stress of horizontal stress increases
with the value, denoting the increase of the stress concentration with the value. Figure 10c
shows that the corresponding peak values of the shear stress are 35, 37, and 38 MPa. Thus,
the values of E1/E2 cannot be neglected to quantify the effect of stress concentration.
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4.2. The Effect of µ1/µ2 on Stress Distribution

As shown in Figure 11, the effect of the anisotropy of Poisson’s ratio on the distribution
of stress is opposite to that of elastic moduli. When increasing Poisson’s ratio anisotropy,
the magnitude of the stress becomes even smaller. The peak stress values are 74, 61, and
58 MPa, which correspond to the values of µ1/µ2 of 1, 2, and 3, respectively. As can be
seen from Figure 11b, the peak values of horizontal stress are determined as 79, 71, and
69 MPa which correspond to the values of µ1/µ2, respectively. This may be attributed to the
difference of the deformation parameters of parallel planes and vertical planes. As shown
in Figure 11c, it is noted that there are little differences of variation trends among them in
terms of the values of µ1/µ2, suggesting that both the peak stress and wave velocity do not
vary very much. In addition, the anisotropy of Poisson’s ratio has a great influence on the
vertical stress and horizontal stress, but the influence on the shear stress is negligible.
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4.3. The Effect of the Formation Dip Angle on Stress Distribution

In fact, isotropic planes often incline due to long-term geological tectonics, as shown
in Figure 12. The coordinate plane OX′Y′ is consistent with isotropic planes, while plane
OXY is the horizontal plane, θ is the inclination angle of the isotropic plane, and α is the
angle between the y′ axis and the x axis clockwise. Equation (28) shows the constitutive
relation of the model in OX′Y′Z′ [47–49].{

ε′
}
=
[
A′
]{

σ′
}

(26)
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When the isotropic plane is tilted, the elastic matrix of the isotropic foundation in the
axial coordinate system is:

A′ = QT AQ (27)

where [A] is the elastic matrix in the positive axis coordinate system, and [Q] is the
transformation matrix of elastic parameters

Q =



sin2 α cos2 α 0 0 0 − sin 2α

cos2 θ cos2 α cos2 θ sin2 α sin2 θ − sin 2θ sin α − sin 2θ cos α sin 2α cos2 θ

sin2 θ cos2 α sin2 θ sin2 α cos2 θ sin 2θ sin α sin 2θ cos α sin 2α sin2 θ

− 1
2 sin 2θ cos2 α − 1

2 sin 2θ sin2 α 1
2 sin 2θ − cos 2θ sin α − cos 2θ cos α − 1

2 sin 2α sin 2θ

− 1
2 sin θ sin 2α 1

2 sin θ sin 2α 0 cos θ cos α − cos θ sin α cos 2α sin θ
1
2 cos θ sin 2α − 1

2 cos θ sin 2α 0 sin θ cos α − sin θ sin α − cos 2α cos θ


(28)

In Figure 13a, the value of the vertical stress increases when the formation dip angle
increases from 0◦ to 90◦, while the opposite trend can be observed in Figure 13b,c. The
greater the formation dip angle is, the lower the value of horizontal stress and shear stress.
It can be seen that the formation dip angle has prominent effects on the distribution of the
stress. The relationship is due to the changes of the formation dip, and the direction of
stresses deflects and forms some range of stress redistribution.
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5. Conclusions

In this paper, the distribution stress of transversely isotropic elastic half-plane surfaces
subjected to distributed forces in any direction were investigated. The stress fields were
determined, and the effects of the Young’s modulus, Poisson’s ratio, and the formation dip
angle were taken into consideration in the elastic analysis. The accuracy and applicability
of the analytical solutions proposed were examined and clarified by calculating some
problems. From the analysis conducted, the following conclusions can be obtained:

(1) The analytical solution of transversely isotropic elastic half-plane surfaces subjected
to distributed loading in any direction was proposed, and compared with the numerical
solution, the two were in good agreement, which verifies the correctness of the analytical
solution of transversely isotropic rock stress deduced in this paper.
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(2) The stress concentration was closely related to the loading area, when Poisson’s
ratio stayed the same with the increase of Young’s modulus anisotropy ratio, and the
concentration degree of horizontal stress, vertical stress, and shear stress on the transversely
isotropic plate had a 40%, 20%, and 3% increase in degree compared to that of the isotropic
plate. However, with Young’s modulus and the increase of Poisson’s ratio, the concentration
degree of vertical stress, horizontal stress, and shear stress on the transverse isotropic plate
slightly decreased by 15%, 10%, and 4%, respectively.

(3) Along with the increasing value of the dip angle of layered rock mass, the vertical
stress in the rock layer presented a slightly upward tendency, while the horizontal stress
and shear stress decreased gradually.

(4) The proposed solution can be used to predict in situ stress. The stability of the
working field is maintained after support, which can be further popularized and applied
to related fields.

As a result, the analytical solution and numerical simulation can be capable of char-
acterizing the transversely isotropic layers. However, in this study, the new findings are
limited to homogeneous transversely isotropic half-space. In the future, the quantification
of stress distributions in an inhomogeneous transversely isotropic half-space should be
further studied.
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