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Abstract: The proportion of welding work in total man-hours required for shipbuilding processes
has been perceived to be significant, and welding man-hours are greatly affected by working pos-
ture. Continuous research has been conducted to identify the posture in welding by utilizing the
relationship between man-hours and working posture. However, the results that reflect the effect
of the welding posture on man-hours are not available. Although studies on posture recognition
based on depth image analysis are being positively reviewed, welding operation has difficulties
in image interpretation because an external obstacle caused by arcs exists. Therefore, any obstacle
element must be removed in advance. This study proposes a method to acquire work postures
using a low-cost RGB-D camera and recognize the welding position through image analysis. It
removes obstacles that appear as depth holes in the depth image and restores the removed part to the
desired state. The welder’s body joints are extracted, and a convolution neural network is used to
determine the corresponding welding position. The restored image showed significantly improved
recognition accuracy. The proposed method acquires, analyzes, and automates the recognition of
welding positions in real-time. It can be applied to all areas where image interpretation is difficult
due to obstacles.

Keywords: working posture; welding position; motion capture; depth hole; CNN; RGB-D; shipbuild-
ing assembly

1. Introduction

Interest in establishing an accurate ship production plan to observe delivery dates,
reduce costs, and improve productivity is continuously increasing in the shipbuilding
industry. Since man-hours is one of the major factors in ship production planning, it is
important to predict the required man-hours as early and accurately as possible.

As illustrated in Figure 1, the shipbuilding process consists primarily of design,
fabrication, assembly, outfitting, painting, erection, and sea trial. The most important role
in the assembly process is played by welding used in assembly, outfitting, and erection [1].
The welding man-hour accounts for a significant portion of total shipbuilding man-hours,
thus the emphasis on factors affecting the welding man-hour is unavoidably high. As a
result, among the various factors influencing welding man-hours, the influence of working
posture should be noted.

Many production facilities in shipyards are now being automated, as are welding
operations. However, as the assembly stage progresses from sub-assembly to grand-
assembly stage, it becomes practically difficult to apply automation to block assembly.
Many block structures are not suitable for automated equipment to input, increasing
the manual welding rate. Due to the diverse and complex working space within the
block, manual welding requires various postures of the welder. The difficulty of each
posture is different; therefore, the difference in working time according to the posture
occurs [2–4]. When the workload during welding is high and the proportion of difficult
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postures increases, so does the working time, increasing total man-hours. As a result,
to create a production plan that accurately reflects the progress in assembly shops, it is
necessary to identify the working posture that affects the man-hour early in the planning
process and manage the plan so that the work can be completed efficiently.
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Figure 1. Overall shipbuilding process.

In manual welding, the welder takes various postures according to the angle and
position required to weld the object to the position indicated by the drawing. Manual
welding is performed in the current assembly process in four positions: flat, horizontal,
vertical, and overhead. The welder normally can check the assembly sequence and weld-
ing position from the drawings so that the welding position to be taken can be roughly
estimated in advance. However, because the assembly sequence in the drawing may differ
from the actual working shop for work efficiency, welding is frequently performed in an
arbitrary position different from predicted. Such an arbitrary position in the actual field
must also be recognized. Previous attempts to analyze the difference in man-hours based
on welding position have been made, but it is difficult to find a study that recognizes an
arbitrary position and analyzes the effect of the working posture. As a result, the majority
of research has focused on recognizing human motions or working postures.

A difference from the work performed in other industrial fields is that a peculiarly
external factor appears in welding. The extremely bright light of the welding arc always
causes a visual disturbance, making it difficult to recognize the posture. This phenomenon
is an unavoidable obstacle when using any image processing equipment, including RGB-D,
and must be overcome for correct posture recognition. In this study, when shooting with an
RGB-D camera, we propose a method to remove the obstructive elements from the depth
image and restore the damaged image close to the original working posture. The goal is
to determine the working position in real-time by detecting the welder’s posture without
contact with welders and without space restrictions.

The proposed method searches for the area where the welding arc damages the depth
information in the depth image using the image moment. The depth hole filling technique
then restores the lost depth information. The welding position is then defined using the
body joint coordinates extracted from the depth image, and the classification criteria are
established. The convolution neural network (CNN), widely used for image classification
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among deep learning algorithms, recognizes the kind of welding position to which an
arbitrary working posture belongs. The proposed method is expected to help establish a
production plan related to man-hours in the shipbuilding industry.

Section 2 briefly introduces previous studies on theories and techniques used in this
study. Then, Section 3 describes the method of removing the disturbing elements from
the depth image, restoring to the image without the disturbing elements, and extracting
body joints from the restored image. Next, the criteria for classifying welding positions
are established, and the comparison and analysis of the result of recognizing the welding
positions using CNN is discussed in Section 4, and finally, the conclusion is reached in
Section 5.

2. Previous Research
2.1. Shipbuilding Man-Hours and Welding Positions

The shipbuilding industry’s production management plan is based on construction
man-hours, as such, estimating the required man-hours can help set the exact construction
schedule and reduce costs. Since the beginning of time, there have been ongoing studies
to establish an efficient production plan in the shipbuilding industry. Scheduling systems
that consider the load of various assembly processes [5] or those that use hierarchical
architecture and spatial scheduling [6] have been developed. Furthermore, a system for
managing and predicting a shipyard’s production plan through simulation has always
piqued the interest of researchers [7].

Shipyards have relied on the observation method to directly measure the working
time required for each process or task. Recently, studies have been underway to establish
a set of formulas for the whole manufacturing process [8] or to predict the man-hour for
each process [9]. Previous studies have emphasized the importance of welding by carefully
considering the effects of welding operations when planning production and calculating
man-hours. Since the shipbuilding process requires welding in most assembly shops, the
man-hour required for the welding operation occupies a large portion. For this reason,
related studies have been conducted to obtain the man-hour of welding operation in the
assembly process [1,10]. These studies attempted to categorize postures by identifying a
difference in man-hours based on working postures. Manual welding, in particular, which
plays an important role in the assembly process, demonstrates that the working time varies
depending on the welding position.

Many welding operations in the shipbuilding industry are currently being automated.
However, as the assembly process progresses from sub-assembly to grand-assembly, the
proportion of manual welding increases because automatic welding becomes difficult to
apply due to limited space or complicated structural layouts.

Manual welding requires various working postures. As a representative example, the
American Welding Society (AWS) stipulated four general welding positions as shown in
Figure 2: flat, horizontal, vertical, and overhead. Although the above four positions are
applied to welding in the shipbuilding assembly process, many different positions are
observed depending on the work characteristics.
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In the sub-assembly stage, the flat position ratio is high, while the vertical, horizontal,
and overhead positions increase as the process progresses to the grand-assembly stage.
In the grand-assembly stage, the proportion of welding posture that puts strain on the
welder’s muscles increases as the working space narrows and the surrounding structure
becomes more complicated. As a result, these welding positions are difficult to maintain for
an extended period of time, resulting in decreased work quality or increased man-hours.
Furthermore, when working for a long time, a welding position can threaten the safety and
health of the worker.

Since the welding man-hour depends on the welding position, the first step is to
recognize which welding position an arbitrary working posture belongs. Then, the man-
hour required for block assembly can be accurately calculated. Previous studies have
attempted methods such as the observation method [11], rapid upper limb assessment
(RULA) [12], and electromyography [13]. However, most of them were limited to the
analysis of worker’s disease or safety. The purpose of this study is to suggest an automation
method that remotely recognizes the working posture of a welder in the actual field in
real-time, analyzes the welding position, and links it with man-hours.

2.2. Motion Capture System

To recognize a worker’s posture, it is first necessary to track the movement of the
body. Recently, devices capable of tracking various types of body movements have been
introduced. These motion capture systems are generally classified into a marker system, a
markerless system, and a wearable system. The most accurate and reliable way is to track
the body’s motion using a marker system [14–16] that attaches a marker to each joint or a
wearable sensor, such as an accelerometer or pressure sensor [17–19]. Despite their high
accuracy, markers or wearable sensors are inconvenient for the subject because separate
equipment must be attached to the body ahead of time. There are also limitations to the
operational range and location of those systems. Although these devices can be used for
simulation in a laboratory setting, they have limitations when it comes to collecting data in
a real-world setting.



Appl. Sci. 2021, 11, 10463 5 of 24

A widely used method among markerless systems is to use images including depth
information. Many studies have been conducted on body tracking and motion analysis
using depth images [20–23]. There are two methods for creating depth images: extracting
features from two-dimensional images and inferring depth through learning [24–27] or
shooting with a 3D depth camera [28–30]. The former method has disadvantages in that
an additional process is required to extract and learn features of an image, it takes a lot of
time, and the accuracy is low.

A 3D depth sensor has been widely used to take a depth image. There are two types
of 3D depth sensors: time of flight (ToF) and LiDAR. The ToF sensor calculates depth
information by measuring the time it takes to emit infrared rays and return. This sensor
is mainly used for motion capture because of its high accuracy [31,32]. Similar to the ToF
sensor, the LiDAR sensor generates a depth image by measuring the return time after
firing a laser. Some studies track body motion using the LiDAR sensor, but its accuracy is
reported to be low [33,34]. Furthermore, since motion capture using a LiDAR sensor not
only requires a separate RGB camera but has been slow to commercialize, its applicability
is currently low [35].

This study focuses on improving accessibility, portability, and accuracy to collect
motion data for posture recognition in real-time. We selected an RGB-D camera based
on ToF sensors with cost-effectiveness and excellent usability in the current market. The
selected Azure Kinect provides clear resolution and high accuracy through the ToF method
using an IR projector and depth sensor [36].

2.3. Depth Hole Filling

The ToF sensor creates the depth image by measuring the round-trip time of the
infrared signal emitted by the IR projector. This method calculates depth by emitting
infrared light, thus it is greatly influenced by weather factors such as light, rain, fog, and
environmental factors such as the strength of lighting scattering. As a result, the depth
measured by the ToF sensor is inaccurate [37] in the aforementioned environment. It has
also been reported that the same type of LiDAR sensor reduces depth calculation accuracy
due to ambient lighting and disturbance factors [38,39]. As a result, obtaining a depth
image using the above sensors is limited when a light source is stronger than necessary.

Various welding methods used in assembly sites include arc, gas, laser, and explosion
welding. CO2 welding, which is mainly used in shipbuilding shops, inevitably generates
an arc that emits bright light, as shown in Figure 3.
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RGB-D cameras have a limitation in being greatly affected by bright sources such as
welding arcs. Therefore, when shooting a welding worker, an arc causes the RGB-D camera
to fail to measure the reflected signal, resulting in a region where depth information is lost
in the depth image. This region is classified as undefined as the area where the RGB-D
camera cannot define depth. For example, the undefined region is defined as a depth hole
in the depth image and is expressed in black as shown in the right scene of Figure 4.
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When the welding arc and the welder’s body overlap, it is difficult to capture motion
accurately because the depth hole obscures the body in the depth image captured by an
RGB-D camera. To recognize the body motion or working posture, we must look for a
depth hole caused by the welding arc and remove it if it is found.

In previous studies, image inpainting techniques [40,41] and image filtering meth-
ods [42–44] were used to care for depth holes. Image filtering is an operation that creates a
new image by using a square matrix and a convolution technique. A guidance image con-
verted from an RGB image to grayscale is required to remove the depth hole using image
filtering. However, a guidance image without a welding arc is unavailable in advance for a
welding operation in progress, so utilizing the image filtering is not practical.

Image inpainting is, in theory, a technique for repairing damaged areas of an image.
Normally, the depth image’s depth holes are searched for and removed. However, in this
study, where motion capture accuracy is critical, high accuracy can be obtained even when
only the depth hole caused by the interference element is removed. Furthermore, while
the depth hole filling speed is adequate for a small amount of image data, removing all of
the depth holes for each frame of moving images takes a significant amount of computing
time. As a result, data processing speed should be prioritized.

In this study, an image inpainting technique is adopted as a method to remove depth
holes. Furthermore, we present a method to search only the depth hole that overlaps the
body among the depth holes generated in the depth image.

2.4. Machine Learning Technique for Posture Recognition

Many fields are actively researching posture recognition for worker safety, mus-
culoskeletal disorders, and posture correction. In industries, these studies include the
development of a production plan and the enhancement of productivity. A wide range
of fields, from the human posture classification field considering simple postures such
as sitting, standing, and lying down [45,46] to the medical [47,48], industrial [49], and
sports [50] fields, have focused on the definition and recognition of human postures. As
hardware for collecting posture recognition data, three-dimensional depth cameras [51],
smartphones [52,53], and inertial measurement unit sensors [17] are used. In addition,
machine learning algorithms such as support vector machine (SVM) [54], CNN [19], and
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deep belief network [55] are widely used to learn posture recognition data in terms of
software.

CNN is a well-known machine learning technique that has been widely applied to
image classification and recognition. This technique is currently used for image classifica-
tion [56] and object detection [57] in the shipbuilding industry for safety management and
productivity improvement. There is no need to manually extract features because CNN
learns the features of an object through data. It also has good reusability because it can
learn new data based on the existing network. This study proposes a CNN model as a data
learning algorithm for the reasons of convenience, reusability, and efficiency.

3. Depth Image Analysis and Body Joint Identification
3.1. Depth Hole Detection

An image including depth information of the welder’s body must be captured with
an RGB-D camera to recognize a welding position by extracting body joints. As described
earlier, when a welding operation is taken with an RGB-D camera, bright light is generated
due to the welding arc, and as a result, a wide range of depth holes are generated.

We are interested in the proportion of manual welding’s vertical and horizontal
welding positions that gradually increases with each assembly step during the assembly
process. Because most of the welding for these two positions is done in front of the welder’s
own body, the depth hole region caused by the arc occurs around the body. As a result, the
distinction between the body and the arc is blurred, making it impossible to recognize the
exact joint positions, as shown in Figure 5. Therefore, to capture motion for those welding
positions, a process of removing depth holes is required.
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Before removing the depth hole, it is necessary to identify the depth hole that overlaps
the body in the depth image. Since welding is carried out in front of the welder for
safety, if the scene is taken with an RGB-D camera, the welder’s body appears as a shape
surrounding the depth hole, as shown in Figure 6. Therefore, we use this characteristic to
detect the depth hole.
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Figure 6. Depth images for two welding positions: (a) vertical, and (b) horizontal.

To isolate the depth hole from the body, the depth hole region must be searched.
Because the depth hole is recorded as an undefined region in the depth image, the depth
hole region can be specified using image pixel analysis. To improve search efficiency,
depth holes of a certain size or less are excluded in this case. We use the fact that the
rate of change of brightness occurs in the body’s outline to isolate a body part from the
surrounding environment. Canny edge detection [58], which is effective for detecting the
rate of change of brightness, is utilized. The result of the searched depth hole and the
object separated from the background are visualized in Figure 7. A plurality of regions
recognized as depth holes exists around the welder.
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Figure 7. Separation of depth holes and objects from background: (a) depth holes detected, (b) edge detection by Canny
edge algorithm, and (c) segmentation of objects.

It is necessary to find the depth hole that exists inside the welder’s body, among many
depth holes found. In this study, the centroid of an object is utilized by following the rule
that the body surrounds the depth hole. The proposed assumption is that the contour of
the depth hole, if any, is in most cases tangent to or inside the body contour. In this case,
the rectangle circumscribing the depth hole will cover more than half of the body contour
area. If the depth hole inside the rectangle circumscribes the object’s centroid estimated as
the body contour, it becomes a depth hole overlapping the body. Otherwise, it is treated
as noise. Due to the nature of the arc, an exception may occur where a part of the depth
hole contour is outside the body contour. Even in this case, the exceptional effect is greatly
reduced and ignored with the proposed assumption.
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The centroid of the object contour is simply obtained from the spatial moment
Equation (1):

mij = ∑
x, y

(array(x, y)× xiyi) (1)

x =
m10

m00
, y =

m01

m00

where mij denotes the general form of the spatial moment, m00 the zero-order moment
of the image, m10 the first-order moment of the image concerning the x-axis, and m01 the
first-order moment of the image concerning the y-axis. The red dots indicate the centroids
of all objects separated from the background in Figure 8.
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Figure 8. Centroids of detected objects.

Many pieces of equipment or objects are arranged near the welding space in an
actual welding site. In the depth image, objects at a similar distance to the welder have a
brightness similar to that of the welder’s body. Even when the Canny edge algorithm is
used in this case, objects with similar brightness and the welder’s body can be recognized
as the same object, implying that the background and body are not completely separated.
As shown in Figure 9, there are cases where several rectangles circumscribed in the depth
hole are searched. With these rectangles, checking the centroid of the object’s contour alone
is not sufficient to determine whether the object is the body or not.
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To solve this problem, a unique feature of welding is used. To ensure their safety,
welders generally perform their work as far away from the body as possible. At this point,
the welder’s head naturally moves away from the arc, and as a result, the depth hole
has little effect on the welder’s head. This feature makes determining the welder’s head
position simple. Among the many depth holes suspected of overlapping the body, the
depth hole closest to the head coordinate is selected in Figure 10.
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Figure 10. Depth holes detected inside body.

3.2. Depth Hole Filling

After selecting the depth hole due to the arc, the image occupied by the depth hole
should be replaced with a body image. In this study, the image inpainting technique is
used to restore the depth hole by specifying it as a mask and filling it with a color similar to
the surrounding color [59]. Starting from the contour of the selected depth hole, the color
is restored toward the inside of the depth hole. The color to be restored uses the pixel’s
color value in the area adjacent to the depth hole. The depth hole can be restored to color
values expressed by (2) that was used in the fast marching method by Telea [59]:

I(p) =
∑q∈Bε(p) w(p, q)[I(q) +∇I(q)(p− q)]

∑q∈Bε(p) w(p, q)
(2)

where p is the pixel of the region to be restored, q is the pixel of the neighboring region,
I(q) is the color value of the neighboring region, ∇I(q) is the gradient, and Bε(p) is the
neighboring region with respect to p, respectively. Figure 11 shows the restored image
where the depth hole around the welder is eliminated.
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3.3. Two-Dimensional Body Joint Identification

Body joints can be extracted from the restored image where the depth hole is cured.
Since the restored image is two-dimensional, we can use various methods for extracting
joints from images. In this study, OpenPose [60], a widely used open source, is used. The
joint coordinate structure [61] we adapt is shown in the left figure of Figure 12. An example
of the body joints extracted corresponding to the structure is illustrated in the right figure.
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Figure 12. Body joints: (a) joint structure, and (b) an example of joints extracted from a depth image.

Body joints extracted from two-dimensional images cannot always be accurate. The
cause of inaccurate results may be an inherent problem of the depth camera or other
obstacles such as measurement errors, interference by the measurement environment, and
even the incompleteness of the joint extraction module. An incorrect result caused by
the camera error is shown in Figure 13b. In this case, it is risky to trust the result of joint
information using only a single image. Instead, we set up an assumption that the video
stream obtained from the depth camera is continuous and enables a ground truth shown in
Figure 13a. Then, we correct the joint coordinates for a frame in question by interpolating
the frames before and after the corresponding frame. The interpolation result is shown in
Figure 13c, and it is almost consistent with the ground truth.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 25 
 

3.3. Two-Dimensional Body Joint Identification 
Body joints can be extracted from the restored image where the depth hole is cured. 

Since the restored image is two-dimensional, we can use various methods for extracting 
joints from images. In this study, OpenPose [60], a widely used open source, is used. The 
joint coordinate structure [61] we adapt is shown in the left figure of Figure 12. An exam-
ple of the body joints extracted corresponding to the structure is illustrated in the right 
figure. 

 
Figure 12. Body joints: (a) joint structure, and (b) an example of joints extracted from a depth image. 

Body joints extracted from two-dimensional images cannot always be accurate. The 
cause of inaccurate results may be an inherent problem of the depth camera or other ob-
stacles such as measurement errors, interference by the measurement environment, and 
even the incompleteness of the joint extraction module. An incorrect result caused by the 
camera error is shown in Figure 13b. In this case, it is risky to trust the result of joint in-
formation using only a single image. Instead, we set up an assumption that the video 
stream obtained from the depth camera is continuous and enables a ground truth shown 
in Figure 13a. Then, we correct the joint coordinates for a frame in question by interpolat-
ing the frames before and after the corresponding frame. The interpolation result is shown 
in Figure 13c, and it is almost consistent with the ground truth. 

 
Figure 13. Comparison of ground truth and interpolated two-dimensional body joints: (a) ground truth, (b) wrong result, 
and (c) interpolated result. 

  

Figure 13. Comparison of ground truth and interpolated two-dimensional body joints: (a) ground truth, (b) wrong result,
and (c) interpolated result.



Appl. Sci. 2021, 11, 10463 12 of 24

3.4. Three-Dimensional Body Joint Construction

Joint coordinates extracted from depth hole filled images cannot provide accurate
depth information. Welding, as opposed to general body postures, necessitates complex
joint movement. The rotation of the arm, neck, and waist joints appears on a vertical or
horizontal basis when performing a welding operation, making it only possible to correctly
express a welding posture when accurate depth information is provided. As a result,
proper depth information must be included.

The depth image is expressed in grayscale according to the distance from the depth
sensor. Joints far from the sensor are displayed as dark, while those close to the sensor are
displayed as bright. Therefore, when the welding operation is taken as a depth image, the
welder’s body and surrounding objects are expressed as images with different color values
according to the distance difference.

In this study, a strategy is used to restore the joint coordinates damaged by the depth
hole in the depth image by utilizing the measured depth information of the body part
that is not covered. Given that the depth hole has a significant impact on the welder’s
arm and body due to welding characteristics, if there is a part of the arm or body for
which depth information is measured, the depth hole region is sequentially interpolated
and reconstructed using the depth information available. This strategy assumes that
recognizing the welding position requires only the relative positional relationship of
the joints.

Figure 14 shows the results of comparing the joints extracted using (a) the ground
truth without depth hole, (b) the image with the depth hole, and (c) the image with the
depth hole removed. The joint coordinate values can be checked in Table 1, where the
error is computed by the difference in the two vectors’ magnitude. The joint coordinates
extracted from (a) and (c) images do not show a large error. In (c), an error occurs near the
neck and hand that were hidden by the depth hole. Unfortunately, this is a theoretically
unavoidable limit. The correlation with other joints is still well maintained.
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Figure 14. Comparison of ground truth and three-dimensional body joints: (a) ground truth, (b) wrong result with depth
hole, and (c) result by the restored image with depth hole filling and adjusted depth.

Table 1. Comparison of body joint coordinates between ground truth and restored image.

Joint Ground Truth Restored Image Error

Head (489, 175, 75) (468, 174, 73) 3.83%
Neck (475, 214, 74) (464, 205, 47) 3.37%

Right shoulder (433, 214, 77) (434, 212, 75) 0.06%
Right elbow (420, 278, 85) (420, 276, 85) 0.21%
Right hand (475, 253, 98) (434, 263, 91) 5.75%
Right pelvis (461, 342, 88) (448, 327, 88) 3.29%
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4. Welding Position Recognition

The analysis of four welding positions was observed during the shipbuilding assembly
process. Criteria for classifying a given welding position are established by utilizing the
relative relationship of body joint coordinates. When collecting depth image data, these
criteria are used in the data labeling process. In addition, CNN, a machine learning
technique, is used for posture recognition.

4.1. Classification of Welding Positions

When a welder performs an arbitrary welding operation, determining a standard
capable of distinguishing which welding position is taken is required. This study pro-
poses criteria for classifying the welding positions using the positional relationship of the
extracted coordinates of body joints.

The welding positions to be recognized are based on the standard postures stipulated
by the AWS, the data and advice collected from shipyards, and our simulation. Five
positions were defined as flat, horizontal, vertical, overhead, and standing. A representative
example of the five positions is shown in Figure 15.
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Figure 15. Five welding positions: (a) flat, (b) vertical, (c) horizontal, (d) overhead, and (e) standing.

Since the welding position can be distinguished by the movement of the upper body,
arm, and hand holding the welding rod, six joints such as head, neck, shoulder, elbow,
hand, and pelvis are chosen as main measurement elements. In this study, a method of
classifying five positions using the relative relationship of six joint coordinates is proposed
in Figure 16.

Based on the standing position, a different position is determined whenever the
positional relationship of the six joint coordinates changes. For example, as shown in
Figure 17, when the coordinates of the neck joint are located farther from the sensor than
those of the head joint, and the coordinates of the hand joint are higher than those of
the waist joint, it is classified as a flat position. Similarly, when the hand joint is located
higher than the neck joint, and the hand joint is positioned to the left of the right shoulder
joint for a right-handed person, as shown in Figure 17b, it becomes a horizontal position.
Therefore, before proceeding with learning, the data labeling process that specifies the
welding position is performed through the criteria set above.
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4.2. Use of Convolution Neural Network

An algorithm that automatically recognizes the classified welding position is necessary.
Considering that position recognition is a classification domain that distinguishes different
postures, the SVM [54]), which is the most used model in classification problems, was first
considered. SVM is a model that maximizes the distance of the data closest to the decision
boundary. To recognize a position with the SVM, body features such as the coordinates or
angles of the joints are used as learning data. However, accurate coordinate values from
the depth image were not available in this study, hence jeopardizing SVM use.

Another machine learning model considered is the CNN. CNN is a deep learning
model with multiple convolutional layers and is most often used in classification problems,
especially for image classification. Since CNN learns image features using image data, there
is no need for a separate feature extraction process. Therefore, an approach to recognizing
welding positions with a CNN model is appropriate.

We used the GoogLeNet network [62] to train the depth image data. This network
becomes deep by introducing the Inception network structure but has the advantage
that the amount of computation does not increase significantly because the number of
parameters is reduced. It is widely used in image classification problems and is divided
into several versions, such as Inception v1, v2, v3, v4, and ResNet. In this study, the
welding position is recognized using the pre-trained Inception v3 model. This model uses
the Inception module, as shown in Figure 18, to construct the network structure. Unlike the
previous versions, the amount of computation is reduced by the asymmetric convolutional
decomposition method.
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4.3. Data Collection

A commercially available depth camera was used to capture the learning image.
However, it was impossible to film at the actual shipyard due to safety and security
concerns, so a detour strategy was used to create an experimental environment in the
laboratory. The laboratory environment was designed to be as close to a real job shop as
possible, complete with keeping equipment and obstacles.

The camera was installed 1.20 m above the ground, and the experiment was conducted
at 3.50 m. For six right-handed adult male subjects, images of five positions were recorded.
Subjects received short-term advice and training on welding and the required postures
from a welding expert in advance. Following research ethics procedures, prior written
consent was made from all participants.

Each working posture was photographed for ten seconds, and the images were divided
into 30 frames per second, and a total of 9000 image data were collected for the five welding
positions. Thus, a total of 18,000 data were collected, including 9000 image data including
depth holes and 9000 restored image data with depth hole filling by the method presented
in this study, Table 2 shows selected examples of the depth images of the data set. In the
figure, the depth hole in the overhead is intentionally not removed.

4.4. Recognition of Welding Positions

The acquired 18,000 depth image dataset was divided into training set, validation set,
and test set at a ratio of 6:2:2 and trained on the Inception v3 model. Learning was carried
out using a model pre-trained with a visual database, ImageNet, and then fine-tuned on a
depth image dataset. The loss function is defined as (3):

f (s)i =
esi

∑C
j esj

, CE = −
C

∑
i

ti log( f (s)i) (3)

where si is the probability of belonging to the i-th class, ti is the ground truth, and f (s)i is
the softmax function that expresses the probability of belonging to the ground truth. The
smaller the value of the loss function, the better the model performance.

The training was repeated 200 times to measure the accuracy and loss function values,
and the results are graphically shown in Figures 19 and 20. The final accuracy and loss
values are 94.84% and 0.1012 for the validation data with depth holes and 98.96% and
0.0562 for those with depth hole fillings.

The computational environment used when running the CNN model as well as the
algorithm proposed in this study is as follows:

# Intel i7-10700K @ 3.80 GHz;
# 16 GB RAM;
# NVIDIA GeForce RTX 3070.

The Inception v3 used as a CNN model consists of 42 layers. The last output layer
was configured to be classified into 5 classes using the softmax as an activation function. It
took about 15 min to train 200 times each for the two cases of (1) images with deep holes,
and (2) images with reconstructed deep holes.
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Table 2. Examples of collected dataset: images with depth holes versus restored images with depth hole filling.

Position Before Correction After Correction Note

Flat
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The accuracy of the test data is compared in Table 3. This result reveals that the
recognition accuracy of the welding positions improves when the depth hole caused by the
arc is removed and restored.

Table 3. Accuracy comparison with two different learning models.

Image Dataset Accuracy by SVM Accuracy by CNN

Restored images 74.37% 98.72%
With depth holes 60.45% 85.83%
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The result of training the depth image on CNN showed higher accuracy than that
of training on SVM. The SVM, which analyzed the necessary data from extracted joint
coordinates, could not accurately produce the coordinates of the body parts that overlapped
the depth hole in flat, vertical, and horizontal positions. The decisive cause is that when
any inaccurate joint coordinate exists, the linked joints are not properly calculated due to
the hierarchical structure in which the joints of all parts are strictly connected. For this
reason, no matter how much training is performed with SVM, the decision boundary to
accurately divide the class is not determined, resulting in relatively low accuracy.

The CNN results for one dataset with depth holes and another dataset with depth hole
filling are compared in a confusion matrix in Figure 21. Both datasets show considerable
accuracy for the overhead and standing positions where the depth hole does not cover
the welder’s body. On the other hand, in flat, vertical, and horizontal positions where
the body and the depth hole overlap, the accuracy in the dataset with the depth hole is
significantly lower. As a result, to recognize the correct posture in a welding operation
where an obstructive element exists, the cause of the obstructive element must be removed
in advance.

4.5. Limitations

Since the size of the welding arc varies, the depth hole region in the depth image
caused by the arc varies as well. Because a small depth hole exists inside the welder’s body,
the method presented in this study can be used to search for and remove it. On the other
hand, a large depth hole that expands out of the body or intermittently overlaps with the
undefined regions around the welder makes it difficult to define the correct range of the
depth hole, as shown in Figure 22a,b. In Figure 22c, a depth hole occurs in a large size that
covers both the whole arm and the upper body. In this case, the color necessary for the
restoration of the arm cannot be used. In the process of restoring the color, it is impossible
to extract the joint of the arm because both the upper body and the arm are restored to the
body color.

As a result of observing the actual welding operation, the depth hole caused by the
welding arc is rarely larger than the welder’s body, but the possibility cannot be ignored.
The limitations should be resolved in future studies to recognize and analyze the welding
position in the actual field.

When watching the actual welding operation, there are times when the welder’s hand
is higher than the neck in a horizontal position. The depth hole in this position is mostly
found on the neck or upper part of the upper body, but it can extend all the way to the
head depending on the individual’s working habits. As a result, in this case, the head
position cannot be specified. Future research is expected to solve the problem by locating
alternative joints, such as the neck and chest, rather than the head.
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5. Conclusions

Since frequent manual welding in the shipbuilding assembly process produces dif-
ferent man-hours depending on the working posture, a technique capable of measuring
and analyzing the working posture in advance is required. In this study, a method for
recognizing working postures using RGB-D cameras was proposed.

A method for resolving the problem of difficult welding position recognition due to
the welding arc was presented. We created an algorithm that searches for depth holes
in two-dimensional depth images and removes them using the image moment and the
image inpainting technique. Two-dimensional coordinates of body joints were extracted
from depth images and combined with depth information to create three-dimensional
joints using open-source software. Those joints were used to establish a standard for
welding positions, and the working postures were recognized and classified based on the
standard. The method proposed in this study consists of (1) excluding direct contact or
interference with field workers, (2) acquiring data through remote sensing based on an RGB-
D camera, (3) recognizing posture using a pre-trained CNN model, and (4) determining
the working position in real-time. Thus, the proposed method could provide an efficient
tool for measuring and recognizing the working posture in the field using an inexpensive
depth camera, by automatically eliminating the disturbance factors of the image. Instead
of removing all depth holes from the depth image, we were able to obtain a performance
improvement of more than 40% by removing only the necessary parts.

The coordinates of joint extracted from the restored image and those of the ground
truth showed a similar tendency overall. The error of the hand and neck joints covered by
the depth hole was large, but the correlation between the joints did not change significantly.
As a result of classifying the working position by learning the preprocessed depth image
on the CNN model, high accuracy of 98.72% was obtained. This shows 13% points higher
performance than the 85.83% accuracy of the depth image without preprocessing.

The proposed method can be used in shipbuilding and other industries that require
a variety of working postures. Analyzing working postures with high workloads can
help prevent accidents and musculoskeletal disorders in workers. Assume, for example,
that the recognized welding position is reflected in the formula used to calculate welding
man-hours. In that case, it can assist the shipyard in calculating realistic man-hours and
thus managing an efficient production schedule.

Interference factors caused by bright light may occur in the field in the electrical,
electronic, and optical industries. Furthermore, because construction and sports happen
outside, motion capture accuracy may suffer. Thus, the findings of this study are expected
to help detect external disturbances or recognize work postures in other industries where
accurate depth images are impossible to obtain due to potential disturbances.
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