
applied
sciences

Article

Detection of Exceptional Malware Variants Using Deep Boosted
Feature Spaces and Machine Learning

Muhammad Asam 1 , Shaik Javeed Hussain 2,*, Mohammed Mohatram 2, Saddam Hussain Khan 1 ,
Tauseef Jamal 1 , Amad Zafar 3,* , Asifullah Khan 1, Muhammad Umair Ali 4,* and Umme Zahoora 1

����������
�������

Citation: Asam, M.; Hussain, S.J.;

Mohatram, M.; Khan, S.H.; Jamal, T.;

Zafar, A.; Khan, A.; Ali, M.U.;

Zahoora, U. Detection of Exceptional

Malware Variants Using Deep

Boosted Feature Spaces and Machine

Learning. Appl. Sci. 2021, 11, 10464.

https://doi.org/10.3390/

app112110464

Received: 24 September 2021

Accepted: 31 October 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering
& Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan; asim2k994@gmail.com (M.A.);
hengrshkhan822@gmail.com (S.H.K.); jamal@pieas.edu.pk (T.J.); asif@pieas.edu.pk (A.K.);
farqualeet59@gmail.com (U.Z.)

2 Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman;
m.mohatram@gcet.edu.om

3 Department of Electrical Engineering, The Ibadat International University, Islamabad 54590, Pakistan
4 Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea
* Correspondence: s.javeedhussain@gcet.edu.om (S.J.H.); amad.zafar@iiui.edu.pk (A.Z.);

umair@sejong.ac.kr (M.U.A.)

Abstract: Malware is a key component of cyber-crime, and its analysis is the first line of defence
against cyber-attack. This study proposes two new malware classification frameworks: Deep Feature
Space-based Malware classification (DFS-MC) and Deep Boosted Feature Space-based Malware
classification (DBFS-MC). In the proposed DFS-MC framework, deep features are generated from
the customized CNN architectures and are fed to a support vector machine (SVM) algorithm for
malware classification, while, in the DBFS-MC framework, the discrimination power is enhanced
by first combining deep feature spaces of two customized CNN architectures to achieve boosted
feature spaces. Further, the detection of exceptional malware is performed by providing the deep
boosted feature space to SVM. The performance of the proposed malware classification frameworks
is evaluated on the MalImg malware dataset using the hold-out cross-validation technique. Malware
variants like Autorun.K, Swizzor.gen!I, Wintrim.BX and Yuner.A is hard to be correctly classified
due to their minor inter-class differences in their features. The proposed DBFS-MC improved
performance for these difficult to discriminate malware classes using the idea of feature boosting
generated through customized CNNs. The proposed classification framework DBFS-MC showed
good results in term of accuracy: 98.61%, F-score: 0.96, precision: 0.96, and recall: 0.96 on stringent
test data, using 40% unseen data.

Keywords: malware classification; detection; deep learning; deep features; convolutional neural
networks; transfer learning; SVM

1. Introduction

Software designed with a malicious purpose to harm users or systems falls under the
category of malware. Malware may harm the system without user knowledge of any level
of damage; it may range from gaining system access, deleting files, ransom demands or
even complete sabotage. An substantial increase in credential harvesting using malware
and well-established tactics has been noted in the recent past. Just during the course of
the COVID-19 pandemic, Microsoft reported 16 different state-level actors who targeted
commercial and academic institutions for stealing vaccine-related research knowledge.
These threat actors have rapidly become more sophisticated over the past years. They are
skilled, persistent and can launch attacks which are harder to spot. The AV-TEST Institute
reported more than one billion infected files in January 2021 [1]. These malware files
are often morphed into different combinations and variations to evade detection. Anti-

Appl. Sci. 2021, 11, 10464. https://doi.org/10.3390/app112110464 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3018-750X
https://orcid.org/0000-0002-6681-1987
https://orcid.org/0000-0003-4965-0322
https://orcid.org/0000-0002-0716-3932
https://orcid.org/0000-0002-7326-1813
https://doi.org/10.3390/app112110464
https://doi.org/10.3390/app112110464
https://doi.org/10.3390/app112110464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110464
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110464?type=check_update&version=1

Appl. Sci. 2021, 11, 10464 2 of 16

malware techniques are employed for protection against malware invasion. In this regard,
categorization of a malware sample is necessary for the precise anti-malware solution [2].

Generally, the challenge of malware classification is addressed using static and dy-
namic feature extraction-based techniques. The static malware classification approach
tries to find registered signatures in the files. In this approach, malware is identified by a
sequence of bytes known as a malware signature. File hashes are also used for malware
detection, generally resulting in a lower false positive (FP) rate [3,4]. However, these
signatures can be altered to evade detection from malware scanners. Signature-malware
detection is fast and effective in detecting malware but incapable of recognizing newly
released malware [5]. Malware obfuscation is another challenge faced by the static mal-
ware classification technique. The obfuscation techniques may include code manipulation,
instruction substitution, register reassignment and dead-code insertion [6].

Dynamic malware classification examines malicious activities and footprints during
execution in a controlled environment [7]. This technique is proficient at detecting ob-
fuscated and new malware. However, since the dynamic techniques look for anomalies
in software behaviours at runtime, they can also produce large FPs. Time and excess
resource utilization are other drawbacks of behaviour-based classification [8]. Traditional
anti-malware techniques are unable to detect complex variants and new attacks. However,
classification using image-based malware data has shown to be very promising, whereby
the malware samples are first converted into images using standard conversion methods [9].
Consequently, the malware pattern generated in image representations of the samples is
then detected using machine learning (ML) techniques.

Recently, ML, specifically its subfield deep learning (DL), has achieved breakthrough
accuracy and scalability in various fields [10]. This evolution has played a radical role
in shifting from traditional to artificial intelligence-powered anti-malware strategies. DL-
based intensive efforts have been utilized for malware analysis. DL methodologies exploit
the hierarchical representation of the input sample and thus can solve even more complex
malware classification problems. Thus, DL’s ability is largely due to the learning of data
representations at multiple and deep feature extraction stages [11]. DL algorithms discover
representations for the target class in terms of input data distribution, which is performed
at multiple levels [12]. Higher-level learns features that are extracted from lower level
features. This hierarchical learning makes the computer acquire the complicated concept of
the problem by understanding the simpler one. Also, DL, and specifically, its variant deep
convolutional neural network (CNN), is very prospective in image-based classification
problems. CNNs have been successfully employed to classify malware families [13]. In our
work, customized CNNs are used in an end-to-end manner and as a feature extractor. The
feature hierarchies learned from customized CNNs are then assigned to SVM for malware
classification. Additionally, in order to increase the diversity in the feature space, deep
features extracted from customized transfer learning (TL)-based fine-tuned CNN (ResNet-
18 and DenseNet-201) are concatenated to get boosted features space. The boosted features
space is provided to the traditional ML classifier for exceptional malware detection.

The significant contributions of our work are below:

(1) Two new CNN-based frameworks—DFS-MC and DBFS-MC—are proposed for ef-
fective malware family classification using the MalImg dataset. Deep features are
extracted from the customized CNNs and individually provided to the SVM classifier
in the proposed DBF-MC framework. Furthermore, TL has been introduced in the
customized CNN to reduce malware misclassification.

(2) In the proposed DBFS-MC framework, deep boosted features are obtained by fusing
the deep features of customized ResNet-18 and DenseNet-201 to detect exceptional
malware classes. In the proposed DBFS-MC framework, residual learning and the
concept of blocks in CNN are incorporated, exploiting diverse and discriminative
enrich information to learn the effective feature representation of malware classes.

Appl. Sci. 2021, 11, 10464 3 of 16

(3) The DBFS-MC framework outperformed the customized CNN models by significantly
improving the true prediction of the harder-to-classify malware variants (exceptional
malware classes) Autorun.K, Swizzor.gen!I, Wintrim.BX and Yuner.A.

The rest of the paper is organized as follows: the next section highlights related work
in the field of malware classification. Section 3 explains our novel classification framework
methodology, while Section 4 discusses the experimental setup. Section 5 presents the
results and discussions of our work. Section 6 concludes the paper.

2. Related Work

Static and dynamic malware analysis techniques have been applied for detection and
classification problems. The evolution of ML and DL techniques has opened many horizons
for the analysis and prediction of malware analysis using malware binary or hex files. These
files have been converted into images because DL has been extensively used on images or
grid-like data. In 2011, Nataraj et al. [14] identified the texture features in the malware image
file. These files have been obtained by interpreting the byte code of the portable executable
(PE) binary file to the grey level of the pixel value in the image. In [14], texture features have
been extracted from the malware image using wavelet decomposition and provided to the
K-nearest neighbour classifier. This technique achieved 98% accuracy on the benchmark
malware dataset consisting of 25 malware families. In [15], the artificial neural network
has been trained on the malware texture features and SVM is used for classification.

A lightweight malware classification technique for the Internet-of-Things (IoTs) has
been reported in [16]. Lightweight CNN has been employed on channel binaries collected
from the IoTs network. This approach reached an accuracy of 94.0% for DDoS malware.
Android systems are not far away from malware attacks. A malware detection framework
has been proposed for the android environment using neural networks [17].

A hierarchical ensemble neural network is proposed to exploit trace detection in
Intel processors [18]. These traces have been converted into images data for training deep
CNN. Ni et al. [19] extracted malicious op-code sequences and converted them to images.
Virtual data of the malware attacks have been generated using generative adversarial
networks [20]. It helped in achieving the capability of zero-day malware attack detection
and reported an accuracy of 95.74%. Le et al. [21] proposed a deep learning approach
using LSTM-CNN and achieved an accuracy of approximately 98% along with improved
time efficiency.

However, generally, the reported techniques lack to tackle the following aspects:

(1) Most of the reported works have been evaluated in terms of accuracy on the val-
idation dataset. However, precision and recall measures are considered as better
performance metrics than accuracy for the imbalance dataset. Moreover, evaluation
of these performance metrics on the test dataset is needed for the robustness of the
detection model.

(2) Previous techniques largely misclassified malware variants like Autorun.K, Swiz-
zor.gen!I, Wintrim.BX, and Yuner.A that feature minor interclass differences.

In this study, we have addressed the above-mentioned research gaps. In this regard, we
proposed a feature boosting based DBFS-MC framework for the identification of exceptional
malware families and evaluated the results on stringent unseen MalImg dataset in terms of
accuracy, precision, recall, and F-score.

3. Methodology

Malware categorization is a complex mapping problem after malware identification.
Classification of malware using a single original feature representation is challenging
because of the diverse properties of different malware [13]. We have introduced a new
classification framework based on deep feature learning and ML techniques for the dis-
crimination of malware families. The proposed malware classification framework can be
viewed in two main phases, data augmentation and classification. In the classification
phase, four different deep CNN based techniques are employed. These are (i) Deep Feature

Appl. Sci. 2021, 11, 10464 4 of 16

Space-based Malware classification (DFS-MC), (ii) the proposed framework Deep Boosted
Feature Space-based Malware Classification (DBFS-MC), (iii) implementation of existing
CNN; training from scratch and incorporation of TL based fine-tuning.

The well-established CNN architectures are implemented in two ways: Deep feature-
based and Softmax probabilistic-based classification. The brief detail of the proposed
malware classification setup is shown in Figure 1, while the detailed work is shown in
Figure 2 (training phase) and Figure 3 (testing phase).

Figure 1. Brief overview of the proposed malware classification framework.

Figure 2. Training phase of malware classification approaches.

Figure 3. Testing phase of malware classification approaches.

Appl. Sci. 2021, 11, 10464 5 of 16

3.1. Data Augmentation

Deep CNN architectures required a large quantity of labelled data. Insufficient training
data may lead to poor generalization. Data augmentation is the image dataset that refers to
artificially creating new modified samples of the same label by transforming samples [22,23].
Data augmentation is incorporated into the training dataset to improve the generalization
and robustness of the proposed classification framework. The implemented augmentation
parameters are shown in Table 1.

Table 1. Dataset augmentation details.

Augmentation Parameters

Rotate [0, 360] degrees
Scale [0.5, 1]

Reflection-X ±1
Reflection-Y ±1

Shear ±0.05

3.2. Classification Schemes

The following three schemes are applied for the classification of the malware family.

3.2.1. Implementation of Customized CNN

We customized different standard deep CNN models according to the compatibil-
ity of our proposed malware challenge. These customized architectures are DenseNet-
201, GoogleNet, InceptionV3, Xception, Resnet-18, ResNet-50, AlexNet, VGG16 and
VGG19 [11,24–27] The details of the CNN layers are given in Table 2. Initial and final
layers of networks are customized according to the compatibility of the input data set
and the target multi-class (25-classes). We implemented the customized existing CNNs in
two different ways, softmax probability-based classification and deep feature learning for
ML-based classification (DFS-MC). The Softmax probabilistic activation function in CNNs
decides the class of the input data. The activation function accepts the input vectors in the
form of real numbers and normalizes the inputs to a probability distribution. The output is
proportional to the exponentials of its input numbers.

Table 2. Details of deep CNN models.

Models Depth (Convolutional + Fully Connected Layers)

DesNet-201 203 (201 + 2)
ResNet-18 22 (20 + 2)

Google Net 59 (57 + 2)
Inception-V3 96 (94 + 2)

Xception 75 (74 + 2)
ResNet50 55 (53 + 2)
AlexNet 8 (5 + 3)
VGG-16 16 (13 + 3)
VGG-19 19 (16 + 3)

The customized existing CNNs are trained from scratch and TL-based fine-tuned.
Training the CNN model is the only way for adjusting the weights and biases of the
model [28]. These architectures are optimized for malware images by training them from
scratch on malware datasets by randomly initializing weights from a uniform distribution.
Weights are adjusted with the help of optimization algorithms and backpropagation using
the training dataset.

Transfer Learning

The CNN models are eager to find a large amount of labelled data for the best training.
In case the labelled data in the target domain is limited, the concept TL is useful. TL
incorporates the concept of initializing the weights of the models with the parameters

Appl. Sci. 2021, 11, 10464 6 of 16

of already trained models. TL gives a good initial estimation of the parameters and
reduces the overfitting. This training scheme has shown enhanced performance in the
field of malware classification challenges. Pre-trained CNN models of the source domain
(Image Classification, ImageNet) are adopted for the target domain (Malware Classification,
MalImg) with the help of fine-tuning. This fine-tuning is carried out with the help of
additional layers or dissecting the existing layers accordingly. This concept is known as
domain adaption [27]. We have introduced the concept of TL in the customized existing
deep CNN models and fine-tuned on malware dataset. TL uses the knowledge of the
existing domain for a new target domain.

3.2.2. The Proposed Deep Feature Space-Based Malware Classification (DFS-MC)

The malware classification challenge is addressed by a hybrid learning scheme and
named as Deep Feature Space-based Malware Classification (DFS-MC). The classification
ability of the proposed framework is enhanced by combining the benefits of both empirical
and structural risk minimization [29]. CNNs are high-capacity learning models and follow
the principles of empirical risk minimization learning theory, which focuses on minimizing
training loss. Sometimes, this training may lead to overfitting. Contrary to this, a classical
ML classifier like SVM is based on a structural risk minimization principle. This principle
improves the SVM’s generalization ability by looking at a test error [30]. Therefore, features
are extracted from the second last fully connected layer (FC) of customized CNNs and
individually provided to SVM for classification. The feature extraction layer and its
respective dimensions are given in Table 3.

σ(v)i =
eVi

∑K
j=1 eVj

(1)

wTx + b = 0 (2)

Table 3. Deep feature matrix dimensions for each CNN model.

Pre-Trained Trained from Scratch Deep Boosted

Feature Layer Feature Dim. Feature Layer Feature Dim. Feature Layer Feature Dim.
Last fc 64 × 25 Last fc 64 × 25 Last fc 128 × 25

In Equation (1), σ represents the softmax activation function, whereas v are features
from the last layer of customized CNNs and input to softmax. The exponential function
for input and normalization vectors are represented by eVi and eVj. K represents the
number of classes. In Equation (2), x is a feature space, whereas wT and b are weight and
bias, respectively.

3.2.3. The Proposed DBFS-MC Framework

In the aforementioned DFS-MC framework, we have carefully selected the best two
customized CNNs, ResNet-18 and DenseNet-201. We have utilized the hybrid learning
capacity of these two customized CNN in the proposed deep boosted learning and named
the Deep Boosted Feature Space-based Malware Classification (DBFS-MC) framework.
In the proposed DBFS-MC approach, ResNet-18 and DensNet-201 are customized and
TL based fine-tuned according to our problem space. Deep features arisen in the second
last layer classification layer of these customized CNNs are merged to produce a boosted
feature space and provided to SVM. An overview of this framework is shown in Figure 4.
The proposed deep boosted learning scheme exploited the deep feature learning capability
of customized CNN and the discrimination power of SVM.

In Equation (3), xBoosted shows the boosted feature space that are generated by concate-
nation of deep feature spaces of fResNet(x) and fDenseNet(x). These boosted features are then
fed to SVM for classification. SVM creates an optimal decision boundary by minimizing
the misclassification rate and maximizing the margin between the samples [31]. ζ repre-

Appl. Sci. 2021, 11, 10464 7 of 16

sents the misclassified samples, while C is the cost that establishes the trade-off between
misclassification rate and the model’s generalization as depicted in Equations (4) and (5):

xBoosted = fb(fResNet(x) | fDensNet(x)) (3)

wTxBoosted + b = 0 (4)

min
w,ξi

C
N

∑
i

ζi +
1
2
‖w‖2 (5)

Figure 4. Flow diagram of the proposed DBFS-MC malware classification approach.

In the proposed framework, we exploited the potential of residual and block-based learn-
ing to generate prominent features from malware visual images as shown in Figures 5 and 6.
The residual and block learning attributes of both the architectures are highly appreciated
in the form of experimental results. These two architectures are described below.

Figure 5. Skip Connection Building Block.

Appl. Sci. 2021, 11, 10464 8 of 16

Figure 6. DenseNet-201 realization using channel wise concatenation.

ResNet-18

Residual network (ResNet-18) for the first time solved vanishing gradient problem by
introducing skip connections, also known as identity connection [32], as shown in Figure 5.
Skip connections help the gradient to flow through an alternate path and allow the model
to learn identity hypothesis function. They provide a mean for information flow from
earlier to later layers of the model. ResNet-18 uses a bottleneck residual block design to
increase the performance of the network. ResNet-18 is 18 layers deep:

xs,t =
m

∑
a=1

n

∑
b=1

xs+a−1,t+b−1wa,b (6)

y = f (x , {wi}) + x (7)

y = f (x , {wi}) + wsx (8)

Convolutional operation for the symmetric filter is shown in Equation (6). Here, x
represents the input and convolved feature map and w represents the kernel.

Equations (7) and (8) describe the residual operation, where wi and ws represents the
weight layers of 3 × 3 and 1 × 1 (skip connection) convolutional operation, respectively.

DenseNet-201

The DenseNet-201 architecture connects each layer in a feed-forward manner. Features
of the proceeding layers are used as input to the current layer, and features extracted in the
current layer is used as input to all subsequent layers. A DenseNet network is closer to
ResNet as inputs are concatenated instead of addition. This small change has encouraged
feature reusability, strengthened feature propagation, reduced the number of parameters
and substantially improved vanishing-gradient problem [33]. DenseNet-201 realization
for our proposed method is shown in Figure 6. DenseNet-201 follows simple connectivity
rules. This help to integrate the identity mapping and deep supervision properties. The
internal representation of this network is very compact. Therefore, feature reusability
decreased the effect of feature redundancy, so this the reason why DenseNet-201 emerged
to be a fine feature extractor for computer vision problems:

Appl. Sci. 2021, 11, 10464 9 of 16

xl = Hl(x
0
∣∣∣x1

∣∣∣ x2, . . . , xl−1) (9)

In Equation (9), Hl(.) is the non-linear transformation, and (x0
∣∣∣x1

∣∣∣ x2, . . . , xl−1) is
concatenated feature space up to layer l.

4. Experimental Setup
4.1. Dataset

The malware MalImg dataset used consisted of 9342 images of 25 families [14]. Orig-
inally the dataset was in binary portable executable format, but CNN is famous for its
images-like data. Therefore, these files were converted into grayscale images, and each im-
age was resized to 128 × 128 pixels. The dataset for this experimental setup is imbalanced
in nature. The malware class name with their respective number of instances is presented
in Figure 7.

Figure 7. MalImg dataset families.

4.2. Implementation Details

In our work, we employed a 60–40% dataset partitioning scheme for training and test-
ing phases. Usually, 80–20%, 75–25% or sometimes 70–30% training and validation dataset
partitioning are present in the literature. In our case, the MalImg, malware-based dataset
is limited and highly imbalanced, as shown in Figure 4. Therefore, we used the scheme
(60–40) to make our model more robust for unseen malware data. The training samples
were further divided for training samples and validation samples for hyper-parameters
selection using a hold-out cross-validation scheme. The detail of hyper-parameters is
available in Table 4.

Table 4. Hyperparameter details.

Hyperparameters Values

Optimization Method SGD
Momentum Value 0.95

Weight Decay 0.0005
Learning Rate 0.0001

Epoches 10
Loss Function cross-entropy

Batch-size 16

Appl. Sci. 2021, 11, 10464 10 of 16

The simulations were carried out on MATLAB-2021a using a Dell Core I i5-7500
with GPU-enabled Nvidia®® GTX 1060-T. It took ~1–2 h to train a model on the said
settings. One epoch took 7–10 min on Nvidia-Tesla K-80, while a single malware image
took approximately 2 s for analysis.

4.3. Performance Evaluation Metrics

These trained models are evaluated using standard performance metrics, including
accuracy, recall precision, and F1-Score as shown in Equations (10)–(13). The details of
performance metrics are presented in Table 5. Predicted class refers to the class of interest,
and the negative class refers to the combination of the rest of the classes:

Acc =
Predicted Postive Class + Predicted Negative Class

Total Samples
× 100 (10)

R =
Predicted Postive Class

Total Postive Class Samples
× 100 (11)

P =
Predicted Postive Class

Predicted Postive Class + Incorrectly Predicted Postive Class
× 100 (12)

F1− Score = 2× P× R
P + R

(13)

Table 5. Performance metrics details.

Metric Symbol Description

Accuracy Acc % of total number of correct detections

Recall R Proportion of correctly identified classes and actual negative classes

Precision P Ratio of correctly detected classes close to the actual class

F1 Score F1-Score Harmonic mean of P and R.

5. Results and Discussion

The malware classification experiments are performed using: (i) Softmax probability-
based implementation of customized CNN models, (ii) the proposed DFS-MC, and (iii) the
proposed DBFS-MC frameworks. These malware classification models are implemented
using training from scratch and TL-based fine-tuning on the MalImg dataset. The eval-
uation of malware classification in terms of accuracy, recall, precision, and F1-Score are
reported in Tables 6 and 7.

Table 6. Softmax probabilistic-based implementation of customized CNN for malware classification.

Model

Training Scheme

Training from Scratch Transfer Learning Based

Acc % Recall Precision F1-Score Acc % Recall Precision F1-Score

DenseNet-201 96.57 0.9054 0.9080 0.9067 98.13 0.9411 0.9373 0.9392
Resnet-18 96.41 0.9203 0.9176 0.9189 98.13 0.9416 0.9374 0.9395

GoogleNet 87.20 0.8505 0.8772 0.8637 97.11 0.9178 0.9199 0.9189
Inception-V3 95.72 0.8941 0.9025 0.8983 96.36 0.8905 0.8905 0.8905

Xception 94.48 0.9148 0.9153 0.9150 96.01 0.8809 0.9025 0.8916
ResNet-50 94.86 0.8580 0.8934 0.8753 96.71 0.8984 0.8840 0.8911
AlexNet 88.38 0.8169 0.8643 0.8399 97.91 0.9329 0.9299 0.9314
VGG-16 93.41 0.8525 0.8891 0.8705 97.13 0.9192 0.9268 0.9230
VGG-19 94.97 0.8629 0.8939 0.8782 97.46 0.9259 0.9224 0.9241

It is evident from Table 6 that the TL-based approach outperformed the training from-
scratch implementation. The TL-based approach received weights from the pre-trained
architectures already trained on a variety of data and then fine-tuned according to our

Appl. Sci. 2021, 11, 10464 11 of 16

challenge. Furthermore, the deep features extracted from customized CNNs are fed to ML
outperformed softmax-based implementation. This malware classification approach seeks
training error minimization. This scheme tailors the model towards the peculiarities of
the dataset and may result in weak generalization. The trade-off between training error
minimization and improved generalization is leveraged by deep feature extraction and
applying conventional ML for classification.

Table 7. Deep feature extracted from customized CNN models and SVM classification (DFS-MC).

Model

Training Scheme

Training from Scratch Transfer Learning Based

Acc % Recall Precision F1-Score Acc % Recall Precision F1-Score

DenseNet 97.70 0.9286 0.9286 0.9286 98.39 0.9483 0.9452 0.9468
ResNet18 98.07 0.9387 0.9368 0.9377 98.37 0.9463 0.9427 0.9445

GoogleNet 97.54 0.9284 0.9232 0.9258 97.60 0.9270 0.9250 0.9259
Inception 97.54 0.9262 0.9268 0.9265 96.95 0.8965 0.9860 0.9391
Xception 97.21 0.9170 0.9141 0.9156 98.31 0.9421 0.9467 0.9444
ResNet50 97.59 0.9289 0.9258 0.9273 97.72 0.9301 0.9284 0.9292
AlexNet 97.59 0.9279 0.9286 0.9282 98.15 0.9417 0.9378 0.9397
VGG16 97.43 0.9246 0.9221 0.9234 97.91 0.9355 0.9304 0.9329
VGG19 97.64 0.9281 0.9284 0.9283 98.23 0.9436 0.9420 0.9428

These experiments concluded that two of the architectures are performing well in our
customized framework. Based upon the results from the experiments performed following
conclusion can be made based upon accuracy and F1-score.

• DenseNet-201 and ResNet-18 > all other CNNs
• Deep Feature-Based SVM Classification > SoftMax Probabilistic-based Classification
• TL Based Model > Training from Scratch Models

5.1. Performance Analysis of Proposed Frameworks on Exceptional Malware Classes

Exceptional classes in the dataset are those classes for which the discrimination is diffi-
cult due to smaller interclass differences. The Softmax-based implementation of customized
CNN is performing well for a set of malware classes while missing exceptional malware.
Therefore, in the proposed DFS-MC malware analysis approach, we emphasised reducing
misclassification for exceptional malware. The customized ResNet-18 and DenseNet-201
correctly classified Autorun.K/Swizzor.gen!I and C2Lop.P/WintrimBX, respectively.

Both the architectures improved the precision and detection rate compared to the existing
CNN, as shown in Figures 8 and 9. However, the customized ResNet-18 and DenseNet-201
misclassified some exceptional classes (C2Lop.P/WintrimBX and Autorun.K/Swizzor.gen!I,
respectively) when employed individually. Hence, as an outcome of the experiment, we
selected two models instead of one to tackle the risk of misclassification.

Therefore, we developed a novel DBFS-MC framework, which significantly reduced
the misclassification of exceptional malware classes. The proposed DBFS-MC efficiently
learned most of the exceptional malware classes by concatenating the decision of both the
networks, as shown in Figure 10. The deep feature boosting helps merge the potentials of
customized ResNet-18 and DenseNet-201 architectures while improving the deficiency of
the single model. Precision and recall analysis for the exceptional malware classes are 0.94
and 0.95, as shown in the Figure 10.

Appl. Sci. 2021, 11, 10464 12 of 16

Figure 8. Performance (precision) comparison of implemented CNN models.

Figure 9. Performance (recall) comparison of implemented CNN models.

Figure 10. Performance of DBFS-MC for exceptional malware.

Appl. Sci. 2021, 11, 10464 13 of 16

5.2. Performance of the Proposed DBFS-MC Framework

We have developed the deep hybrid learning strategy for malware classification,
which exploit the learning capability of both deep feature and ML classifier. Despite their
outperformance, there exists the risk of misclassification of exceptional malware classes.
Therefore, we proposed DBFS-MC deep boosted strategy, which utilizes the diverse and
discriminative feature spaces of the customized CNNs. The performance improvement is
achieved due to the concatenation of deep feature space of two best performing customized
models (ResNet-18 and DenseNet-201). Moreover, the proposed approach (DBFS-MC)
achieved the highest classification performance in terms of accuracy (98.61%), recall (0.96),
precision (0.96) and F-score (0.96), as shown in Table 8. The performance comparison of
DBFS-MC with customized ResNet-18 and DenseNet-201 is also depicted in Figure 11.

Table 8. Performance of the proposed DBFS-MC.

Model Accuracy % Recall Precision F1-Score

Proposed DBFS-MC 98.61 0.9632 0.9627 0.9630

Figure 11. Performance improvement of the proposed DBFS-MC.

5.3. Comparative Analysis with the Reported Work

Most of the reported research has been performed using dataset partitioning of 70–30
or 80–20 in terms of accuracy. Therefore, in Table 9, the proposed framework is compared
with the reported malware classification models in terms of accuracy. The standard measure
for an imbalanced dataset is precision, recall, and F-score [34]. However, Most of the
previous work has not reported the F1-score, but Cui et al. [35] showed their performance
by quoting precision and recall.

Table 9. Comparative analysis of proposed DBFS-MC with the reported work.

Technique %Accuracy F-Score Precision Recall

Natraj et al. [14] 98.08 - - -
Cui et al. [35] 94.50 - 0.9460 0.9450

LGMP-2018 (encoder based) [36] 90.23 - - -
LGMP-2018 (cluster based) [36] 89.58 - - -

NSGA-II [37] 97.60 - - 0.8840
VGG, end-to-end [38] 90.77 - - -

VGG, SVM [38] 92.29 - - -
S. Lad et al. (CNN + SVM) [39] 98.03 - - -

Proposed DBFS-MC 98.61 0.9632 0.9627 0.9630

Appl. Sci. 2021, 11, 10464 14 of 16

6. Conclusions

Static anti-malware products can only identify already registered malware and are
incapable of recognizing modified or newly-released malware. Dynamic malware clas-
sification examines malicious activities and footprints during execution in a controlled
environment but may be resource and time intensive. Deep learning-based techniques can
identify complex attack patterns in malware images and, thus, recognize new malware
in a confined environment. In this regard, two new frameworks, DFS-MC and DBFS-MC,
have been proposed for hybrid learning and feature boosting to identify malware using a
large stringent unseen dataset. In the DBFS-MC framework, deep features are generated
from the TL-based customized ResNet-18 and DenseNet-201. These deep feature spaces
are concatenated for achieving a single boosted feature space and provided to an SVM. The
feature boosting merged the potentials of customized ResNet-18 and DenseNet-201 models
while leveraging the discrepancies of the single model. Furthermore, it efficiently classified
the exceptional malware classes, i.e., Autorun.K, Swizzor.gen!I, Wintrim.BX and Yuner.A,
which were previously not addressed. In addition, the 40:60 partitioning scheme of the
dataset further increases the robustness. The DBFS-MC framework achieved the highest
accuracy (98.61%) and F1-score (0.9630) and improved precision (0.9632) and recall (0.9627).
Moreover, our findings revealed that the proposed DBFS-MC framework outperforms
TL-based and training from scratch customized CNNs. In the future, the proposed frame-
works may be adapted to new malware attacks using the standard benchmark dataset like
android and IoT malware. Furthermore, this study may be enhanced by developing an
anti-malware application for Microsoft Windows OS that can analyse the traffic on FTP for
malware analysis in real-time scenarios.

Author Contributions: Conceptualization, M.A., S.H.K. and T.J.; Formal analysis, M.A. and S.J.H.;
Funding acquisition, S.J.H. and M.U.A.; Investigation, A.K.; Methodology, A.K. and U.Z.; Project
administration, M.A., M.M. and M.U.A.; Resources, M.A.; Supervision, A.Z.; Validation, M.A.
and U.Z.; Visualization, T.J.; Writing—original draft, M.A., S.H.K. and T.J.; Writing—review &
editing, S.J.H., M.M., A.Z. and M.U.A. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge the Global college of Engineering and Technology, Muscat for funding
this research under an internal research funding grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the scripts that are developed for the simulations are available
from the corresponding author on reasonable request.

Acknowledgments: This work was conducted with the support of the PAEC program. We also thank
the Pattern Recognition Lab (PR-Lab) and Pakistan Institute of Engineering, and Applied Sciences
(PIEAS), for providing necessary computational resources and a healthy research environment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. AV-Test, “AV-TEST Report”. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 15 June 2021).
2. Sihwail, R.; Omar, K.; Ariffin, K.A.Z. A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis.

Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1662–1671. [CrossRef]
3. Damodaran, A.; Di Troia, F.; Visaggio, C.A.; Austin, T.; Stamp, M. A comparison of static, dynamic, and hybrid analysis for

malware detection. J. Comput. Virol. Hacking Tech. 2015, 13, 1–12. [CrossRef]
4. Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Human-Cent.

Comput. Inf. Sci. 2018, 8, 3. [CrossRef]
5. Preda, M.D. Code Obfuscation and Malware Detection by Abstract Interpretation. Available online: https://www.di.univr.it/

documenti/AllegatiOA/allegatooa_03534.pdf (accessed on 10 November 2020).
6. You, I.; Yim, K. Malware Obfuscation Techniques: A Brief Survey. In Proceedings of the 2010 International Conference on

Broadband, Wireless Computing, Communication and Applications, Fukuoka, Japan, 4–6 November 2010; pp. 297–300. [CrossRef]

https://www.av-test.org/en/statistics/malware/
http://doi.org/10.18517/ijaseit.8.4-2.6827
http://doi.org/10.1007/s11416-015-0261-z
http://doi.org/10.1186/s13673-018-0125-x
https://www.di.univr.it/documenti/AllegatiOA/allegatooa_03534.pdf
https://www.di.univr.it/documenti/AllegatiOA/allegatooa_03534.pdf
http://doi.org/10.1109/bwcca.2010.85

Appl. Sci. 2021, 11, 10464 15 of 16

7. Bazrafshan, Z.; Hashemi, H.; Fard, S.M.H.; Hamzeh, A. A survey on heuristic malware detection techniques. In Proceedings of
the 5th Conference on Information and Knowledge Technology, Shiraz, Iran, 28–30 May 2013; pp. 113–120. [CrossRef]

8. Asad, M.; Asim, M.; Javed, T.; Beg, M.O.; Mujtaba, H.; Abbas, S. DeepDetect: Detection of Distributed Denial of Service Attacks
Using Deep Learning. Comput. J. 2019, 63, 983–994. [CrossRef]

9. Gandotra, E.; Bansal, D.; Sofat, S. Malware Analysis and Classification: A Survey. J. Inf. Secur. 2014, 5, 56–64. [CrossRef]
10. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,

trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]
11. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
12. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2018, 81, 123–147.

[CrossRef]
13. Rafique, M.F.; Ali, M.; Qureshi, A.S.; Khan, A.; Kim, J.Y.; Mirza, A.M. Malware classification using deep learning based feature

extraction and wrapper based feature selection technique. arXiv 2019, arXiv:1910.10958.
14. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images. ACM Int. Conf. Proc. Ser. 2011. [CrossRef]
15. Makandar, A.; Patrot, A. Malware Image Analysis and Classification using Support Vector Machine. Int. J. Adv. Trends Comput.

Sci. Eng. 2015, 4, 1–3.
16. Su, J.; Vasconcellos, V.D.; Prasad, S.; Daniele, S.; Feng, Y.; Sakurai, K. Lightweight Classification of IoT Malware Based on Image

Recognition. In Proceedings of the 8th IEEE International Workshop on Network Technologies for Security, Administration, and
Protection (NETSAP 2018), Tokyo, Japan, 23–27 July 2018. [CrossRef]

17. Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep
learning. Digit. Investig. 2018, 24, S48–S59. [CrossRef]

18. Chen, L.; Sultana, S.; Sahita, R. HeNet: A Deep Learning Approach on Intel® Processor Trace for Effective Exploit Detection. In
Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24–24 May 2018. [CrossRef]

19. Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885.
[CrossRef]

20. Kim, J.-Y.; Bu, S.-J.; Cho, S.-B. Zero-day malware detection using transferred generative adversarial networks based on deep
autoencoders. Inf. Sci. 2018, 460–461, 83–102. [CrossRef]

21. Le, Q.; Boydell, O.; Mac Namee, B.; Scanlon, M. Deep learning at the shallow end: Malware classification for non-domain experts.
Digit. Investig. 2018, 26, S118–S126. [CrossRef]

22. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
23. Wang, J.; Perez, L. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017,

arXiv:1712.04621.
24. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9. [CrossRef]

26. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
18–20 June 1996; pp. 2818–2826. [CrossRef]

27. Khan, S.H.; Sohail, A.; Khan, A.; Lee, Y.S. Classification and Region Analysis of COVID-19 Infection Using Lung CT Images and
Deep Convolutional Neural Networks. September 2020. Available online: http://arxiv.org/abs/2009.08864 (accessed on 20
June 2021).

28. Khan, S.H.; Sohail, A.; Khan, A. COVID-19 Detection in Chest X-ray Images using a New Channel Boosted CNN. 2020. Available
online: http://arxiv.org/abs/2012.05073 (accessed on 20 July 2021).

29. Khan, S.H.; Sohail, A.; Khan, A.; Hassan, M.; Lee, Y.S.; Alam, J.; Basit, A.; Zubair, S. COVID-19 detection in chest X-ray images
using deep boosted hybrid learning. Comput. Biol. Med. 2021, 137, 104816. [CrossRef]

30. Faris, H.; Hassonah, M.A.; Al-Zoubi, A.M.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and
optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2017, 30, 2355–2369. [CrossRef]

31. Khan, S.H.; Yousaf, M.H.; Murtaza, F.; Velastin, S. Passenger detection and counting for public transport system. NED Univ. J. Res.
2020, 2, 35–46. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

33. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

34. How Can the F1-Score Help with Dealing with Class Imbalance? Available online: https://sebastianraschka.com/faq/docs/
computing-the-f1-score.html (accessed on 21 June 2021).

35. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

http://doi.org/10.1109/ikt.2013.6620049
http://doi.org/10.1093/comjnl/bxz064
http://doi.org/10.4236/jis.2014.52006
http://doi.org/10.1016/j.jnca.2019.102526
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1016/j.cose.2018.11.001
http://doi.org/10.1145/2016904.2016908
http://doi.org/10.1109/compsac.2018.10315
http://doi.org/10.1016/j.diin.2018.01.007
http://doi.org/10.1109/spw.2018.00025
http://doi.org/10.1016/j.cose.2018.04.005
http://doi.org/10.1016/j.ins.2018.04.092
http://doi.org/10.1016/j.diin.2018.04.024
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1109/cvpr.2015.7298594
http://doi.org/10.1109/cvpr.2016.308
http://arxiv.org/abs/2009.08864
http://arxiv.org/abs/2012.05073
http://doi.org/10.1016/j.compbiomed.2021.104816
http://doi.org/10.1007/s00521-016-2818-2
http://doi.org/10.35453/NEDJR-ASCN-2019-0016
http://doi.org/10.1109/cvpr.2016.90
http://doi.org/10.1109/cvpr.2017.243
https://sebastianraschka.com/faq/docs/computing-the-f1-score.html
https://sebastianraschka.com/faq/docs/computing-the-f1-score.html
http://doi.org/10.1109/TII.2018.2822680

Appl. Sci. 2021, 11, 10464 16 of 16

36. Naeem, H.; Naeem, M.R. Visual Malware Classification Using Local and Global Malicious Pattern. J. Comput. 2020, 30, 73–83.
[CrossRef]

37. Cui, Z.; Du, L.; Wang, P.; Cai, X.; Zhang, W. Malicious code detection based on CNNs and multi-objective algorithm. J. Parallel
Distrib. Comput. 2019, 129, 50–58. [CrossRef]

38. Rezende, E.; Ruppert, G.; Carvalho, T.; Theophilo, A.; Ramos, F.; de Geus, P. Malicious Software Classification Using VGG16
Deep Neural Network’s Bottleneck Features BT—Information Technology—New Generations. 2018, pp. 51–59. Available
online: https://w3.lasca.ic.unicamp.br/media/publications/2018-ITNG-edmar.rezende-MaliciousClassifVGG16.DeepNeural.
BottleneckFeatures.pdf (accessed on 30 October 2020).

39. Lad, S.S.; Adamuthe, A.C. Malware Classification with Improved Convolutional Neural Network Model. Int. J. Comput. Netw.
Inf. Secur. 2020, 12, 30–43. [CrossRef]

http://doi.org/10.3966/199115992019123006006
http://doi.org/10.1016/j.jpdc.2019.03.010
https://w3.lasca.ic.unicamp.br/media/publications/2018-ITNG-edmar.rezende-MaliciousClassifVGG16.DeepNeural.BottleneckFeatures.pdf
https://w3.lasca.ic.unicamp.br/media/publications/2018-ITNG-edmar.rezende-MaliciousClassifVGG16.DeepNeural.BottleneckFeatures.pdf
http://doi.org/10.5815/ijcnis.2020.06.03

	Introduction
	Related Work
	Methodology
	Data Augmentation
	Classification Schemes
	Implementation of Customized CNN
	The Proposed Deep Feature Space-Based Malware Classification (DFS-MC)
	The Proposed DBFS-MC Framework

	Experimental Setup
	Dataset
	Implementation Details
	Performance Evaluation Metrics

	Results and Discussion
	Performance Analysis of Proposed Frameworks on Exceptional Malware Classes
	Performance of the Proposed DBFS-MC Framework
	Comparative Analysis with the Reported Work

	Conclusions
	References

