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Abstract: Path planning is a fundamental issue in robotic systems because it requires coordination
between the environment and an agent. The path-planning generator is composed of two modules:
perception and planning. The first module scans the environment to determine the location, detect
obstacles, estimate objects in motion, and build the planner module’s restrictions. On the other hand,
the second module controls the flight of the system. This process is computationally expensive and
requires adequate performance to avoid accidents. For this reason, we propose a novel solution to
improve conventional robotic systems’ functions, such as systems having a small-capacity battery, a
restricted size, and a limited number of sensors, using fewer elements. A navigation dataset was
generated through a virtual simulator and a generative adversarial network to connect the virtual and
real environments under an end-to-end approach. Furthermore, three path generators were analyzed
using deep-learning solutions: a deep convolutional neural network, hierarchical clustering, and an
auto-encoder. Since the path generators share a characteristic vector, transfer learning approaches
complex problems by using solutions with fewer features, minimizing the costs and optimizing the
resources of conventional system architectures, thus improving the limitations with respect to the
implementation in embedded devices. Finally, a visualizer applying augmented reality was used to
display the path generated by the proposed system.

Keywords: path planning; machine learning; indoor navigation

1. Introduction

In the past several decades, robotic systems have played an important role in artifi-
cial intelligence (AI), allowing solutions to existing problems that reduce the necessary
resources. AI is the field of science that helps machines improve their functions, in the areas
of logic, reasoning, planning, learning, and perception [1]. These features bring efficient
performance to the systems in different fields.

One of the major topics in the AI field is the development of autonomous machines,
such as robotic systems [2]. A robotic system is a reprogrammable multifunctional manip-
ulator, designed to move materials, parts, tools, or specialized devices through various
programmed movements to perform different tasks [3]. According to the classification of
robotic systems, the autonomous level is the most advanced mode [4].

The field of robotic systems has seen great success in many problems by minimizing
the resource requirements during online execution when moving between two points. Some
of the contributions are surgical robotics [5], mobile robotics [6], hybrid locomotion [7], and
bio-inspired robots [8,9]. According to the calculus of variations [10], a path is defined as
the sum of the distances between two consecutive points defined by Equations (1) and (2).
For this reason, a path is composed of a set of lines in space. Likewise, one of the principal
features to describe a path is the level of safety with respect to avoiding obstacles. Therefore,
path planning is the shortest distance between m obstacles O and the best value with the
highest level of safety in a sequence of points p of length n. After adding a negative sign to
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the value, the maximum optimization safety problem is transformed into the minimum
optimization problem, as defined in Equation (3) [11].

distance(pi, pi+1) =
√
(xi − xi+1)2 + (yi − yi+1)2 (1)

length(p) =
n

∑
i=0

distance(pi, pi+1) (2)

sa f ety(p) = −min min
{

minDistance(pi pi+1, Oj)
}

(3)

Consequently, the path-planning problem requires coordination between the environ-
ment and the agent. Hence, it is essential to define rules for the transition between states to
achieve an objective. The path-planning problem mainly has two modules based on the
definition of AI. The first is the planner, while the second module is the perception of the
environment; this is shown in Figure 1 [12]. The problem is complex due to the robotic
system’s characteristics, such as the battery, dimensions, and technologies to perceive the
environment, including obstacles, illumination, and other agents in motion.
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Figure 1. Conventional architecture for a path-planning generator.

This architecture is efficient for robotic systems whose dimensions and battery are
large, such as ground vehicles. In recent years, there has been a growing trend based
on unmanned vehicle systems [13], for example micro aerial vehicles (MAVs), but these
kinds of systems have reduced dimensions and a limited battery and are used in indoor
environments. Subsequently, this architecture is unfeasible and inefficient. However, AI
helps machines adopt new features to improve their limited performance.

Recent machine learning trends have addressed improving the weaknesses, such as
some of the perception solutions with exciting applications in ground vehicles. Some
contributions are the analysis of the road using RGB-D sensors [14], detecting and tracking
to avoid collisions using RGB-D sensors [15], and extracting the features of the road map to
generate trajectories through a LiDAR sensor [16], as well as developments in implementing
different techniques to obtain external information [17]. Therefore, data have an essential
role in the updated functionalities of the systems, which requires approaches to process the
data, such as machine learning.

Machine-learning algorithms allow reducing the processing and resources needed,
such as the end-to-end approach, allowing the collection of a dataset generated by physical
sensors. This approach reduces the external factors [18], such as for specialized sensors,
for example the fusion of LiDAR and camera sensors [19], a driving model for the steering
control of autonomous vehicles [20], a controller for robot navigation using a deep neural
network [21], and autonomous driving decisions based on the deep reinforcement learning
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approach [22]. The aims of these developments are the minimization of the resources
needed and the improved performance of their respective architectures.

Likewise, one machine-learning solution is the generative adversarial network (GAN),
composed of two kinds of networks, a generative and adversarial network. In this approach,
both networks compete and generate new samples from a source of noise. Therefore, it is
possible to relate a sample taken from one domain to another [23].

On the other hand, simulators, such as virtual reality, are capable of producing a model
of reality. This technology consists of developing an immersive experience to explore a
virtual world, which can bring us closer to the real world [24]. Subsequently, using an end-
to-end approach, it is possible to reduce the computational time of the planner. Here, we
propose three different solutions: a deep neural network [25], hierarchical clustering [26],
and an auto-encoder [27], the aim of which is to map an input to a path generated by the
conventional architecture.

Once the interoperability between the authentic and the virtual environment is
achieved, it is possible to reduce the features of the current system through the transfer-
learning approach [28] to implement it in embedded devices such as the Jetson nano and
mobile devices.

As a consequence of the above, we made the following hypothesis. If a GAN allows
connecting two domains, then it is possible to connect the real and virtual environments.
Therefore, a dataset generated by a virtual simulator to estimate a path could be employed
in an authentic environment, reducing the design time and costs. However, it is necessary
to evaluate the performance of a problem that can be simulated and employed in the
real world.

This paper makes the following contributions. First, the interoperability coefficient
determines the number of samples of an authentic environment on a 2D plane. Second, the
performance of the system on a virtual and an authentic environment results in different
path-planning solutions. Additionally, we built a dataset based on a virtual environment,
using an end-to-end approach. Finally, the proposal was evaluated on embedded devices.

The remainder of the manuscript is presented as follows. Section 2 reviews the
background. The proposed work is described in Section 3. Likewise, the experiment and
the analysis of the results are detailed in Section 4. Finally, conclusions and future work are
presented in Section 5.

2. Related Works

It is well known that robotic systems can move between two points, and the path-
planning problem is composed of two principal modules based on the AI definition:
perception and reasoning. Despite being two decoupled modules, both depend on each
other. According to the direct and indirect state-of-the-art approaches, path-planning
classification results in a direct and indirect point of reference for the robotic system in
space, as shown in Figure 2.

Indirect

3th person 

view

Direct

1st person

view

Figure 2. Direct and indirect approaches for the path-planning problem.
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The direct approach uses the robotic system as the point of reference to determine
the movements. The kinematic movements of the robotic system describe the form of
interacting with the environment. Various contributions have used a direct perspective
approach, such as dynamic programming [29], soft robotics designing [30], and differential
systems [31]. Secondly, the indirect perspective uses the environment as the principal
element to capture the robotic system’s conditions. Thus, the sensing of the environment is
a high priority, with relevant contributions using sampling-based algorithms [32], node-
based algorithms [33], and bio-inspired algorithms [34].

Due to the features of MAVs, such as a flight time of approximately 15 min, small
dimensions, and sensors such as a conventional camera and an IMU composed of two
types of sensors of movement, a gyroscope and accelerometer, they present an optimization
problem. Therefore, one of the main challenges in robotic systems is the optimization
of the resources needed. For example, some works focused on generating solutions to
optimize the flight time and navigation control to make the use of the systems’ resources
more efficient [35–37].

This proposal implements an indirect approach using a virtual simulator because
the analysis of the environment is of vital importance in executing an action. The virtual
simulator has different elements to scan the environment, such as LiDAR, RGB-D, infrared
sensors, ultrasonic sensors, radars, and 4D radars. The AirSim simulator [38] shows
acceptable behavior to simulate a quadrotor. Moreover, this simulator allows the design of
our 3D environment with different data inputs, such as the conventional input, the depth
image, and the semantic image.

Secondly, a conventional algorithm for path planning was employed to associate a
path for each sample generated by the virtual simulation. The A∗ algorithm finds short
paths using graphs. A graph is a set of nodes with connections between them. Each node
is a tuple indicating the destination node and the weight, which describes the connection.
One particular characteristic of the algorithm is the movement, highlighting the diagonal
between two points. The different movements are based on 45◦, forming a star. The
heuristics define the complexity of the A∗ algorithm, which executes in polynomial time
with the implementation of the following expression in Equation (4) [39].∣∣h(x)− h′(x)

∣∣ = O
(
log
(
h′(x)

))
(4)

Despite the A∗ algorithm’s advantages for path planning, it has inadequate perfor-
mance when the nodes’ number increases. Therefore, we used a navigation mesh to reduce
the number of nodes. A map in a virtual world is composed of triangles, and each triangle
forms a primitive geometry. Thus, the centroid of each primitive geometry-shaped mesh is
used, as shown in Figure [40].

AI represents the principles of the biological neuron, employing additive and multi-
plicative models composed of weights and biases. Simultaneously, an activation function
completes the information flow step, generating a learning curve from an objective function.
Therefore, it enables finding solutions to complex optimization problems by minimizing
the cost of the objective function [41].

Deep learning is a technique that reduces the number of operations for considerable
inputs with big dimensions, such as images [42]. The number of operations requires a large
amount of processing and memory, causing these operations to be limited to small inputs.
However, this approach aims to find characteristic vectors by the technique of reducing the
data of the inputs that can be associated with the actions [43].

Although deep learning has been used in problems of classification [44,45] and regres-
sion [46,47], this approach has shown some limitations. Nevertheless, this fundamental
approach to processing data for image analysis to generate images from a noise source
has given rise to the GAN, which is based on the competition between two players [48].
The GAN is an architecture that uses two types of neural networks. The calculation of the
entropy defines the cost functions of a GAN [49]. Therefore, the cost functions are defined
as follows: the first network, called the generative network, is responsible for generating
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data from a noise source (Definition 1); the weights are adjusted after the evaluation of the
second network, called the discriminator (Definition 2); the total cost function is the sum of
both networks (Definition 3).

Definition 1. Let n be the number of samples, D1,2 be the cost function of the discriminator network,
G1,2 be the cost function of the generator network, and Z1,2 be the noise source. The maximization
of the cost function of the discriminator network is obtained according to the following expression:

Mc fD1,2
=

1
n
·

n

∑
i=0

log(D1,2(i)) + log(1− D1,2(G1,2(Zi
1,2))) (5)

Definition 2. Let n be the number of samples, D1,2 be the cost function of the discriminator network,
G1,2 be the cost function of the generator network, and Z1,2 be the noise source. The minimization
of the cost function of the generator network is obtained according to the following expression:

mc fG1,2
=

1
n
·

n

∑
i=0
−log(D1,2(G1,2(Zi))) (6)

Definition 3. Let D1,2 be the cost function of the discriminator network, G1,2 be the cost function
of the generator network, and Z1,2 be the noise source. The full cost function of a simple GAN
architecture is obtained according to the following expression:

GANc f1,2 = Mc fD1,2
+ mc fG1,2

(7)

This approach provides the following solutions for the generation of images, obtaining
incredible results: the transformation of an image to another representation of the data
in a different domain [23]; generating data to create an image with different machine
learning approaches [50]; generating sequences without pretraining data [51]; analyzing
the convergence policies during the training [52]. In this proposal, two domains are
required: are virtual and real. The GAN has a principal role in connecting both domains,
as shown in Figure 3.

Y(x) Y'(x)

Figure 3. The change of the domain by GANs from the real world to its virtual representation.

Finally, once the interoperability between two domains, the virtual and authentic
environments, has been achieved, it is possible to implement the system on embedded
devices by transfer learning, which is used to improve the learner from one domain by
transferring information from another related domain [53]. In other words, the original
system is changed by a new architecture that learns the same behavior, but in this case with
fewer features.

Inspired by these contributions, the following procedure was defined to create a
dataset in a virtual environment to reduce the development and implementation in low-
cost systems. The following section describes the design of the dataset and each approach
to generate a path based on the A∗ algorithm optimized with the navigation meshes.

3. Proposed Work

This section describes the methodology used to generate this proposal, which mea-
sures the performance of generating a path planning, whose analysis consists of creating a
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path plan by employing the end-to-end approach with virtual samples proven in an au-
thentic environment. The approaches selected include a deep neural network, hierarchical
clustering, and an auto-encoder to generate the path. These algorithms allow producing
the path associated with each image.

Since exploration plays an essential role in unknown environments, the cost of im-
plementing the physical requirements is expensive. Therefore, a virtual representation of
the known authentic environment generates the samples for training. Once the virtual
representation is built, it is possible to produce nonexistent conditions in the physical
world and evaluate N iterations in a virtual environment without using the real world.
However, the details of the environment are essential to associate a virtual representation
with real samples.

One of the most significant challenges was the photorealism of the video game engine.
Consequently, an analysis was performed to minimize this requirement by using low-
quality images using Unreal Engine, which offers open-source images. Moreover, the
framework developed by Microsoft, AirSim, allows simulations with a high degree of
detail in the rendering [38].

3.1. Interoperability Coefficient to Connect the Virtual and Real Environments

We introduced the interoperability coefficient, which consists of determining a minimum
number of real samples to connect the virtual and real domains using the GAN charac-
teristics. This coefficient is composed of a correlation factor and the entropy generated
by a GAN.

One of the tools to assess the correlation between two images is the HOG [54]. This
algorithm allows measuring the comparison of the authentic environment and its virtual
representation. This tool obtains a characteristic vector for each of the samples and offers
a coefficient that indicates the similarity level, whose hyperparameters are: orientation
equal to 8, pixels per cell equal to 32 × 32, and cells per block equal to 4 × 4. For example,
Figure 4 shows a real sample and its virtual representation with two different detail levels.
We observed that the first variation has essential lighting, and the second has a more
significant number of directional lighting sources and materials that give more realism to
the virtual environment.

[0.29590471 0.15968838 ... 0.07175946]

[0.000000 0.00000 ... 3.46694805e-13]

[0.18558648 0.09408783 ... 0.23410157]

(a)                 (b)               (c)

Figure 4. Real-world and virtual samples with different levels of details. (a) Samples in different
domains, (b) the gradient generated by the HOG algorithm, and (c) the vector generated by the
HOG algorithm.

Table 1 shows correlation measurements between 30 real-world samples and their
virtual representation with two different detail levels. Since lights increase the detail level,
the correlation coefficient of more detailed samples (lights and materials) is higher than
essential light source samples. As the correlation coefficient between virtual samples
created with video game engines and real examples is not high enough, the representation
of the real world is inadequate.
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Table 1. Correlation between real-world and virtual samples.

Simple Environment
Virtual vs. Real

Environment with Lights and Materials
Virtual vs. Real

Factor Correlation
(mean)

0.3708 0.5490

Factor Correlation
(std)

0.0824 0.0755

Likewise, the other element that composes this coefficient is the joint entropy [49]
by the virtual representation of the real image and the predicted fake image described in
Equation (8).

Definition 4. The interoperability coefficient is composed of the HOG determined by the detail of
the virtual representation multiplied by the entropy of a virtual sample with its generated samples.
Let Nreal be the number of real samples, xr the real image, and xv a virtual image to calculate the
average HOG relation between both samples. Let NGAN be the number of samples gendered by the
GAN, y the real sample’s virtual representation, y′ a fake sample, P(YY′) the probability between
a real and a fake sample, H(y) the entropy of the real sample’s virtual representation, and H(y′)
the fake sample’s entropy to determine the average joint entropy for each step and the sum of the
entropy of both samples.

Cinteroperability =
∑Nreal

k HOG(xrk , xvk )

Nreal
·

1−
∑NGAN

i

−∑yi ∑y′i
PYiY

′
i
(yi ,y′i)logPYiY

′
i
(yiy′i)

H(yi)+H(y′i)

NGAN

 (8)

Thus, Table 2 describes the interoperability coefficient to define the number of mini-
mum samples used to build a virtual representation.

Table 2. Estimated minimum real samples needed to build the VR environment.

Number of Samples Joint Entropy Interoperability Coefficient

10 0.5894 0.1985

20 0.2567 0.2935

30 0.1564 0.4465

43 0.0957 0.5047

In this case, the HOG correlation is 0.5490, and the interoperability coefficient is
0.5047 in 43 real-world samples. For this reason, we recommend taking the number of
samples when the interoperability coefficient is greater than 0.50. Hence, the details in the
virtual representation are less than the authentic sample. It is essential to consider that the
virtual representation must have enough information to allow deep learning [55] to use
textures. Furthermore, the results showed that when the number of virtual representation
samples increased their details in lights and materials, the interoperability coefficient must
increase and the number of samples can be less. On the contrary, the joint entropy was
low in the case that the dispersion was similar between the GAN architecture and virtual
representation samples. However, this proposal’s restriction is the limited amount of real
information, and the samples did not have enough details to avoid using more real samples.

3.2. Virtual Dataset

The A∗ algorithm is undoubtedly the most widely used because it has an approach
that is implemented in the online execution and the level of implementation is low. In this
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way, this algorithm is only implemented to associate a path for each virtual sample. The
A∗ algorithm is a graph-based trajectory optimization problem with a star-shaped motion
evaluation (*). For each node, the algorithm finds the best path, obtaining a complexity
of O(n2), and stores the nodes in memory, generating a problem with a large number of
nodes. Likewise, Figure 5 shows a 3D scenario with the representation of spheres, which
indicate the nodes to which the agent can move. The surface contains 91 nodes because
we employed a DJI Tello drone whose minimum distance is 20 cm. Within the 91 nodes,
6 represent the spaces occupied by objects in motion in an instant of time.

Figure 5. Representation of a 3D scenario that describes the free space for motion.

The shortest path between an initial point and an endpoint in Figure 6 has 18 nodes.
Due to the characteristics of the A∗ algorithm, it is necessary to perform the analysis of
the occupied spaces, which makes it inefficient due to a more significant number of nodes.
Therefore, the number of nodes is reduced.

Figure 6. Visual representation of the best path employing the A∗ algorithm.

The navigation mesh technique offers a reduction in the nodes required to find the
best path. Figure 7 describes a manual representation of the scenario’s simplification
using meshes where the nodes are grouped into an area to calculate the region’s centroid.
Therefore, the number of nodes is reduced to four from an initial point to an endpoint
using this technique. Another advantage of applying navigation meshes being able to
move faster without jumping 20 cm each time, as shown in Figure 8.
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1 2 3 4

Figure 7. Visual representation of navigation meshes.

1 2

3 4 5
6 7

Figure 8. Visual representation of the best path using navigation meshes.

The location of the objects follows the procedure in Figure 9. Although the simulator
offers different input samples, a standard image was used as the input to create a location
and classification network, as in Figure 9a. The subsequent detection of the objects in
Figure 9b and segmentation of the depth images shown in Figure 9c results in a mask with
the color of the objects moving on the known stage. Once the object is detected, the point
cloud’s centroid is defined by a sphere, as shown in Figure 9d. Consequently, the state of
the nodes covered by the sphere is occupied.

(a)                    (b)                     (c)                      (d)
Figure 9. Process to estimate the location of objects. (a) Standard input sample. (b) Object’s detection.
(c) Semantic mask and depth samples. (d) Estimation of the object location.
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3.3. End-to-End Implementation

Robotic systems with the perception of 3D scenarios usually have many functions
to estimate the locations of objects. Hence, usually, an efficient energy utilization and
processing time are not very easy to achieve. Therefore, a knowledge database of the
information was generated from the complex system to improve the efficiency.

Inspired by the end-to-end approach, the novel architecture integrates the module’s
perception by depth estimation, a window predictor, and a tracker to estimate the objects’
locations. On the other hand, the planning module uses the A∗ algorithm with meshes.
Therefore, implementing a knowledge database allows reducing the use of the subsystems
of a complex system to a single block, as shown in Figure 10. In this way, the submodules
are included in the optimized system.

Action
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(a)                                            (b)
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Figure 10. Path-planing architecture. (a) Standard architecture. (b) Reduced architecture.

In order to generate the dataset by an end-to-end approach, the following approaches
were implemented: a deep convolutional neural network, hierarchical clustering, and an
auto-encoder. Likewise, each approach has the following architecture defined in Figure 11
in common (the diagrams of the deep neural network were based on https://github.com/
kennethleungty/Neural-Network-Architecture-Diagrams (28 October 2021)), because they
share a characteristic vector.

conv1

conv2

conv3

conv4

conv5

fc7 fc8 fc9

256 x 256 x 32

x 64 x 128

32x32x256

16x16x512

1 x1x 512
1 x 1 x 256 1 x 1 x 25

convolutional + ReLU

max pooling

fully connected + ReLU

conv6

8x18x1024

Figure 11. Features of the DCNN model to generate the characteristic vector.

https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
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3.3.1. Image to Path: Deep Convolutional Neuronal Network

The first approach implemented was using a deep convolutional neural network.
The deep neural network is one of the best-known algorithms to extract features from
an extensive dataset. This approach consists of using the deep convolutional network to
extract the images whose outputs predict the number of the node to generate the path, as
shown in Figure 12. Since it is a regression problem, the optimizer is the Adam optimizer
with the following parameters: learning rate 0.001, beta1 0.9, beta2 0.999, epsilon 1 × 10−7,
and the Mean-Squared Error (MSE) as a function to optimize Equation (9). In addition,
each path is built of four points, where each couple of points represents the 2D position.

1
n
·

n

∑
i=1

(Ŷi −Yi)
2 (9)

(a)              (b)       

Figure 12. DCNN model to generate a path. (a) Input sample. (b) Feature extraction network.

3.3.2. Image to Path: Hierarchical Clustering

Another approach used in machine-learning algorithms is hierarchical clustering.
A characteristic vector represents each image. The image has an associated path. This
approach aims to split the data and find the characteristic vector with the minimum distance
between two vectors. In this solution, a deep neural network was implemented to generate
the characteristic vector. Hence, a feature vector was obtained for each sample, respectively
having a path associated with it, shown in Figure 13. This model has five clustering levels
where each color represents an updated cluster with the number of reduced elements until
we obtain the vector with the minimum distance. Once this model is finished, instead
of evaluating each sample (200), the number of evaluations is reduced to less than 15 by
Equation (10) with number_of_levels equal to 5 and number_of_cluster to 3.

1st level

2nd level

3rd level

4th level

5th level

characteristic vector

path with minimun 

distance

200

67 67 66

22 22 22

7 8 7

3 32

Figure 13. Visual description of the Hierarchical Clustering (HC) approach to reduce the number
of operations.
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Operations <= (number_o f _levels) ∗ (number_o f _cluster) (10)

3.3.3. Image to Path: Auto-Encoder

There is evidence that recurring neural networks play a crucial role in the generated
sequence of information, for example for natural language processing and situations
requiring the implementation data sequences, for example time series analysis, where
different types of recurring networks use auto-encoders [56]. The first is the encoder, which
has deep, interconnected neuronal layers. The encoder function reduces the amount of
information to create a characteristic vector that defines the dataset. Subsequently, the
decoder processes the data [57], whose principal propose is to reconstruct the information
from a characteristic vector. The decoder can reconstruct a characteristic vector into new
associated information. A problem that uses this approach is the image caption problem,
which generates a sequence of words to describe a photo [58].

The related works defined an encoder as a convolutional network that extracts the
features from a set of samples. Consequently, this vector generates an input representing
a sequence related to the image using recurring networks representing the decoder. A
feature extraction network and an auto-encoder must generate the sequence of vectors
representing the nodes to implement this architecture, as in Figure 14. Again, the optimizer
is the Adam optimizer with the following parameters: learning rate 0.001, beta1 0.9, beta2
0.999, epsilon 1 × 10−7, and the cross-entropy error as a function to optimize Equation (11).

−
C

∑
i

ti · log( f (s)i) (11)

a) b) c)

Figure 14. Path-planning generator based on the auto-encoder approach. (a) Input sample. (b) Fea-
ture extraction network. (c) Generative path network.

3.4. Strategy to Connect an Authentic Environment with Its Virtual Representation

The following strategy is proposed to connect the virtual and real domain using the
GAN, whose features are shown in Figures 15 and 16 for generator and discriminator,
respectively. The principal feature of this strategy is the connection between both domains,
as shown in Figure 17a, where it is an authentic sample and its respective virtual repre-
sentation with an associated path. This form of connecting both realities is adequate if
the number of samples between both domains is the same. However, when an authentic
image is not in the domain to predict the connection with the virtual image, the behavior
is inadequate because the randomization is high in a one-to-one connection, as shown in
Figure 17b. If the domain changes are implemented, the authentic image does not need
to exist with the virtual domain. For this reason, the GAN employs the prediction of
the virtual representation, having an approximation using the architecture in Figure 17c.
Therefore, the randomness is reduced, as shown in Figure 17d, and the number of authentic
samples is limited.
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Figure 15. Model features for the GAN’s generator, which estimates the virtual samples from
real inputs.
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Figure 16. Model discriminator’s features to validate the training in the GAN.

The domain changes from the real to the virtual environment are added to the module
described in Figure 18, which is composed of the input (Figure 18a), the architecture with
the GAN (Figure 18b), a deep convolutional network (Figure 18c), and the method to
determine the output. Since each approach shares the characteristic vector, this proposal
increases the system’s performance on embedded devices such as the Jetson nano 2G by
Nvidia and the Android device, Moto X4. The updated parameters for embedded networks
are shown in Figure 19.
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Figure 17. The importance of a GAN for connecting two domains. (a) one-to-one dataset. (b) One-
to-one randomization of output in the dataset. (c) Module to change the domain. (d) Estimated
image.
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Figure 18. Path generator with the change of the domain. (a) Input sample. (b) Domain change.
(c) Feature extraction network. (d) Generative path network.
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Figure 19. Convolutional model’s features that generate the characteristic vector employing the
transfer-learning approach.
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Figure 20 summarizes the steps implemented in this development. As the first step,
each virtual sample has an associated virtual path generated by the A∗ algorithm in the
simulator, as shown in Figure 20a. Secondly, three deep-learning solutions are proposed
to estimate a path, and the DCNN determines a characteristic vector that is common
to them with virtual samples, as illustrated in Figure 20b. The third step describes the
connection between both domains through a GAN. This network changes from the real
domain to the virtual domain. Thus, the samples in the real domain are reduced to avoid
a one-to-one connection, as shown in Figure 20c. Since the GAN requires considerable
time, the transfer-learning approach is proposed to reduce this issue. The fourth step is
to replace the GAN and characteristic vector called the domain changes with the transfer-
learning approach. Therefore, a new model with fewer layers is trained to determinate the
characteristic vector, but with fewer operations, as described the Figure 20d. However, it is
necessary to consider that the domain change system estimated 50 samples to implement
transfer learning. Finally, in the last step, instead of employing the GAN and characteristic
vector as separate systems, both are included and placed as estimates of the virtual path
with the three deep learning approaches from the real samples, as displayed in Figure 20e.
In this way, the cost of the architecture is reduced, and its performance is improved.

1

2 60 3 54

654

2

10 3
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Auto-encoder

Transfer learning

virtual path by A*

GAN
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Auto-encoder
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(a) (b)

GAN

(c) (d)
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real

sample

Domain changes

characteristic vector

Figure 20. Interoperability between real and virtual environments by a GAN. (a) Each virtual sample
has an associated virtual path based on A∗. (b) Three deep-learning solutions to estimate the virtual
path. (c) GAN to connect the real and virtual domains. (d) Transfer learning approach to reduce the
domain changes generated by the GAN. (e) The transfer learning model replaces each deep-learning
solution with a few operations to estimate the characteristic vectors, connecting real samples to
virtual paths.
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4. Experimental Phase and Analysis

In order to evaluate the performance of the change of domain, a quantitative analysis was
used. The following metrics were used to measure the depth estimation on generated images
defined in the state-of-the-art [59]. Therefore, six indicators allow describing the performance:

1. Average relative error (rel): 1
n ∑n

p
|Yp−Ŷp|

Yp
;

2. Root mean-squared error (rms):
√

1
n ∑n

p(Yp − Ŷp)2;

3. Average (log10) error: 1
n ∑n

p
∣∣log10(Yp)− log10(Ŷp)

∣∣;
4. Threshold accuracy (δi): % of Yp s.t. max( Yp

Ŷp
, Ŷp

Yp
) = δ < thr for thr = 1.25, 1.252, 1.253;

where Yp is a pixel in depth image Y, Ŷp is a pixel in estimated depth image Ŷ, and n is the
total number of pixels for each depth image.

Table 3 shows the performance of the domain change because an image taken in
an authentic environment suggests the virtual representation of the respective authentic
image. It is not necessary to obtain a value of zero in the result. Therefore, the metrics help
describe the performance of the generated path with the different approaches.

Table 3. Performance of the quantitative metrics in our approach and the standard deviation of 50 samples. ↓, lower is
better; ↑, higher is better.

Model rel-std ↓ rms-std ↓ log10-std ↓ δ1-std ↑ δ2-std ↑ δ3-std ↑
GAN 0.9481–0.5614 0.9418–0.2469 0.3479–0.0722 0.6767–0.0235 0.7925–0.0278 0.8491–0.0282

GAN-Noise 0.1693–0.2068 0.3862–0.1420 0.2392–0.0832 0.8538–0.0592 0.9334–0.0463 0.9624–0.0367

The performance of the Deep Convolutional Neural Network’s (DNCNN) training is
shown in Figure 21, which shows the behavior on 1000 epochs with a normalized output,
which had a precision of 90% with 20 test samples. The experiment consisted of describing
the evaluation of two different experiments. The first contained all nodes generated by A∗

and the behavior throughout the navigation mesh (NavM), where the number of nodes
was fewer than that of the full-path A∗.
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Figure 21. Deep convolutional neural network behavior with navigation meshes and the full path.

Figure 22 represents the behavior of the auto-encoder (AED) training, where
5000 epochs had a precision of 95% with 20 test samples. This experiment, similar to
the evaluation before, showed two behaviors with all nodes created by A∗ and with the
navigation mesh reducing the number of nodes in the path.
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Figure 22. Auto-encoder behavior with navigation meshes and the full path.

In this case, hierarchical clustering was not used because this approach did not
require training. According to the results, the behaviors of the deep convolutional neural
network and auto-encoder with navigation mesh converged before as the output contained
fewer nodes than the full path. On the other hand, Table 4 describes the behavior of the
evaluation of the vectors based on the Euclidean distance (Equation (12)), the Manhattan
distance (Equation (13)), and the similarity by the cosine (Equation (14)) used to analyze
the difference between the expected vector x and the generated vector y. The free collision
coefficient of Equation (15) determines if at least one node generates an inadequate path
quantitatively.

euclidean =

√√√√ k

∑
i=0

(~xi − ~yi)2 (12)

manhattan =
k

∑
i=0
|(~xi − ~yi)| (13)

cosine similarity =
~x ·~y
‖~x‖‖~y‖ (14)

C f ree collision = 1−
∑

Nsamples
i=1

{
i f exists collision c = 1

else c = 0
Nsamples

(15)

The three models with one-to-one linking had high randomization. Therefore, it was
essential to connect both realities with the GAN to reduce that random behavior. In this
experiment, each node was composed of two points of the output. For example, if the
output vector had ten values, this means that the path had five nodes. The results show
that the solution with the navigation mesh improved the performance because the number
of nodes was fewer than the full path.

Besides, the model with the best behavior was the hierarchical clustering because this
model is associated with the sample existing in the training samples, but samples in the
dataset generate the path. Therefore, this approach was the best with respect to the free
collision coefficient. However, all possible solutions must appear in the dataset to improve
the accuracy compared with the auto-encoder. On the contrary, the deep convolutional
neural network had a competitive behavior, but the error increased, while the path was
long. Finally, the auto-encoder model predicted the sequence; hence, this approach reduced
the number of training samples more than hierarchical clustering.
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Table 4. Performance of the end-to-end approach and its standard deviation in 50 samples. ↓, lower is better; ↑, higher
is better.

Model

Accuracy
Euclidean
Distance

(mean-std) ↓

Accuracy
Manhattan

Distance
(mean-std) ↓

Accuracy
Cosine

Similarity
(mean-std) ↓

Coefficient
Free

Collision ↑

DCNN-one2one 53.8667± 3.9055 128.8 ± 14.5931 0.7069 ± 0.0586 0.02

DCNN-Full 22.6847 ± 3.5832 86.7401 ± 6.5722 0.8996 ± 0.03491 0.66

DCNN-MNav 8.4568 ± 1.5475 22.1415 ± 4.2568 0.91454 ± 0.0355 0.84

HC-one2one 15.1254 ± 2.4585 32.1346 ± 3.1354 0.8745 ± 0.02499 0.82

HC-Full 10.1411 ± 4.2164 24.2668 ± 3.1465 0.9224 ± 0.02587 0.92

HC-MNav 4.2145± 1.2441 9.2154 ± 1.8795 0.9952 ± 0.001256 0.96

AED-one2one 41.6589 ± 2.6425 130.0512 ± 2.9717 0.7496 ± 0.2654 0.04

AED-Full 19.6318 ± 2.1653 49.7123 ± 9.5722 0.9496 ± 0.0211 0.82

AED-MNav 4.7855 ± 2.1412 7.6569 ± 3.1336 0.98924 ± 0.01989 0.92

Concerning the execution on embedded devices through a model with fewer oper-
ations, Figure 23 shows that the performance of 1000 epochs for the optimized network
for mobile devices using a transfer-learning approach had a precision of 95% with 20 test
samples.
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Figure 23. Behavior of the transfer-learning training.

In order to validate the accuracy, the evaluation of the metrics was repeated, including
two models with different floats generated by Tensorflow-lite because the GPU’s perfor-
mance increases with a short float size. Table 5 describes the performance of the test
evaluation vectors on different models with full nodes and the navigation mesh with both
sizes of float points in 16 bit and 32 bit, respectively.

The main difference between the two types of word size is the free path coefficient
because the Float16 word size differs slightly by one node. This behavior was due to a
decrease in the word size precision in the operations. However, the model that affected
this behavior the most was the DCNN-Full model since it has morenodes, and the weights
change their behavior due to the word size differences. Another factor that affects its
behavior is that the normalized output is multiplied by a constant, which caused the error
to increase.
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Table 5. Performance of the transfer-learning approach and its standard deviation in 50 samples. ↓, lower is better; ↑, higher
is better.

Model
Size
of

Word

Accuracy
Euclidean
Distance

(mean-std) ↓

Accuracy
Manhattan

Distance
(mean-std) ↓

Accuracy
Cosine

Similarity
(mean-std) ↓

Coefficient
Free

Collision ↑

Float16 27.9917 ± 2.1647 107.1066 ± 7.3813 0.9358 ± 0.2028 0.68
DCNN-Full Float32 27.9910 ± 2.1641 107.1053 ± 7.3780 0.9358 ± 0.2028 0.72

Float16 10.1415 ± 1.5896 28.7415 ± 2.4785 0.9748 ± 0.01811 0.76
DCNN-MNav Float32 10.1413 ± 1.5892 28.7408 ± 2.4779 0.9749 ± 0.01814 0.78

Float16 12.6325 ± 1.6896 19.1415 ± 3.1415 0.9813 ± 0.01258 0.92
HC-Full Float32 12.6319 ± 1.6888 19.1410 ± 3.1404 0.9814 ± 0.01256 0.92

Float16 5.21227 ± 1.9859 10.0046 ± 1.0156 0.9916 ± 0.0009 0.94
HC-MNav Float32 5.21223 ± 1.9853 10.0038 ± 1.0149 0.9916 ± 0.0011 0.94

Float16 17.1215 ± 2.4475 38.8528 ± 2.2332 0.9415 ± 0.0154 0.82
AED-Full Float32 17.1208 ± 2.4470 38.8520 ± 2.2325 0.9416 ± 0.0152 0.84

Float16 4.7485 ± 0.9869 7.4415 ± 1.2023 0.9814 ± 0.0224 0.88
AED-MNav Float32 4.7478 ± 0.9862 7.4409 ± 1.2018 0.9814 ± 0.0224 0.88

Likewise, the AED model maintained a similar behavior in its two variants, not
affecting the word size. In this way, this approach is the most suitable solution for path
generation compared to scenarios involving more nodes. Finally, the HC model had an
acceptable behavior, but this model requires an increase in the number of samples in the
training set to cover more possibilities and increases the development time.

Table 6 describes the performance when implemented on embedded devices, such
as the Jetson nano 2G and the Android device, Moto X4, with a 630 GPU and a CPU with
2GHz. The Jetson nano 2G can execute the model using the specific Nvidia technology,
RTTensor, and only the CPU. Similarly, the Android device can also execute the model
using a CPU, a GPU, and the API developed by Google called NN-API.

Table 6. Frames per second on embedded devices.

Device Float16
(FPS)

Flotat32
(FPS)

Jetson nano 2G Tensorflow-lite 11 10
Jetson nano 2G Tensor RT 41 10

Android device Moto X4 CPU-4 threads 14 12
Android device Moto X4 GPU 20 16

Android device Moto X4 NN-API 6 6

According to [60], when a system achieves at least 10 FPS, it is considered a real-
time system. Thus, the evaluation showed that the performance took advantage of the
Nvidia technology, as the RTTensors, with Float16. Further, the Android device also
executed on the GPU and the reduced size of the floating point. Unfortunately, the NN-
API gave an inadequate performance since this Android device is limited compared to
high-performance Android devices. The models presented in this paper can be improved
by increasing the number of layers or decreasing the number of nodes and implementing
strategies that enhance the behavior for each approach.

Figure 24 shows the path generated by this proposal. We implemented an augmented
reality system on a mobile device to illustrate the path. In this Figure 24a,b, a successful
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path plan is shown, and a node represents each step. Each node has a label to indicate
what is the next step. The path has all the nodes from the star to the final point. The path
changes the form of the objects in the environment.

(a)

(b)
Figure 24. Generated paths using augmented reality. (a) The path shows avoiding obstacles, which
describes the movement to avoid an object. (b) The path begins with a collision-free path and, when
approaching an obstacle, turns to avoid it.

In summary, this proposal provided acceptable behavior. However, one of the main
characteristics of machine learning is that there is no generalized solution. As described in
the experiment, there are different solutions, but each has its advantages and disadvantages.
The decision depends on the problem and the designer. Furthermore, it is essential to
mention that external conditions, such as lighting and shadows generated in the scenario,
affected the performance. The samples with a high error value were generated by the
ambient lighting and the shadows generated by the objects. When the lighting was constant
and the shadows were eliminated with spotlighting, these unexpected effects decreased.
Therefore, adding more samples with a variety of illumination and shading in the virtual
dataset should be considered.

5. Conclusions and Future Work

The main characteristic of GANs is the connection between two or more domains.
However, the potential of these networks has not been studied in depth. Therefore, this
proposal introduced a novel perspective for developing systems based on the interoperabil-
ity between real and virtual environments to generate a path for a MAV. In this way, virtual
environments have an essential role in generating the dataset employed in real scenarios
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with limited characteristics. Likewise, three models based on deep learning approaches
were implemented and analyzed. Although the path estimate was based on the connection
with a virtual representation, each model demonstrated successful performance. However,
it is complicated to define an ideal model because each model can be improved from a
particular solution to reduce the number of collisions.

This method has advantages and disadvantages: the advantages are the reduction of
the development times, fewer specialized sensors, and a limited number of samples of an
authentic scenario based on the proposed interoperability coefficient; the disadvantages
are the external factors that are difficult to control in the real world, such as illumination
and shadows. Finally, the answer to the hypothesis is that techniques to change a domain
into environments allow connecting the real with the virtual environment under ideal
conditions such as controlled illumination and known scenarios. As future work, it is
required to employ algorithms to generate 3D paths and implement them in a real MAV.
Furthermore, the coefficient to determine how many real-world samples must be improved
to obtain an optimal connection between both realities.
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