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Abstract: Human activity and land-use changes have affected the water quality of Kwan Phayao,
Upper Ing watershed, due to the associated high sediment load and eutrophication. This study aims
to identify suitable LULC allocation scenarios for minimizing sediment and nutrient export into the
lake. For this purpose, the LULC status and change were first assessed, based on classified LULC
data in 2009 and 2019 from Landsat images, using the SVM algorithm. Later, the land requirements of
three scenarios between 2020 and 2029 were estimated, based on their characteristics, and applied to
predict LULC change using the CLUE-S model. Then, actual LULC data in 2019 and predicted LULC
data under three scenarios between 2020 and 2029 were used to estimate sediment and nutrient
export using the SDR and NDR models. Finally, the ecosystem service change index identified
a suitable LULC allocation for minimizing sediment or/and nutrient export. According to the
results, LULC status and change indicated perennial trees and orchards, para rubber, and rangeland
increased, while forest land and paddy fields decreased. The land requirements of the three scenarios
provided reasonable results, as expected, particularly Scenario II, which adopts linear programming
to calculate the land requirements for maximizing ecosystem service values. For sediment and
nutrient export estimation under the predicted LULC for the three scenarios, Scenario II led to
the lowest yield of sediment and nutrient exports, and provided the lowest average ESCI value
among the three scenarios. Thus, the LULC allocation under Scenario II was chosen as suitable for
minimizing sediment or/and nutrient export into Kwan Phayao. These results can serve as crucial
information to minimize sediment and nutrient loads for land-use planners, land managers, and
decision makers.

Keywords: land-use and land-cover allocation; sediment and nutrient export; CLUE-S model; InVEST
model; Kwan Phayao; Upper Ing watershed

1. Introduction

Freshwater ecosystems are considered as one of the essential natural resources for
living organisms. The rate of deterioration of the water quality of freshwater resources, such
as lakes, ponds, and rivers, has become a global problem [1]. Lakes are vital components of
our planet’s hydrological cycle, providing significant social and ecological functions while
storing water and supporting aquatic biodiversity [2]; however, they are often the final
recipients of nutrients discharged from adjacent uplands and wetlands. The management
of a lake means managing its watershed—which are often mismanaged and challenged
natural resources. Some problems originate in the lake itself, but most problems originate
from activities occurring on the surrounding land [3]. Several studies have shown that
land uses play essential roles determining the water quality of lakes. In particular, urban,
built-up, and cultivated areas significantly influence the water quality when within the
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lake basin [4,5]. Furthermore, land-use and land-cover changes are significant drivers of
the accelerated eutrophication of surface waters, due to soil loss and nutrient loading into
water bodies. Agricultural soil losses also have an impact on sediment deposition [6].

Meanwhile, land-use changes lead to changes in ecosystem services (ESs). The impacts
of various land uses on ESs occur in three ways: major ESs are generated under different
land-use practices, land-use patterns have a significant impact on ESs, and differing
intensities of land use may have different impacts on the generation of ESs [7]. Ecosystem
services are the utilities that people obtain from ecosystems. These include provisioning,
regulating, cultural, and supporting services [8,9]. Thus, the assessment of ecosystem
services and their relationship to human well-being requires an integrated approach.
The modeling of land-use changes provides effective methods to estimate the impact on
the environment and ecosystem services [10–12], and ecosystem services models such
as InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) have been used
to assess and model ecosystem services quantitatively, as well as to analyze and map
ecosystem services through GIS-based spatially explicit modeling tools. Additionally,
InVEST can be used to estimate the monetary value of ecosystem services [13]. For example,
Srichaichana et al. [14] have applied toolsets for multiple ecosystem service evaluations—
namely water yield and sediment delivery ratio models—to estimate water yield and
sediment retention ecosystem services in the Klong U-Tapao watershed, Songkhla Province,
Thailand, for the mitigation of flooding by reducing runoff and the prevention of soil
erosion by increasing sediment retention in the basin.

Kwan Phayao or Phayao lake is the largest freshwater lake in the Northern region and
the fourth largest in Thailand, and has been classified in the list of wetlands of interna-
tional importance. This lake is an essential source of food security and species diversity
conservation. About 36 species of aquatic plants are found in the lake [15], and 44 species
of fish have been identified [16]. Furthermore, Kwan Phayao provides various ecosystem
services, including water supply for household consumption, agriculture, and recreation.

Kwan Phayao is situated in the Upper Ing watershed, where the Nam Mae Ing River
flows from Nong Leng Sai, located at the northern end and pouring into the lake, while
Nam Mae Tum River, at the southern end, also inflows to the lake. Primary cultivation
practices in the watershed include paddy fields, field crops, and perennial trees and
orchards. The extent of the Phayao Municipality has rapidly expanded due to an increase
in population. These activities have created many environmental problems, such as non-
point source (NPS) pollution and soil erosion. Additionally, changes in land uses, such as
urban and agriculture transitions, have affected the water quality of the lake. This effect is
due to the excessive amounts of nutrients (e.g., nitrogen and phosphorus) originating from
agriculture practices and human activities. The nutrient flow into the lake causes plankton
blooms or eutrophication, as well as the spread of toxic algal diversity [17], chlorophytic
phytoplankton [18], and water hyacinths [19]. Furthermore, the lake is becoming shallower
due to the high sediment load arising from soil erosion [20].

Consequently, in this paper, suitable LULC allocation at the Upper Ing watershed
for reducing nutrient and sediment loads into Kwan Phayao under different scenarios is
examined by integrating remote sensing to classify LULC data, a land-use change model
(CLUE-S model) to predict LULC data, and an ecosystem services modeler (the SDR and
NDR models of the InVEST software) to estimate sediment and nutrient exports. Our
specific research objectives were: (1) to classify LULC data in 2009 and 2019; (2) to estimate
the land requirements and predict the LULC of three scenarios between 2020 and 2029;
(3) to estimate sediment and nutrient export of actual LULC in 2019 and predicted LULC
of three scenarios between 2020 and 2029, and (4) to identify suitable LULC allocation to
minimize sediment or/and nutrient export.

2. Study Area

The Upper Ing watershed is a part of the Mekong basin, where the Ing River is the
main stream, which flows northward into the Mekong River at Chiang Kong district,
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Chiang Rai province. The watershed area is about 891.35 sq. km, and it covers two whole
districts (Mueang Phayao and Mae Chai) of the Phayao province and some parts of two
districts (Phan and Phadad) of the Chiang Rai province. The watershed is located between
19◦01′21′′ N to 19◦32′53′′ N and 99◦41′24′′ E to 99◦57′32′′ E (see Figure 1).

In this watershed, there are two crucial wetland areas: Kwan Phayao and Nong
Leng Sai. The highland and mountains are on the west side, while the areas between
the floodplain and highland are undulating and rolling plains. The lowest area in the
study area is Kwan Phayao, which collects and stores water, sediments, and nutrients from
upstream in the northwest and west parts of the watershed.
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The problems related to Kwan Phayao have recently been reported by the Department
of Fisheries and Royal Irrigation Department, as summarized in Table 1. The Ministry of
Agriculture and Cooperative has spent about 4 million USD to increase water storage by
sediment dredging, aquatic plant weeding, and flap-gate-weir building [20].
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Table 1. The existing problems related to Kwan Phayao.

State of Problems

1. Water flowing into the lake is less than 33.84 million cubic meters.
2. Total sediment is 134,459 tons per year (95,200 cubic meters per year).

2.1. Sediment from water hyacinth and aquatic weed are 103,430 tons per year.
2.2. Sediment from erosion is 31,029 tons per year.

3. The expansion of the weed covers 4.414 square kilometers of the water surface (or about
21.6% of the water surface).

4. Water demand for irrigation is 15 million cubic meters per year.

Source: [20,21].

3. Materials and Methods

The research methodology consisted of data collection and preparation, in five signifi-
cant components (Figure 2).
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3.1. Data Collection and Preparation

The required input data for data analysis included GIS, remote sensing, and relevant
data, as summarized in Table 2.

Table 2. List of data collection for data analysis in this study.

Data Data Collection Source

GIS

Land-use data in 2009 LDD
Land-use data in 2015 LDD
Watershed boundary DEQP

SRTM DEM USGS
Soil drainage LDD
Stream network DEQP
Waterbody DEQP
Villages LDD
Road network LDD
Fault line DMR
Income per capita at subdistrict level NSO
Population density at subdistrict level DOPA
Soil series map [22]
Geology unit map [22]
Agri-Map [23]

Remote Sensing
Landsat 5 TM, Date 27 February 2009 USGS
Landsat 8 OLI, Date 23 February 2019 USGS
Google Image 2009 and 2010 Google Earth

Secondary data

Annual and monthly rainfall between 2011 and
2019 TMD

C-factor and P-factor [22]
Predicted rainfall between 2020 and 2029 [24]
Nitrogen/Phosphorus loading [25]
Nitrogen retention coefficients [25]
Phosphorus retention coefficients [25]
Total suspended solids/Total phosphorus/Total
nitrogenbetween 2011 and 2018 PCD

Annual surface runoff between 2011 and 2018 RID

Tools and models

EnMap-Box software EnMAP
Linear Programming with Simplex method What’s Best in Excel
CLUE-S model [26]
SDR and NDR models of InVEST software NatCap
Ecosystem Services Change Index (ESCI) [27]

Note: DEQP: Department of Environmental Quality Promotion; DMR: Department of Mineral Resources; DOPA: Department of Provincial
Administration; EnMAP: Environmental Mapping and Analysis Program; LDD: Land Development Department; MRC: Mekong River
Commission; NatCap: Natural Capital Project; NCAR: National Center for Atmospheric Research; NSO: National Statistical Office of
Thailand; PCD: Pollution Control Department; RID: Royal Irrigation Department; TMD: Thai Meteorological Department; USGS: United
States Geological Survey.

3.2. LULC Classification and Change Detection

We downloaded Landsat 5 TM data in 2009 and Landsat OLI data in 2019 from
the USGS website (www.earthexplorer.usgs.gov: accessed date 1 May 2019), which were
applied to classify LULC data by conducting supervised classification using the sup-
port vector machine (SVM) algorithm of the EnMap-Box software. Two training areas
for ten LULC types were separately prepared in order to define an optimal hyperplane
for LULC classification using SVM. The scaled reflectance data of Landsat data (visible,
NIR, and SWIR bands) and additional bands, Normalized Difference Vegetation Index
(NDVI) [28], Normalized Difference Moisture Index (NDMI) [29], Soil-Adjusted Vegetation
Index (SAVI) [30], Modified Normalized Difference Wetness Index (MNDWI) [31], and
DEM were applied to classify the LULC map in 2009 and 2019. The optimized model
parameters were provided by a grid search: namely, Gaussian radial basis function kernel,

www.earthexplorer.usgs.gov
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which required the variables gamma (γ), which defines the width of the Gaussian, and the
regularization parameter (C), which controls the trade-off between the maximization of the
margin between the training data vectors and the decision boundary plus the penalization
of training errors [32].

The standard land-use classification of the LDD—including (1) urban and built-up
area, (2) paddy field, (3) field crop, (4) para rubber, (5) perennial trees and orchards,
(6) forest land, (7) water body, (8) rangeland, (9) wetland, and (10) miscellaneous land—
was modified to classify the LULC type and to extract the coefficient value of each LULC
type for ecosystem service value (ESV) evaluation (Table 3).

After classification, the LULC maps in 2009 and 2019 were assessed, in terms of the-
matic accuracy, based on reference information from very high spatial resolution images
from Google Earth in 2009/2010 and a field survey in 2020, respectively. The number of
sample points used for the accuracy assessment was 788, based on multinomial distribution,
and sample points were allocated using the stratified random sampling technique sug-
gested by [33]. Final LULC maps in 2009 and 2019 were further used to detect LULC change,
using a post-classification comparison algorithm to describe from–to change information
between 2009 and 2019, as suggested by [34,35].

Table 3. Description of LULC classification system.

No LULC Classification for SVM LULC Classification for ESV 1 Coefficient Values
(USD/ha/Year) 1 Land-Use Classification 2

1 Urban and built-up area (UR) Construction land 12.7 Urban and built-up area

2 Paddy field (PD) Cultivated land 1032.3 Paddy field

3 Field crop (FC) Cultivated land 1032.3 Cassava, sugarcane, and maize

4 Para rubber (RB) Forest land 1949.0 Rubber plantation

5 Perennial trees and orchards
(PO) Forest land 1949.0 Mixed perennial trees and orchards

which exclude para rubber

6 Forest land (FO) Forest land 1949.0 Natural forest and man-made forest

7 Water body (WB) Water body 6873.7 River, canal, natural water resource,
reservoir, pond, irrigation canal

8 Rangeland (RL) Rangeland 808.6 Scrub, grass, and pasture

9 Wetland (WL) Wetland 9368.7 Marsh and swamp

10 Miscellaneous land (ML) Unused land 96.3 Bush fallow, mine, laterite pit, soil pit,
garbage dump, landfill, rock outcrop

Note: 1 [36], 2 [23].

3.3. Land Demand Estimation of Three Different Scenarios

The land requirements under three different scenarios for LULC prediction between
2020 and 2029 were estimated based on their characteristics, as follows:

(1) Scenario I (Trend of LULC evolution): The land requirements were calculated
based on the annual change rate of LULC between 2009 and 2019 from the transition area
matrix using the Markov Chain model.

(2) Scenario II (Maximization of ecosystem service values): The land requirements
were calculated based on LULC allocation for maximizing ESV using Linear Programming
(LP) with the Simplex method. The objective function and constraints were solved to
maximize ecosystem service values using Equation (1), based on the coefficient values for
the ESs of each LULC type (Table 3).

Zmax = [12.7(X1) + 1032.3(X2) + 1032.3(X3) + 1949.0(X4) + 1949.0(X5) + 1949.0(X6) + 6873.7(X7) + 808.6(X8) +
9368.7(X9) + 96.3(X10)],

(1)

where Zmax is the objective function of scenario II for ESV maximization, X1 is the urban
and built-up area (UR), X2 is paddy field (PD), X3 is field crop (FC), X4 is para rubber (RP),
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X5 is perennial trees and orchards (PO), X6 is forest land (FO), X7 is water body (WB), X8 is
rangeland (RL), X9 is wetland (WL), and X10 is miscellaneous land.

(3) Scenario III (Economic crop zonation): The suitable zonation of four economic
crops (paddy field, field crop, para rubber, and perennial trees and orchards) of LDD
in 2018 was updated using the existing LULC data for 2019 in order to estimate the
land requirements.

3.4. LULC Prediction of Three Different Scenarios

LULC prediction between 2020 and 2029 for the three scenarios was conducted us-
ing the CLUE-S model. In practice, the selected driving factors of LULC change (soil
drainage, distance to stream, distance to water body, distance to village, slope, distance to
road, distance to fault line, annual rainfall, elevation, income per capita, and population
density at subdistrict level), as suggested by [37], were first examined in terms of their
multicollinearity, using the variance inflation factor (VIF) to prevent the correlation of
driving factors. As a general rule of thumb, the VIF value should not exceed 10 [38,39].
Then, binary logistic regression analysis was performed to identify the significant driving
factors for specific LULC type allocations (Equation (2)):

Log
(

Pi
1− Pi

)
= β0+β1X1,i+β2X2,i . . . . . .+βnXn,i, (2)

where Pi is the probability of a grid cell for the considered land-use type at location i, and
the X values are the location factors. The coefficients (β) are estimated through logistic
regression, using the actual land-use pattern as the dependent variable [40].

After that, two sets of local parameters for LULC prediction using the CLUE-S model—
namely, the conversion matrix and elasticity of LULC change—were prepared. These
parameters were considered and set up based on the transition probability matrix of LULC
data between 2009 and 2019. The conversion matrix, which indicates the LULC change
opportunity among LULC types, is assigned a value of 1 when it is allowed, or 0 when it is
not allowed. Meanwhile, the elasticity values imply the probability of land-use change,
which ranges from 0 (easily converted) to 1 (irreversible change), and are set up according
to the transition probability matrix in the past period [26,41]. In this study, elasticity values
were assigned according to the transition probability matrix of LULC change between 2019
and 2029 by the Markov Chain model, as suggested by Ongsomwang and Iamchuen [42].

Finally, the conversion matrix, the elasticity of LULC change, and land requirements
under different scenarios were combined to predict LULC change data between 2020
and 2029, according to the driving factors of LULC change for specific LULC type loca-
tion preference.

3.5. Ecosystem Services Assessment: Sediment and Nutrient Export

The base year LULC in 2019 and the predicted LULC between 2020 and 2029 of three
scenarios, as primary input data, were used to estimate sediment and nutrient exports
through the SDR and NDR models in the InVEST software suite.

3.5.1. Sediment Export Estimation

The sediment export is the amount of sediment eroded in the watershed from overland
sources and delivered to the stream. In principle, the SDR model is first applied to calculate
the amount of annual soil loss, using the Revised Universal Soil Loss Equation (RUSLE)
of [43]:

Ai = Ri·Ki·LSi·Ci·Pi, (3)

where Ai is the annual soil erosion (ton. ha−1 yr−1), Ri is the rainfall erosivity (MJ mm
ha−1 h−1 y−1), Ki is the soil erodibility (ton·ha·hr (MJ·ha·mm)−1), LSi is the slope length–
gradient factor, Ci is the crop-management factor, and Pi is a support practice factor for
erosion control.
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The required input data for annual soil erosion are summarized below.
(1) The Rainfall erosivity factor (R) was calculated based on monthly rainfall data, as

suggested by [44], as:

R =
12

∑
i=1

1.735 × 10(1.5 log10(
P2

i
P )−0.08188), (4)

where R is the rainfall erosivity factor (MJ mm ha−1 h−1 y−1), Pi is the monthly rainfall
(mm), and P is the annual rainfall (mm).

We collected monthly rainfall data between 2011 and 2019 from TMD for model
calibration and validation and actual sediment export estimation in 2019. Simulated rainfall
data between 2020 and 2029 were collected from the National Center for Atmospheric
Research (NCAR), for sediment export estimation under three scenarios.

(2) The Soil erodibility (K) erodibility was extracted from the soil series data of LDD,
whereas its value under the slope complex in the soil map was extracted from the geology
unit (Table A1 in Appendix A).

(3) The Slope length gradient factor (LS) was calculated from the DEM with a method
developed by [45], as follows:

LSi = Si

(
Ai−in+D2

)m+1
−Am+1

i−in

Dm+2 · xm
i · (22.13

)m , (5)

where Si is the slope factor for a grid cell, calculated as a function of the slope radians
θ (S = 10.8·sinθ + 0.03 where θ < 9%, or S = 16.8·sinθ − 0.50, where θ ≥ 9%); Ai−in is the
contributing area (m2) at the inlet of a grid cell, which is computed using the d-infinity flow
direction method; D is the grid cell linear dimension; xi = |sin αi| + |cos αi|, where αi is
the aspect direction for grid cell i, and m is the RUSLE length exponent factor.

(4) The crop management (C) and support practice (P) factors for erosion control,
according to LULC type, are summarized in Table A2 in Appendix A.

Then, the model calculates the sediment delivery ratio using a connectivity index (IC),
threshold flow accumulation, and maximum SDR to indicate sediment retention. The SDR
value was calculated, as suggested by [46], as:

SDRi =
SDRmax

1 + exp
(

IC0−ICi
k

) , (6)

where SDRmax is the maximum theoretical SDR, set to an average value of 0.8 [47], and
IC0 and k are calibration parameters that define the shape of the SDR-IC relationship as a
Sigmoid function.

Finally, the sediment reaches the stream at the outlet of the Upper Ing watershed.
The total sediment export was calculated from the sum of the amount of annual soil loss
multiplied by the sediment delivery ratio [48]:

E = ∑
i

Ei, (7)

where Ei is the sediment that erodes from any LULC that reaches the stream.

3.5.2. Nutrient Export Estimation

Under the NDR model, the nutrient loads are first defined based on the LULC map
and associated loading rates. Then, the model calculates LULC-based loads and the
runoff potential index to approximate modified loads, which are divided into sediment-
bound (surface flow) and dissolved parts (subsurface flow). After that, nutrient delivery is
computed for surface NDR and subsurface NDR based on the properties of pixels belonging
to the same flow path (particularly the slope and retention efficiency of the land use) [48].
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The NDR model requires specific factors and parameters to run the model. Some
factors in this model are the same as those in the SDR model, including DEM, LULC, TFA,
and Kb. Other parameters, including nitrogen and phosphorus loads, nutrient runoff proxy,
maximum retention efficiency, and critical length, were added. The specific required factors
of the NDR models are summarized below.

(1) The nutrient runoff proxy (RP) is used to calculate the runoff potential index.
The runoff proxy was interpolated, based on annual rainfall, using the inverse distance
weighted (IDW) method.

(2) Land-use and land-cover (LULC) data represent the influence of the nutrient
delivery to the stream. LULC data were used as input data to assign the nutrient loading
for each LULC class (loads), as summarized in Table 4.

(3) The maximum retention efficiency (eff) indicates the proportion of nutrient re-
tention by vegetation. The value for each LULC class varies between zero and one (see
Table 4).

(4) The critical length (crit_len) is the distance that a patch of LULC retains nutrients
in its maximum capacity. The critical length ranges from 10 to 300 m [49,50]. In this study,
the value was first set to the pixel resolution, with a value of 30 m (see Table 4).

(5) The subsurface proportion (proportion_subsurface) value is the proportion of
dissolved nutrients that travels by surface and subsurface flow. We set its value to zero,
which indicates that all nutrients are delivered by surface flow (see Table 4).

After that, the NDR model was computed to transport nutrients by surface flow. The
surface nutrient delivery ratio is the product of a delivery factor, representing the ability
of downstream pixels to transport nutrients without retention, and was calculated using
Equation (8) [48]:

NDRi =
NDR0,i

1 + exp
(

ICi−ICo
k

) , (8)

where NDR0,i is the proportion of a nutrient that is not retained by downstream pixels
(which is based on the maximum retention efficiency of the land between a pixel and the
stream), ICi is a topographic index, and IC0 and k are calibration parameters that define the
shape of the NDR–IC relationship.

Finally, the total nutrient export at the outlet of the watershed is estimated, from the
sum of the product of the load and the NDR [48], as:

xexptot
= ∑

i
xexpi

, (9)

where xexpi is the nutrient export from any LULC, as the product of the load and the NDR.

Table 4. Data related to nitrogen, phosphorus, and related variables corresponding to each LULC class.

No LULC Type
Nitrogen Phosphorus

Load Eff Crit_len Proportion
_subsurface Load Eff Crit_len Proportion

_subsurface

1 Urban 7.75 0.05 30 0 1.3 0.05 30 0
2 Paddy field 11 0.25 30 0 3 0.25 30 0
3 Field crop 11 0.25 30 0 3 0.25 30 0
4 Para rubber 10 0.45 30 0 3 0.45 30 0
5 Perennial trees and orchards 10 0.45 30 0 3 0.45 30 0
6 Forest area 1.8 0.7 30 0 0.011 0.7 30 0
7 Waterbody 0.001 0.05 30 0 0.001 0.05 30 0
8 Rangeland 2 0.5 30 0 0.011 0.5 30 0
9 Wetland 2 0.8 30 0 0.05 0.8 30 0
10 Miscellaneous land 4 0.05 30 0 0.001 0.05 30 0

Source: [25].
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Furthermore, the performance of the SDR and NDR models was examined based
on data observed by the PCD in the calibration period (2011–2015) and validation period
(2016–2018) with standard scale, using the coefficient of determination (R2) and percent
bias (PBIAS), as suggested by [51,52] (see Equations (10) and (11) and Table 5).

R2 = { ∑n
i=1
(
Xs − Xs

)(
Xo − Xo

)[
∑n

i=1
(
Xs − Xs

)2
∑n

i=1
(
Xo − Xo

)2
]0.5 }

2

, (10)

where Xo is the observed export value at station i, Xo is the average of observed export
value over the validation period, Xs is the simulated export value at station i, and Xs is the
average simulated export value over the validation period. Furthermore, i is the number of
stations, and n is the total count of data pairs. The value of R2 varies from 0 to 1.

PBIAS =
∑n

i=1
(
Xo

i−Xs
i
)

∑n
i=1
(
Xo

i
) ×100, (11)

where Xo
i is an observed export value at time step i, and Xs

i is a simulated export value at
time step i.

Table 5. Model performance scale.

Model Evaluation Constituent
Performance Ratings

Unsatisfactory Satisfactory Good Very Good

R2 SS
TP, TN <0.5 0.5–0.6 0.6–0.7 0.7–1

PBIAS SS
TP, TN

>55
>70

30–55
40–70

15–30
25–40

<15
<25

Note: SS, suspended sediment; TP, total phosphorus, and TN, total nitrogen. Source: [51,52].

3.6. Suitable LULC Allocation Scenario to Minimize Sediment and Nutrient Export

To assess the state of change in ecosystem services (i.e., sediment and nutrient export
due to LULC change), the ecosystem services change index (ESCI) was applied to assess
the ecosystem service states (ES), as proposed by [27]:

ESCI x=

[
ESCURxj−ESHISxi

ESHISxi

]
, (12)

where ESCI x is the ecosystem service change index of service x, and ESCURxj and ESHISxi
are the current and historic ecosystem service state values of service x at times j and
i, respectively.

In this study, the ecosystem service change indices of sediment and nutrient export
ecosystem service values for LULC in 2019 (as the base year), and those of the predicted
LULC between 2020 and 2029 were separately calculated in a pairwise manner using the
ESCI, then averaged to identify the suitable LULC allocation under the proposed scenarios
to minimize sediment or/and nutrient export.

4. Results
4.1. LULC Classification and LULC Change Detection

The results of LULC classification in 2009 and 2019 using the SVM algorithm are
presented in Table 6 and Figure 3. As a result, the top three dominant LULC types in 2009
and 2019 were forest land, paddy field, and perennial trees and orchards. Meanwhile, the
top three least dominant LULC types were miscellaneous land, para rubber, and rangeland
in 2009 and miscellaneous land, wetland, and para rubber in 2019.
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According to a simple comparison of LULC change in the area, the annual change rate
and percentage of change between 2009 and 2019 are reported in Table 7. The dominant
increasing areas of LULC types were perennial trees and orchards, para rubber, and
rangeland, with annual change rates of 1.95, 1.64, and 1.05 km2, respectively. Contrarily,
the major decreasing areas of LULC classes in the same period were forest land and paddy
fields, with annual change rates of 3.98 and 2.04 km2, respectively. The primary cause of
change areas was the conversion of paddy fields into perennial trees and orchards and the
expansion of agricultural areas into forest land.

Table 6. Area and percentage of LULC data in 2009 and 2019.

No LULC Type
2009 2019

km2 Percentage km2 Percentage

1 Urban and built-up area 29.78 3.34 33.10 3.71
2 Paddy field 241.14 27.05 220.74 24.76
3 Field crop 17.49 1.96 21.84 2.45
4 Para rubber 3.35 0.38 19.78 2.22
5 Perennial trees and orchards 59.71 6.70 79.22 8.89
6 Forest land 476.73 53.48 436.91 49.02
7 Water body 26.06 2.92 33.37 3.74
8 Rangeland 16.75 1.88 27.26 3.06
9 Wetland 19.47 2.18 16.41 1.84

10 Miscellaneous land 0.87 0.10 2.71 0.30

Total 891.35 100 891.35 100

Table 7. Simple LULC change detection between 2009 and 2019.

LULC
LULC Type (Area, km2)

UR PD FC RP PO FO WB RL WL ML

In 2009 29.78 241.14 17.49 3.35 59.71 476.73 26.06 16.75 19.47 0.87
In 2019 33.10 220.74 21.84 19.78 79.22 436.91 33.37 27.26 16.41 2.71
Change area 3.32 −20.40 4.35 16.43 19.51 −39.82 7.31 10.51 −3.06 1.84
Annual change rate 0.33 −2.04 0.44 1.64 1.95 −3.98 0.73 1.05 −0.31 0.18
Percentage of change 0.37 −2.29 0.49 1.84 2.19 −4.47 0.82 1.18 −0.34 0.21
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4.2. Driving Factors of LULC Change

The multicollinearity test among the physical and socio-economic factors (indepen-
dently available) was conducted using the VIF, as reported in Table A3 in Appendix B. As
a result, all selected driving factors were found to be insignificantly correlated, as the VIF
values did not exceed 10. They were further used to analyze specific LULC type location
preferences by binary logistic regression analysis, as shown in Table 8.

Table 8. Multiple linear equations of each LULC type location preference and AUC value by binary logistic regres-
sion analysis.

Driving Forces UR PD FC RB PO FO WA RL WL ML

Constant 12.86 39.01 4.96 −3.06 −4.43 −29.41 3.27 3.68 26.41 4.78
Soil drainage (X1) −0.07 0.00 0.34 0.32 0.19 0.03 n. s. 0.34 −0.64 0.40
Distance to stream (X2) 0.00 0.00 n. s. n. s. n. s. n. s. 0.00 0.00 n. s. n. s.
Distance to water body (X3) 0.00 n. s. n. s. 0.00 n. s. n. s. 0.00 n. s. 0.00 n. s.
Distance to village (X4) 0.00 n. s. 0.00 n. s. n. s. n. s. n. s. n. s. n. s. n. s.
Slope (X5) n. s. −0.02 0.03 n. s. −0.01 0.09 −0.14 0.02 −0.10 0.07
Distance to road (X6) −0.02 0.00 0.00 0.00 0.00 n. s. 0.00 0.00 n. s. n. s.
Distance to fault line (X7) n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s.
Annual rainfall (X8) n. s. 0.00 0.01 n. s. 0.00 0.00 0.00 0.00 0.01 0.01
Elevation (X9) −0.03 −0.10 n. s. n. s. 0.00 0.06 0.01 0.01 −0.08 n. s.
Income per capita at
subdistrict level (X10) n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s. n. s.

Population density at
subdistrict level (X11) 0.00 0.00 0.01 0.01 n. s. n. s. n. s. 0.00 n. s. n. s.

AUC 0.96 0.96 0.86 0.80 0.80 0.99 0.95 0.83 0.95 0.80

According to the result, the most significant driving factor for all LULC type allocation
in the study area was soil drainage. The second most important vital driving factors
were slope and annual rainfall. The third most crucial driving factors for the LULC type
allocation area were distance to the road and elevation. In the meantime, other factors
played crucial roles in specific LULC types, as shown in the table. Nevertheless, the
distance to fault line and the income per capita at the subdistrict level were insignificant
driving factors for all LULC type allocations in the study area.

4.3. Local Parameter of CLUE-S Model for LULC Prediction

The conversion matrix of LULC change for LULC prediction of three scenarios, which
were assigned by considering the transition probability matrix of LULC data between 2009
and 2019 (Table 9), is presented in Tables 10–12. Meanwhile, elasticity values, as probability
values for the urban and built-up area, paddy field, field crop, para rubber, perennial trees
and orchards, forest land, waterbody, rangeland, wetland, and miscellaneous land were
1.00, 0.84, 0.22, 0.37, 0.67, 0.92, 0.93, 0.38, 0.45, and 0.29, respectively.

4.4. Land Requirement Estimation and LULC Prediction under Scenario I

The land requirement estimation for Scenario I (Trend of LULC evolution) was calcu-
lated based on the annual rate of LULC change from the transition area matrix between
2019 and 2029, using the Markov Chain model presented in Table 13. The significant
increase in land requirements in the predictive period was observed in perennial trees and
orchards, para rubber, water body, rangeland, urban and built-up area, field crop, and
miscellaneous land. In contrast, the land requirements decreased for forest land, paddy
field, and wetland.
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Table 9. Transition probability matrix of LULC change between 2009 and 2019 by the Markov Chain model.

LULC Types
LULC in 2019

UR PD FC RB PO FO WB RL WL ML

LU
LC

in
20

09

Urban and built-up area (UR) 1.000 - - - - - - - - -
Paddy field (PD) 0.005 0.842 0.001 0.012 0.068 - 0.010 0.037 0.025 0.002
Field crop (FC) 0.002 0.085 0.216 0.146 0.269 - 0.005 0.207 - 0.071
Para rubber (RB) - 0.187 0.026 0.371 0.308 - 0.081 0.022 - 0.005
Perennial trees and orchards (PO) 0.002 0.086 0.029 0.096 0.667 - 0.029 0.087 - 0.004
Forest land (FO) 0.001 0.003 0.033 0.013 0.023 0.916 0.003 0.006 0.001 -
Water body (WB) - 0.003 - - 0.023 - 0.930 0.002 0.040 0.001
Rangeland (RL) 0.055 0.255 0.014 0.059 0.224 - 0.006 0.382 - 0.006
Wetland (WL) 0.010 0.253 - 0.002 0.095 - 0.166 0.007 0.452 0.016
Miscellaneous land (ML) 0.123 0.140 0.094 0.100 0.165 - 0.043 0.048 - 0.288

Table 10. Conversion matrix of possible LULC change between 2019 and 2029 for Scenario I (Trend of LULC evolution).

LULC Types
Possible Change in 2029

UR PD FC RB PO FO WB RL WL ML

LU
LC

in
20

19

Urban and built-up area (UR) 1 0 0 0 0 0 0 0 0 0
Paddy field (PD) 1 1 0 0 0 0 0 1 0 1
Field crop (FC) 1 0 1 1 1 0 0 1 0 1
Para rubber (RB) 0 0 0 1 0 0 0 0 0 0
Perennial trees and orchards (PO) 0 0 0 1 1 0 0 0 0 0
Forest land (FO) 1 0 1 1 0 1 1 1 0 1
Water body (WB) 0 0 0 0 0 0 1 0 1 0
Rangeland (RL) 1 1 0 1 1 0 0 1 0 0
Wetland (WL) 0 1 0 0 0 0 1 0 1 1
Miscellaneous land (ML) 1 0 1 1 0 0 0 0 0 1

Note: 0 is not allowed, and 1 is allowed.

Table 11. Conversion matrix of possible LULC change between 2019 and 2029 for Scenario II (Maximization of ecosystem
service values).

LULC Types
Possible Change in 2029

UR PD FC RB PO FO WB RL WL ML

LU
LC

in
20

19

Urban and built-up area (UR) 1 0 0 0 0 0 0 0 0 0
Paddy field (PD) 1 1 0 0 0 0 0 1 1 1
Field crop (FC) 1 0 1 1 1 0 0 1 0 1
Para rubber (RB) 0 0 0 1 0 0 0 0 0 0
Perennial trees and orchards (PO) 0 0 0 1 1 0 0 0 0 0
Forest land (FO) 1 0 1 1 0 1 1 1 0 1
Water body (WB) 0 0 0 0 0 0 1 0 0 0
Rangeland (RL) 1 1 0 1 1 0 0 1 1 0
Wetland (WL) 0 1 0 0 0 0 0 0 1 1
Miscellaneous land (ML) 1 0 1 1 0 0 0 0 1 1

Note: 0 is not allowed, and 1 is allowed.

The results of LULC prediction data for Scenario I, which were simultaneously allo-
cated based on elasticity values and conversion matrix of LULC change (Tables 9 and 10),
the land requirements (Table 13), and driving factors on LULC change for specific LULC
type location preference (Table 8), are presented in Table 14 and Figure 4. Meanwhile,
the deviation between the estimated land requirements and predicted LULC data in 2029
under Scenario I is reported in Table A4 in Appendix B.



Appl. Sci. 2021, 11, 10430 14 of 41

Table 12. Conversion matrix of possible LULC change between 2019 and 2029 for Scenario III (Economic crop zonation).

LULC Types
Possible Change in 2029

UR PD FC RB PO FO WB RL WL ML

LU
LC

in
20

19

Urban and built-up area (UR) 1 0 0 0 0 0 0 0 0 0
Paddy field (PD) 1 1 0 0 0 0 0 1 0 1
Field crop (FC) 1 0 1 0 0 0 0 1 0 1
Para rubber (RB) 0 0 1 1 0 0 0 0 0 0
Perennial trees and orchards (PO) 0 0 1 1 1 0 0 0 0 0
Forest land (FO) 1 1 1 1 1 1 1 1 0 1
Water body (WB) 0 0 0 0 0 0 1 0 1 0
Rangeland (RL) 1 1 1 0 0 0 0 1 0 0
Wetland (WL) 0 1 0 0 0 0 1 0 1 1
Miscellaneous land (ML) 1 1 1 0 0 0 0 1 0 1

Note: 0 is not allowed, and 1 is allowed.

Table 13. Annual land requirements under Scenario I for each LULC type.

Year
Area (in km2)

UR PD FC RB PO FO WB RL WL ML

2019 33.10 220.74 21.84 19.78 79.22 436.91 33.37 27.26 16.41 2.71
2020 33.48 219.75 21.94 20.65 81.18 433.26 34.16 27.87 16.25 2.81
2021 33.86 218.77 22.03 21.52 83.13 429.61 34.96 28.48 16.09 2.91
2022 34.24 217.78 22.13 22.38 85.08 425.96 35.76 29.09 15.93 3.01
2023 34.63 216.79 22.22 23.25 87.03 422.30 36.56 29.70 15.77 3.11
2024 35.01 215.80 22.32 24.12 88.98 418.65 37.35 30.31 15.60 3.21
2025 35.39 214.82 22.41 24.98 90.93 415.00 38.15 30.92 15.44 3.30
2026 35.77 213.83 22.51 25.85 92.89 411.34 38.95 31.53 15.28 3.40
2027 36.16 212.84 22.60 26.71 94.84 407.69 39.75 32.14 15.12 3.50
2028 36.54 211.85 22.70 27.58 96.79 404.04 40.54 32.75 14.96 3.60
2029 36.92 210.86 22.79 28.45 98.74 400.38 41.34 33.36 14.80 3.70

Annual rate 0.38 −0.99 0.10 0.87 1.95 −3.65 0.80 0.61 −0.16 0.10

Table 14. Area of predicted LULC between 2020 and 2029 under Scenario I.

LULC Types
Area (in km2)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Urban and built-up area 33.45 33.83 34.19 34.61 34.99 35.39 35.76 36.15 36.50 36.90
Paddy field 219.73 218.73 217.73 216.77 215.77 214.81 213.81 212.79 211.82 210.84
Field crop 21.94 22.04 22.13 22.23 22.31 22.43 22.51 22.58 22.69 22.81
Para rubber 20.65 21.53 22.42 23.26 24.10 24.99 25.86 26.69 27.57 28.45
Perennial trees and orchards 81.17 83.14 85.12 87.04 88.95 90.94 92.89 94.82 96.77 98.75
Forest land 433.27 429.62 425.96 422.30 418.63 415.00 411.35 407.68 404.03 400.39
Water body 34.18 34.99 35.78 36.57 37.36 38.16 38.97 39.76 40.58 41.35
Rangeland 27.86 28.48 29.10 29.70 30.29 30.91 31.52 32.13 32.72 33.36
Wetland 16.31 16.10 15.95 15.79 15.76 15.44 15.30 15.27 15.10 14.82
Miscellaneous land 2.79 2.88 2.98 3.08 3.19 3.28 3.38 3.48 3.57 3.68

Total 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35

As a result, the LULC prediction between 2020 and 2029 was determined in terms of
the driving factors of LULC change and local parameters (conversion matrix and elasticity
values), particularly land requirements, which were estimated based on the transition area
matrix between 2019 and 2029 using the Markov Chain model. The derived predicted
LULC data correspond to the definition of Scenario I, which allows for LULC change
(decreased or increased area) according to the trend of LULC evolution from 2009 to 2019,
to represent socio-economic development in the study area.
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There was a slight difference between the required land area and the predicted area
of each LULC type in 2029 under Scenario I (see Table A4 in Appendix B). The deviation
values varied between −0.0002% (0.02 km2; underestimation) to 0.0002% (0.02 km2; overes-
timation). The deviation values depend on the iterative driving factor that determines the
highest probability that each spatial unit will be converted to a specific land-use type in
the following year [53,54]. Nevertheless, the summation of deviation values (i.e., consider-
ing the trade-off between overestimation and underestimation among LULC types) was
0.00%. Therefore, the LULC prediction under Scenario I can be considered acceptable for
estimating sediment and nutrient export in the study area.

4.5. Land Requirement Estimation and LULC Prediction under Scenario II

The land requirement estimation under Scenario II (Maximization of ecosystem service
values), which was estimated based on the annual rate change between classified LULC
data in 2019 and allocated LULC data in 2029 after maximization of ecosystem services
according to the objective function (see Equation (1)) and constraining decision variables
(see Table A5 in Appendix B) using LP through the Simplex method, is reported in Table 15.

As a result, the increased LULC classes under this scenario were urban and built-up
area, para rubber, perennial trees and orchards, and wetland, with increasing annual rates
of 0.38, 0.87, 1.95, and 1.34 km2, respectively. In contrast, the decreased LULC classes in
2029 were paddy fields, forest land, rangeland, and miscellaneous land, with annual rates
of decrease of 0.99, 2.06, 1.36, and 0.14 km2, respectively. Meanwhile, field crops and water
bodies were unchanged.

The results of LULC prediction data between 2020 and 2029 under Scenario II, which
were simultaneously allocated based on elasticity values and the conversion matrix of
LULC change (Tables 9 and 11), the land requirements (Table 15), and driving factors of
LULC change for specific LULC type location preference (Table 8), are presented in Table 16
and Figure 5. Meanwhile, the deviation between the estimated land requirements and
predicted LULC data in 2029 under Scenario II is reported in Table A6 in Appendix B.
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Table 15. Annual land requirements under Scenario II for each LULC type.

Year
Area (in km2)

UR PD FC RB PO FO WA RL WL ML

2019 33.10 220.74 21.84 19.78 79.22 436.91 33.37 27.26 16.41 2.71
2020 33.48 219.75 21.84 20.65 81.18 434.86 33.37 25.90 17.75 2.58
2021 33.86 218.77 21.84 21.52 83.13 432.80 33.37 24.54 19.10 2.44
2022 34.24 217.78 21.84 22.38 85.08 430.74 33.37 23.17 20.44 2.31
2023 34.63 216.79 21.84 23.25 87.03 428.68 33.37 21.81 21.79 2.17
2024 35.01 215.80 21.84 24.12 88.98 426.62 33.37 20.45 23.13 2.03
2025 35.39 214.82 21.84 24.98 90.93 424.56 33.37 19.08 24.48 1.90
2026 35.77 213.83 21.84 25.85 92.89 422.50 33.37 17.72 25.82 1.76
2027 36.16 212.84 21.84 26.71 94.84 420.44 33.37 16.36 27.17 1.63
2028 36.54 211.85 21.84 27.58 96.79 418.38 33.37 14.99 28.51 1.49
2029 36.92 210.86 21.84 28.45 98.74 416.32 33.37 13.63 29.85 1.36

Annual Change rate 0.38 −0.99 0.00 0.87 1.95 −2.06 0.00 −1.36 1.34 −0.14

Note: Annual change rate was calculated based on the classified LULC data in 2010 by SVM and allocated LULC area to maximize
ecosystem service by LP.

Table 16. Area of predicted LULC between 2020 and 2029 under Scenario II.

LULC Types
Area (in km2)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Urban and built-up area 33.36 33.84 34.22 34.60 34.99 35.39 35.42 36.17 36.47 36.94
Paddy field 219.74 218.73 217.75 216.77 215.78 214.77 213.82 212.74 211.81 210.78
Field crop 21.85 21.82 21.82 21.81 21.81 21.86 21.85 21.84 21.86 21.80
Para rubber 20.67 21.50 22.37 23.23 24.09 24.98 25.87 26.74 27.56 28.46
Perennial trees and orchards 81.16 83.12 85.05 87.01 88.96 90.81 92.90 94.81 96.70 98.68
Forest land 434.86 432.77 430.71 428.65 426.61 424.52 422.49 420.45 418.34 416.34
Water body 33.57 33.57 33.57 33.57 33.57 33.70 33.70 33.70 33.70 33.70
Rangeland 25.87 24.51 23.16 21.78 20.43 19.14 17.72 16.35 14.97 13.57
Wetland 17.72 19.07 20.42 21.76 23.10 24.27 25.82 26.93 28.44 29.72
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As a result, the significant LULC types with increasing area were urban and built-up
area, para rubber, perennial trees/orchards, water body, and wetlands, but the several
LULC types with decreased area were paddy fields, field crops, forest land, rangeland, and
miscellaneous land. In particular, wetland—which provides the highest coefficient value
for ecosystem services—is expected to increase in the future. Wetland areas increased from
16.41 km2 in 2019 to 29.72 km2 in 2029, coming from paddy fields (9.50 km2), rangeland
(2.83 km2), and miscellaneous land (0.98 km2) in 2019. This result implies the efficacy of
linear programming for determining reclaimed and other areas changing into the wetland.

Like Scenario I, there was a slight difference between the required land area and the
predicted area of each LULC type in 2029 under Scenario II. The deviation values varied
from −0.0013 to 0.0033%; nevertheless, the summation of deviation values was 0.00%. (See
Table A6 in Appendix B). Hence, the LULC prediction under Scenario II can be considered
acceptable for estimating sediment and nutrient export in the study area.

4.6. Land Requirement Estimation and LULC Prediction under Scenario III

Land requirement estimation under Scenario III (Economic crop zonation) was esti-
mated based on areas of suitability classes for economic crops according to the LDD and
Markov Chain model, as shown in Table 17.

As a result, the increased LULC classes were paddy field, field crop, water body,
rangeland, urban and built-up area, and miscellaneous land, with annual increase rates
of 5.96, 1.21, 0.80, 0.61, 0.38, and 0.10 km2, respectively. In contrast, the decreased LULC
classes were perennial trees and orchards, forest land, wetland, and para rubber, with
annual decrease rates of 5.23, 3.65, 0.16, and 0.01 km2, respectively.

The results of LULC prediction data between 2020 and 2029 under Scenario III, which
were simultaneously allocated based on elasticity values and the conversion matrix of
LULC change (Tables 9 and 12), the land requirements (Table 17), and driving factors of
LULC change for specific LULC type location preference (Table 8), are presented in Table 18
and Figure 6. In the meantime, the deviation between the estimated land requirements and
predicted LULC data in 2029 under Scenario III is reported in Table A7 in Appendix B.

Table 17. Annual land requirements under Scenario III for each LULC type.

Year
Area (in km2)

UR PD FC RB PO FO WA RL WL ML

2019 33.10 220.74 21.84 19.78 79.22 436.91 33.37 27.26 16.41 2.71
2020 33.48 226.70 23.05 19.77 73.99 433.26 34.16 27.87 16.25 2.81
2021 33.86 232.66 24.26 19.76 68.76 429.61 34.96 28.48 16.09 2.91
2022 34.24 238.62 25.48 19.75 63.52 425.96 35.76 29.09 15.93 3.01
2023 34.63 244.58 26.69 19.74 58.29 422.30 36.56 29.70 15.77 3.11
2024 35.01 250.54 27.90 19.72 53.05 418.65 37.35 30.31 15.60 3.21
2025 35.39 256.50 29.11 19.71 47.82 415.00 38.15 30.92 15.44 3.30
2026 35.77 262.46 30.32 19.70 42.58 411.34 38.95 31.53 15.28 3.40
2027 36.16 268.42 31.53 19.69 37.35 407.69 39.75 32.14 15.12 3.50
2028 36.54 274.38 32.74 19.68 32.12 404.04 40.54 32.75 14.96 3.60
2029 36.92 280.34 33.96 19.66 26.88 400.38 41.34 33.36 14.80 3.70

Annual Change rate 0.38 5.96 1.21 −0.01 −5.23 −3.65 0.80 0.61 −0.16 0.10

As a result, under Scenario III, economic crop areas, precisely paddy field, field crop,
para rubber, and perennial trees and orchards were located based on suitability classes of
economic crop zonation. Paddy fields expanded from 220.74 km2 in 2019 to 280.20 km2 in
2029, and field crop areas increased from 21.84 km2 in 2019 to 34.11 km2 in 2029. Meanwhile,
areas of para rubber were unchanged in 2029, with an area of 19.78 km2. To the contrary,
perennial trees and orchards are expected to decrease from 79.22 km2 in 2019 to 26.94 km2.
This result indicates the influence of economic crop zonation on LULC prediction under
Scenario III.
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Table 18. Area of predicted LULC between 2020 and 2029 under Scenario III.

LULC Types
Area (in km2)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Urban and built-up area 33.20 33.78 33.94 34.56 34.76 35.41 35.75 36.10 36.65 36.96
Paddy field 226.72 232.67 238.65 244.54 250.55 256.39 262.42 268.46 274.37 280.20
Field crop 23.08 24.26 25.54 26.74 27.93 29.15 30.40 31.62 32.79 34.11
Para rubber 19.78 19.83 19.85 19.87 19.89 19.89 19.89 19.88 19.59 19.78
Perennial trees and orchards 74.06 68.78 63.62 58.31 53.13 47.91 42.65 37.46 32.17 26.94
Forest land 433.30 429.61 425.98 422.30 418.60 414.93 411.24 407.57 403.96 400.22
Water body 34.34 34.93 35.73 36.43 37.07 37.96 38.71 39.48 40.47 41.11
Rangeland 27.86 28.46 29.06 29.68 30.61 30.94 31.56 32.14 32.78 33.44
Wetland 16.22 16.10 15.97 15.78 15.63 15.43 15.29 15.11 14.96 14.85
Miscellaneous land 2.79 2.92 3.00 3.14 3.18 3.34 3.44 3.53 3.61 3.73

Total 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35 891.35
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As with Scenario I, there was a slight difference between the required land area and the
predicted area of each LULC type in 2029 under Scenario III. The deviation values varied
from −0.0023 to 0.0015%; however, the summation of deviation values was 0.00%. (See
Table A7 in Appendix B). Hence, the LULC prediction under Scenario III can be considered
acceptable for estimating sediment and nutrient export in the study area.

4.7. Sediment Export Estimation Using SDR Model

In general, the SDR model reports soil erosion, sediment retention, sediment depo-
sition, and sediment export. For this study, sediment export was selected to describe
ecosystem services in the study area by each LULC allocation scenario (Scenarios I–III).

The statistical performance of the model under the calibration and validation periods
provided a high correlation between the observed and estimated sediment export, with
R2 values of 0.697 and 0.824, respectively, indicating the good and very good fitting
performance rate of the model for nitrogen export estimation, as suggested by [51,52].
These findings are consistent with the previous study of [55], who applied the SDR model
to analyze sediment at the Rmel river basin, and found that the correlation between the
estimated and observed sediment export in the calibration process was relatively high,
with R2 values of 0.84 and 0.706.
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Meanwhile, the PBIAS values under the calibration period provided a good fit between
the estimated and observed sediment export, with a value of −27.03%, while the PBIAS
value under the validation period delivered an unsatisfactory fit between the estimated
and observed sediment export, with a value of 65.60%, in accordance with [51,52]. The
optimum local model parameters and domain values under the calibration period of the
SDR model are summarized in Table 19.

Table 19. Systematic model parameters and optimum value under calibration period.

Parameter Default
Value

Minimum
Value

Maximum
Value

Adjusted
Value

Optimum
Value

Kb 2 1 2 0.5 1
IC0 0.5 0.1 1 0.1 1
TFA 1000 1000 1800 200 1800

4.7.1. Sediment Export Estimation of Actual LULC in 2019

The sediment export in 2019 was about 26,421 tons or 29.64 tons/km2. Additionally,
the contribution of LULC type in 2019 to sediment export is presented in Table 20.

Table 20. Contribution of LULC type in 2019 to sediment exports.

LULC Types Area (km2)

Sediment Export

%
Total (tons) Average

(tons/km2)

Urban and built-up area (UR) 33.10 - - -
Paddy field (PD) 220.70 2471.12 11.19 0.80
Field crop (FC) 21.84 7169.79 328.26 23.57
Para rubber (RB) 19.78 2555.61 129.18 9.27
Perennial trees and orchards (PO) 79.22 11,578.36 146.15 10.49
Forest land (FO) 436.90 246.47 0.56 0.04
Water body (WB) 33.37 - - -
Rangeland (RL) 27.26 323.29 11.86 0.85
Wetland (WL) 16.41 - - -
Miscellaneous land (ML) 2.71 2076.77 765.57 54.97

Total 891.4 26,421.41 100

As a result, the highest sediment export occurred on miscellaneous land, with an
average value of 765.57 tons/km2 (54.97%), while the lowest sediment export came from
forest land, with a value of 0.56 tons/km2 (0.04%). Additionally, urban and built-up
areas, water bodies, and wetlands do not create sediment export, according to the C and P
coefficients in the biophysical table.

4.7.2. Sediment Export Estimation of Predicted LULC under Scenario I

Estimates of total and average sediment export under the predicted LULC between
2020 and 2029 under Scenario I (Trend of LULC evolution) and mean rainfall erosivity are
presented in Table 21. As a result, the highest total and average sediment exports were
about 58,798 tons and 65.97 tons/km2, respectively, in 2026. The lowest total and average
sediment exports were about 32,373 tons and 36.32 tons/km2, respectively, in 2022.
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Table 21. Estimation of sediment export between 2020 and 2029 under Scenario I.

Year
Sediment Export Mean Rainfall Erosivity

Total (tons) Average (tons/km2) (MJ mm ha−1 h−1 y−1)

2020 41,445.02 46.50 2854.33
2021 35,685.45 40.04 2490.34
2022 32,373.49 36.32 2239.93
2023 41,954.52 47.07 2711.93
2024 39,669.68 44.51 2601.06
2025 48,329.18 54.22 2992.66
2026 58,797.97 65.97 3130.43
2027 42,549.03 47.74 2456.18
2028 46,867.05 52.58 2588.82
2029 49,558.85 55.60 2640.18

Average 43,723.02 49.06 2670.59

These results indicate that the primary influence of rainfall erosivity and LULC
types in the RUSLE model affect sediment export, as has been suggested by many re-
searchers [56–60]. The influence of rainfall erosivity on sediment export in this study was
confirmed by simple linear regression analysis, resulting in Figure 7, with an R2 value of
0.6424. This finding indicates that rainfall erosivity can explain the linear relationship with
the sediment export by about 64%.
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Moreover, the contribution of the predicted LULC under Scenario I on sediment
export between 2020 and 2029 indicated that miscellaneous land caused the highest average
sediment export, with values between 819.56 tons/km2 in 2022 and 1501.94 tons/km2 in
2026. Meanwhile, forest land generated the lowest average sediment export, with values
between 0.65 tons/km2 in 2022 and 1.05 tons/km2 in 2026.

4.7.3. Sediment Export Estimation of Predicted LULC under Scenario II

The estimated total and average sediment export under predicted LULC between 2020
and 2029 and mean rainfall erosivity, according to Scenario II (Maximization of ecosystem
service values), are presented in Table 22. As a result, the highest total and average sediment
exports were about 48,115 tons and 53.98 tons/km2, respectively, in 2026. The lowest total
and average sediment exports were about 30,190 tons and 33.87 tons/km2, respectively,
in 2022.

As with Scenario I, these results indicated that the primary influence of the rainfall
erosivity factor and LULC types in the RUSLE model affected sediment export. The
influence of rainfall erosivity on sediment export under Scenario II was relatively stronger
than that in Scenario I, as shown in Figure 8. According to the R2 value of 0.9589, the
rainfall erosivity can explain the linear relationship with sediment export by about 96%.
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Moreover, the contribution of the predicted LULC under Scenario II to sediment export
between 2020 and 2029 revealed that miscellaneous land decreased every year under this
scenario; still, it caused the highest average sediment export until 2027, with values between
1088.47 tons/km2 in 2020 and 512.54 tons/km2 in 2027. After that, the field crop yielded the
highest average sediment export in 2028 and 2029, with values between 447.46 tons/km2

and 470.16 tons/km2, respectively. In contrast, forest land generated the lowest average
sediment export with values between 0.64 tons/km2 in 2022 and 1.02 tons/km2 in 2026.

Table 22. Estimation of sediment export between 2020 and 2029 under Scenario II.

Year
Sediment Export Mean Rainfall Erosivity

Total (tons) Average (tons/km2) (MJ mm ha−1 h−1 y−1)

2020 40,979.13 45.97 2854.33
2021 34,149.06 38.31 2490.34
2022 30,190.61 33.87 2239.93
2023 38,483.96 43.17 2711.93
2024 35,659.13 40.01 2601.06
2025 41,526.64 46.59 2992.66
2026 48,115.01 53.98 3130.43
2027 33,851.75 37.98 2456.18
2028 36,216.79 40.63 2588.82
2029 37,599.82 42.18 2640.18

Average 37,677.19 42.27 2670.59
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4.7.4. Sediment Export Estimation of Predicted LULC under Scenario III

The estimated total and average sediment export under the predicted LULC between
2020 and 2029 and mean rainfall erosivity according to Scenario III (Economic crop zonation)
are presented in Table 23. As a result, the highest total and average sediment exports were
about 76,068 tons and 85.34 tons/km2, respectively, in 2026. The lowest total and average
sediment exports are about 34,520 tons and 38.73 tons/km2, respectively, in 2022.

As with Scenario I, these results indicate that the primary influence of rainfall erosiv-
ity factor and LULC types in the RUSLE model affected sediment export; however, the
influence of rainfall erosivity on sediment export under Scenario III was lower than that
under Scenario I, as shown in Figure 9. The simple linear equation indicates a moderately
positive correlation between the mean rainfall erosivity factor and average sediment export
under Scenario III, with an R value of 0.5235 and R2 value of 0.274. According to the R2

value, the rainfall erosivity can explain the linear relationship with sediment export by
only 27%.
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Table 23. Estimation of sediment export between 2020 and 2029 under Scenario III.

Year
Sediment Export Mean Rainfall Erosivity

Total (tons) Average (tons/km2) (MJ mm ha−1 h−1 y−1)

2020 43,130.50 48.39 2854.33
2021 37,330.55 41.88 2490.34
2022 34,520.48 38.73 2239.93
2023 46,451.16 52.11 2711.93
2024 47,447.38 53.23 2601.06
2025 59,526.42 66.78 2992.66
2026 76,068.33 85.34 3130.43
2027 59,092.34 66.30 2456.18
2028 67,376.26 75.59 2588.82
2029 74,740.75 83.85 2640.18

Average 54,568.42 61.22 2670.59
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The contribution of the predicted LULC under Scenario III to sediment export between
2020 and 2029 reveals that miscellaneous land caused the highest average sediment export,
with values between 1658.33 tons/km2 in 2022 and 7372.09 tons/km2 in 2029, while forest
land generated the lowest average sediment export, with values between 0.65 tons/km2 in
2022 and 1.08 tons/km2 in 2026.

The average sediment export between 2020 and 2029 under the three scenarios was
then compared, as shown in Figure 10, which shows that the predicted LULC under Sce-
nario II (Maximization of ecosystem service values) delivered the lowest annual sediment
export, compared to Scenarios I and III, with an average value of 42.27 tons/km2 due to
the increasing areas of wetland and decreasing areas of rangeland and miscellaneous land.
In contrast, the areas of miscellaneous land in scenarios I and III were increased, based on
the annual change rate of the Markov chain model. Though miscellaneous land showed
only a minor increase, it caused high soil loss and sediment export.

Moreover, Scenario III delivered the highest annual sediment export when compared
to the other scenarios, as the paddy field and field crop areas increased, according to
economic crop zonation by the LDD in 2018.
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4.8. Nutrient Export Estimation Using NDR Model

Similar to sediment export, nutrient (N and P) exports were selected to describe
ecosystem services in the study area by each LULC allocation scenario (Scenarios I–III).

The statistical performance of the NDR model for nitrogen export estimation under
the calibration and validation periods showed satisfactory and very good fitting between
the observed and estimated nitrogen export, with R2 values of 0.575 and 0.895, respectively.
At the same time, the PBIAS values under the calibration period provided a very good
fit performance rate of the model, with a value of −20.42%, and PBIAS values under
the validation period provided a good fit performance rate, with a value of 33.39%, in
accordance with [51,52].

Meanwhile, the statistical NDR model performance for calibration and validation
of phosphorus export provided a very good and good fit between the observed and
estimated phosphorus export, with R2 values of 0.828 and 0.643, respectively. At the
same time, the PBIAS values for calibration and validation provided very good and good
fitting performance rates of the model, with values of 12.57 and 30.21%, respectively, in
accordance with [51,52]. The optimum local model parameters and domain values under
the calibration period of the NDR model are summarized in Tables 24 and 25.

Table 24. Nutrient delivery ratio model parameters for model calibration.

Parameter Default Value Minimum Value Maximum Value Adjusted Value Optimum Value

Kb 2 1 2 0.5 1
TFA 1000 1000 1800 200 1800

load_n By LULC 1 (See Table 4) 0.5× 3× 0.5× By LULC
(Table 25)

eff_n By LULC 2 (See Table 4) 0.5× 1× 0.5× By LULC
(Table 25)

crit_len_n 30 m 3 30 10× 5× 150

load_p By LULC 2 (See Table 4) 0.5× 3× 0.5× By LULC
(Table 25)

eff_p By LULC 2 (See Table 4) 0.5× 1× 0.5× By LULC
(Table 25)

crit_len_p 30 m 3 30 10× 5× 150

Note: 1 load_n can be added from default values of all LULC types; 2 eff_n, eff_p, load_p, can be added from default values only LULC
types outside WWTF; 3 crit_len_n and crit_len_p can be added from default values only LULC types outside WWTF.
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Table 25. Adjusted parameter of NDR model for nitrogen and phosphorus calibration.

LULC Types load_n eff_n crit_len_n load_p eff_p crit_len_p

Urban and built-up area 23.25 0.05 30 1.3 0.05 30
Paddy field 33 0.25 150 9 0.25 150
Field crop 33 0.25 150 9 0.25 150
Para rubber 30 0.45 150 9 0.45 150
Perennial trees and orchards 30 0.45 150 9 0.45 150
Forest land 5.4 0.7 150 0.033 0.7 150
Water body 0.003 0.05 150 0.003 0.05 150
Rangeland 6 0.5 150 0.033 0.5 150
Wetland 6 0.8 30 0.05 0.8 30
Miscellaneous land 12 0.05 150 0.003 0.05 150

4.8.1. Nutrient Export Estimation of Actual LULC in 2019

The estimated total and average nutrient (N and P) load and export of actual LULC in
2019 are presented in Table 26. Meanwhile, the amount of nutrient export from each LULC
type in 2019 is presented in Table 27.

As a result, the total nitrogen and phosphorus loads in 2019 were about 1,422,800 kg
(1596.23 kg/km2) and about 308,268 kg (345.84 kg/km2), and the total nitrogen and phosphorus
exports were about 193,308 kg (216.87 kg/km2) and about 41,979 kg (47.10 kg/km2), respectively.

Table 26. Nutrient (N and P) load and export of actual LULC in 2019.

Total N load 1,422,800.13 (kg/year)

Total P load 308,267.70 (kg/year)

Average N load 1596.23 (kg/watershed in km2)

Average P load 345.84 (kg/watershed in km2)

Total N export 193,307.56 (kg/year)

Total P export 41,978.66 (kg/year)

Average N export 216.87 (kg/watershed in km2)

Average P export 47.10 (kg/watershed in km2)

Watershed area 891.35 Km2

Table 27. Contribution of LULC type on nutrient (N and P) export in 2019.

LULC Types
Area Nitrogen Export Phosphorus Export

km2 Total (kg) Average
(kg/km2) % Total (kg) Average

(kg/km2) %

Urban and built-up area 33.10 8965.07 270.89 11.5 501.27 15.15 3.02
Paddy field 220.74 95,828.98 434.12 18.5 26,135.18 118.40 23.6
Field crop 21.84 9919.11 454.14 19.3 2705.21 123.86 24.7
Para rubber 19.78 7613.26 384.82 16.4 2283.98 115.45 23.0
Perennial trees and orchards 79.22 33,756.21 426.09 18.2 10,126.86 127.83 25.5
Forest land 436.91 34,402.68 78.74 3.35 210.24 0.48 0.10
Water body 33.37 2.22 0.07 0.0 2.22 0.07 0.01
Rangeland 27.26 1860.71 68.25 2.91 10.23 0.38 0.07
Wetland 16.41 398.40 24.28 1.03 3.32 0.20 0.04
Miscellaneous land 2.71 560.91 206.77 8.81 0.14 0.05 0.01

Total 891.4 193,307.56 100 41,978.66 100

In the meantime, the highest total nitrogen and phosphorus exports occurred at the
paddy field, with values of about 95,829 and 26,135 kg, respectively. In contrast, the lowest
total nitrogen export came from waterbody areas, with a value of 2.22 kg, and the lowest
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total phosphorus export came from miscellaneous land, with a value of 0.14 kg. However,
the highest average nitrogen and phosphorus export appeared on field crop and perennial
trees and orchards, with values of 454.14 and 127.83 kg/km2, respectively.

4.8.2. Nutrient Export Estimation of Predicted LULC under Scenario I

The estimated total and average nitrogen and phosphorus export of predicted LULC
between 2020 and 2029 and mean annual rainfall under Scenario I (Trend of LULC evolu-
tion) is presented in Table 28.

Table 28. Estimation of nitrogen and phosphorus export under Scenario I.

Year
Area Nitrogen Export Phosphorus Export Mean Annual Rainfall

km2 Total (kg) Average
(kg/km2) Total (kg) Average

(kg/km2) (mm)

2020 891.35 197,972.93 222.10 43,358.11 48.64 1523.53
2021 891.35 199,580.02 223.91 43,832.43 49.18 1508.50
2022 891.35 200,858.16 225.34 44,196.29 49.58 1465.20
2023 891.35 202,275.64 226.93 44,619.00 50.06 1517.76
2024 891.35 203,395.90 228.19 44,951.18 50.43 1537.45
2025 891.35 205,172.77 230.18 45,494.30 51.04 1544.38
2026 891.35 206,743.37 231.94 45,966.11 51.57 1486.75
2027 891.35 207,795.18 233.12 46,273.02 51.91 1472.48
2028 891.35 209,325.14 234.84 46,740.48 52.44 1539.43
2029 891.35 210,907.86 236.62 47,221.47 52.98 1498.28

As a result, the highest total and average nitrogen export occurred in 2029, with values
of about 210,908 kg and 236.62 kg/km2, respectively, while the lowest total and average ni-
trogen export occurred in 2020 with a value of about 197,973 kg and 222.10 kg/km2, respec-
tively. Likewise, the highest total and average phosphorus export occurred in 2029, with a
value of about 47,221 kg and 52.98 kg/km2, respectively, while the lowest total and average
phosphorus export occurred in 2020, of about 43,358 kg and 48.64 kg/km2, respectively.

These results indicate that the changes in LULC types and areas affect parameters in
the biophysical table, leading to different nitrogen and phosphorus export. In contrast, the
annual rainfall, as a runoff proxy, was not observed as being sensitive to the estimated data,
due to its calculation to modify the load, in order to account for runoff potential by relating
the precipitation per cell to the average over the raster, as suggested by [61]. Therefore,
non-linear regression analysis was considered in order to reconfirm the suggestion of [61]
and the previous study of [62].

Figure 11 shows the results of non-linear regression analysis between mean annual
rainfall (mm) and average nutrient export (kg per km2). The best fit of the non-linear
regression by Trend Analysis in the MS Excel software was a sixth-order polynomial
equation with R2 values of 0.9638 for nitrogen export and 0.9615 for phosphorus export.
As a result, it was confirmed that annual rainfall, as a runoff proxy, is not sensitive to the
estimated nutrient export under the NDR model.

Furthermore, the contribution of the predicted LULC under Scenario I on nutrient
export indicated that the highest total nitrogen and phosphorus export occurred on paddy
fields. In contrast, the lowest total nitrogen export occurred on water bodies, and the
lowest total phosphorus export occurred on miscellaneous land; however, the highest
average nitrogen and phosphorus export appeared on field crops, as well as perennial trees
and orchards.
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These findings suggest that the change in LULC types associated with the biophysical
table parameters affects nitrogen and phosphorus export. The LULC data of Scenario I
were simulated based on the annual rate of LULC change from the transition area matrix
between 2009 and 2019 using the Markov Chain model, which did not represent dramatic
change under this scenario; the minor change in area also changed the load amounts and
export of nutrients.

4.8.3. Nutrient Export Estimation of Predicted LULC under Scenario II

The estimated total and average nitrogen and phosphorus export of predicted LULC
between 2020 and 2029 and mean annual rainfall under Scenario II (Maximization of
ecosystem service values) is presented in Table 29.

Table 29. Estimation of nitrogen and phosphorus export between 2020 and 2029 under Scenario II.

Year
Area Nitrogen Export Phosphorus Export Mean Annual Rainfall

km2 Total (kg) Average
(kg/km2) Total (kg) Average

(kg/km2) (mm)

2020 891.35 196,964.74 220.97 43,117.85 48.37 1523.53
2021 891.35 195,883.51 219.76 42,988.62 48.23 1508.50
2022 891.35 195,426.12 219.25 42,961.10 48.20 1465.20
2023 891.35 195,754.01 219.62 43,137.70 48.40 1517.76
2024 891.35 195,641.77 219.49 43,160.14 48.42 1537.45
2025 891.35 195,988.64 219.88 43,334.48 48.62 1544.38
2026 891.35 195,915.15 219.80 43,415.07 48.71 1486.75
2027 891.35 196,276.87 220.20 43,540.77 48.85 1472.48
2028 891.35 196,689.44 220.66 43,714.70 49.04 1539.43
2029 891.35 196,815.34 220.81 43,797.81 49.14 1498.28

As a result, the highest total and average nitrogen export occurred in 2020, with values
of about 196,965 kg and 220.97 kg/km2, respectively, while the lowest total and average
nitrogen export occurred in 2022, with values of about 195,426 kg and 219.25 kg/km2,
respectively. Likewise, the highest total and average phosphorus export were in 2029,
with values of about 43,798 kg and 49.14 kg/km2, respectively, while the lowest total
and average phosphorus export occurred in 2022, with values of about 42,961 kg and
48.20 kg/km2, respectively. These results indicate that the changes in LULC types and
areas affect parameters in the biophysical table, leading to variations in nitrogen and
phosphorus export.
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As with Scenario I, the annual rainfall, as a runoff proxy, was not a sensitive factor for
estimating nutrients. The best fit of the sixth-order polynomial equation between annual
rainfall and nutrient export had R2 values of 0.4920 for nitrogen export and 0.8834 for
phosphorus export (Figure 12).
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Moreover, the contribution of the predicted LULC under Scenario II on nutrient export
demonstrated that the highest total nitrogen and phosphorus export occurred on the paddy
fields. In contrast, the lowest nitrogen export occurred on water bodies, while the lowest
phosphorus export occurred on miscellaneous land; however, the highest average nitrogen
export appeared on paddy fields and field crops, while the highest average phosphorus
export occurred on perennial trees and orchards.

Additionally, these findings suggest that the change in LULC types associated with
the biophysical table parameters affects nitrogen and phosphorus export. Notably, the
LULC data under this scenario influenced nutrient export due to the LULC data of Scenario
II, simulated based on the annual rate of LULC change from transition area matrix between
2009 and 2019 for some LULC types and the LP to maximize ecosystem service values, by
reducing the area of rangeland and miscellaneous land and increasing the area of wetland.
Therefore, significant LULC change was observed under this scenario, due to the area
change, load amounts, and export of nutrients.

4.8.4. Nutrient Export Estimation of Predicted LULC under Scenario III

The estimated total and average nitrogen and phosphorus export according to the
predicted LULC between 2020 and 2029 and mean annual rainfall under Scenario III
(Economic crop zonation) are presented in Table 30.

As a result, the highest total and average nitrogen export under Scenario III were about
229,756 kg and 257.76 kg/km2, respectively, occurring in 2029, while the lowest total and
average nitrogen export were about 200,387 kg and 224.81 kg/km2, respectively, occurring
in 2020. Likewise, the highest total and average phosphorus export were about 51,149 kg
and 57.38 tons/km2, respectively, occurring in 2029, while the lowest total and average
phosphorus export were about 43,956 kg and 49.31 kg/km2, respectively, occurring in 2020.
These results indicate that the changes in LULC types and areas affect parameters in the
biophysical table, which leads to different nitrogen and phosphorus export, as observed
in Scenarios I and II. The best fit of the sixth-order polynomial equation between annual
rainfall and nutrient export had R2 values of 0.9530 for nitrogen export and 0.9469 for
phosphorus export (Figure 13).
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Table 30. Estimation of nitrogen and phosphorus export between 2020 and 2029 under Scenario III.

Year
Area Nitrogen Export Phosphorus Export Mean Annual Rainfall

km2 Total (kg) Average
(kg/km2) Total (kg) Average

(kg/km2) (mm)

2020 891.35 200,387.36 224.81 43,956.03 49.31 1523.53
2021 891.35 204,228.36 229.12 44,919.41 50.39 1508.50
2022 891.35 207,404.15 232.69 45,715.39 51.29 1465.20
2023 891.35 210,923.54 236.63 46,580.29 52.26 1517.76
2024 891.35 213,774.11 239.83 47,267.91 53.03 1537.45
2025 891.35 217,498.34 244.01 48,206.67 54.08 1544.38
2026 891.35 220,573.44 247.46 48,942.83 54.91 1486.75
2027 891.35 223,621.85 250.88 49,650.28 55.70 1472.48
2028 891.35 226,714.19 254.35 50,389.99 56.53 1539.43
2029 891.35 229,756.13 257.76 51,149.42 57.38 1498.28
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Furthermore, the contribution of the predicted LULC under Scenario III on nutrient
export indicated that the highest total nutrient and phosphorus export occurred on paddy
fields. In contrast, the lowest total nitrogen export occurred on water bodies, while the
lowest total phosphorus export occurred on miscellaneous land. Meanwhile, the highest
average nitrogen and phosphorus export occurred on field crops, as well as perennial trees
and orchards.

These findings suggest that the change in LULC types associated with the biophysical
table parameters affects nitrogen and phosphorus export. In particular, the LULC data
under this scenario influenced nutrient export, according to the LULC data of Scenario III
simulated based on the annual rate of LULC change from transition area matrix between
2009 and 2019 for some LULC types and the economic crop zonation, particularly the
increase in paddy field and field crop areas and the decrease in perennial tree and orchard
areas, which represented dramatic change under this scenario, leading to changes in the
load amounts and export of nutrients. Hence, significant LULC change was observed
under this scenario.

The average nutrient (N and P) export between 2020 and 2029 for the three scenarios
was compared, as shown in Figure 14, which shows that the predicted LULC under Scenario
II (Maximization of ecosystem service values) delivered the lowest annual nitrogen and
phosphorus export, compared to Scenarios I and III, due to the allocation of area using
LP to maximize the ecosystem service values by increasing wetland areas. Increases
in wetland areas, such as wetland restoration and constructed riparian wetlands, can
reduce nitrogen [63] and phosphorus [64] export into water bodies. Furthermore, based
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on the biophysical table, wetland provides the highest maximum retention efficiency
and provides low nitrogen and phosphorus load. The decreased paddy field area under
scenario II affected the nutrient export, as this LULC type supplies the highest nitrogen
and phosphorus load with low maximum retention efficiency.

Nevertheless, scenario III (Economic crop zonation) generated higher nutrient export
than other scenarios, as the paddy field and field crop areas were increased according to
their LDD suitability classes. These areas provide the highest nitrogen and phosphorus load,
but low maximum retention efficiency. This result is in agreement with [65], who applied
the NDR model to calculate nutrient export under two different scenarios. They found that
the cropland balance policy negatively impacted water purification by increasing nitrogen
export, which was 8.36% higher than that in the no strict cropland protection scenario.
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4.9. Suitable LULC Allocation Scenario to Minimize Sediment Export

The ESCI values of sediment export in ten periods—as well as its average under the
three scenarios—were compared, in order to identify a suitable LULC allocation scenario
for minimizing sediment export, in terms of ecosystem service change, as summarized in
Table 31 and Figure 15.

Table 31. Sediment export and ESCI value and its average under three different scenarios.

Year Period
Scenario I Scenario II Scenario III

Sediment
Export (tons) ESCI Sediment

Export (tons) ESCI Sediment
Export (tons) ESCI

2019 26,421.41 26,421.41 26,421.41
2020 2019–2020 41,445.02 0.5686 40,979.13 0.5510 43,130.50 0.6324
2021 2019–2021 35,685.45 0.3506 34,149.06 0.2925 37,330.55 0.4129
2022 2019–2022 32,373.49 0.2253 30,190.61 0.1427 34,520.48 0.3065
2023 2019–2023 41,954.52 0.5879 38,483.96 0.4565 46,451.16 0.7581
2024 2019–2024 39,669.68 0.5014 35,659.13 0.3496 47,447.38 0.7958
2025 2019–2025 48,329.18 0.8292 41,526.64 0.5717 59,526.42 1.2530
2026 2019–2026 58,797.97 1.2254 48,115.01 0.8211 76,068.33 1.8790
2027 2019–2027 42,549.03 0.6104 33,851.75 0.2812 59,092.34 1.2365
2028 2019–2028 46,867.05 0.7738 36,216.79 0.3707 67,376.26 1.5501
2029 2019–2029 49,558.85 0.8757 37,599.82 0.4231 74,740.75 1.8288

Average 43,723.02 * 0.6548 37,677.19 * 0.4260 54,568.42 * 1.0653

Note: * The average value from data between 2020 and 2029.
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According to the result, the LULC allocation of Scenario II (Maximization of ecosystem
service values) generated the lowest sediment export every year between 2020 and 2029,
with an average sediment export of 37,677.19 tons. The cumulative ESCI values on sediment
export of this scenario were also the lowest, with an average ESCI value of 0.4260. Therefore,
the LULC allocation of Scenario II was chosen, in order to minimize the sediment export
into Kwan Phayao from the Upper Ing watershed.

Moreover, the average ESCI for sediment export under the three allocation LULC
scenarios was tested, in terms of the difference of the mean, using the t-test statistic. The
results demonstrated significant differences among average ESCI values on sediment
export of three scenarios at the 95% confidence level. See detail in Table A8 in Appendix B.

4.10. Suitable LULC Allocation Scenario to Minimize Nutrient Export

The ESCI values for nutrient (N and P) export in ten periods and its average of
three scenarios were compared, in order to identify a suitable LULC allocation scenario
for minimizing nutrient export, in terms of ecosystem service change, are reported in
Tables 32 and 33 and shown in Figures 16 and 17.

Table 32. Nitrogen export and ESCI value and its average of three scenarios.

Year Period
Scenario I Scenario II Scenario III

Nitrogen
Export (kg) ESCI Nitrogen

Export (kg) ESCI Nitrogen
Export (kg) ESCI

2019 193,307.56 193,307.56 193,307.56
2020 2019–2020 197,972.93 0.0241 196,964.74 0.0189 200,387.36 0.0366
2021 2019–2021 199,580.02 0.0324 195,883.51 0.0133 204,228.36 0.0565
2022 2019–2022 200,858.16 0.0391 195,426.12 0.0110 207,404.15 0.0729
2023 2019–2023 202,275.64 0.0464 195,754.01 0.0127 210,923.54 0.0911
2024 2019–2024 203,395.90 0.0522 195,641.77 0.0121 213,774.11 0.1059
2025 2019–2025 205,172.77 0.0614 195,988.64 0.0139 217,498.34 0.1251
2026 2019–2026 206,743.37 0.0695 195,915.15 0.0135 220,573.44 0.1410
2027 2019–2027 207,795.18 0.0749 196,276.87 0.0154 223,621.85 0.1568
2028 2019–2028 209,325.14 0.0829 196,689.44 0.0175 226,714.19 0.1728
2029 2019–2029 210,907.86 0.0910 196,815.34 0.0181 229,756.13 0.1886

Average 204,402.70 * 0.0574 196,135.56 * 0.0146 215,488.15 * 0.1147

Note: * The average value from data between 2020 and 2029.
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Table 33. Phosphorus export and ESCI value and its average of three scenarios.

Year Period
Scenario I Scenario II Scenario III

Phosphorus
Export (kg) ESCI Phosphorus

Export (kg) ESCI Phosphorus
Export (kg) ESCI

2019 41,978.66 41,978.66 41,978.66
2020 2019–2020 43,358.11 0.0329 43,117.85 0.0271 43,956.03 0.0471
2021 2019–2021 43,832.43 0.0442 42,988.62 0.0241 44,919.41 0.0701
2022 2019–2022 44,196.29 0.0528 42,961.10 0.0234 45,715.39 0.0890
2023 2019–2023 44,619.00 0.0629 43,137.70 0.0276 46,580.29 0.1096
2024 2019–2024 44,951.18 0.0708 43,160.14 0.0281 47,267.91 0.1260
2025 2019–2025 45,494.30 0.0837 43,334.48 0.0323 48,206.67 0.1484
2026 2019–2026 45,966.11 0.0950 43,415.07 0.0342 48,942.83 0.1659
2027 2019–2027 46,273.02 0.1023 43,540.77 0.0372 49,650.28 0.1828
2028 2019–2028 46,740.48 0.1134 43,714.70 0.0414 50,389.99 0.2004
2029 2019–2029 47,221.47 0.1249 43,797.81 0.0433 51,149.42 0.2185

Average 45,265.24 * 0.0783 43,316.82 * 0.0319 47,677.82 * 0.1358

Note: * The average value from data between 2020 and 2029.
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As a result, Scenario II (Maximization of ecosystem service values) produced the
lowest nutrient (N and P) export every year between 2020 and 2029, with average values
of 196,135.56 kg for nitrogen and 43,316.82 kg for phosphorus. The cumulative ESCI
values for nutrient export under this scenario were also the lowest, with average ESCI
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values for nitrogen of 0.0146 and phosphorus of 0.0319. Therefore, the LULC allocation
under Scenario II was selected to minimize nutrient export into Kwan Phayao, the Upper
Ing watershed.

Moreover, the average ESCI on nitrogen and phosphorus export of three LULC alloca-
tion scenarios was used to test the mean differences using the t-test statistic. The results
revealed significant differences among average ESCI values for nutrient export under the
three scenarios at the 95% confidence level. See detail in Tables A9 and A10 in Appendix B.

4.11. Suitable LULC Allocation Scenario to Minimize Sediment and Nutrient Export

The average ESCI values for sediment and nutrient (N and P) exports in ten periods
of three LULC allocation scenarios were compared, in order to identify suitable LULC
allocation scenarios to minimize sediment and nutrient export, in terms of ecosystem
service change, as shown in Figure 18 and summarized in Table 34.
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Table 34. Average ESCI values of sediment and nutrient export on ecosystem service among the three considered scenarios.

Period
Scenario I Scenario II Scenario III

Sediment N P Avg. Sediment N P Avg. Sediment N P Avg.

2019–2020 0.5686 0.0241 0.0329 0.2085 0.5510 0.0189 0.0271 0.1990 0.6324 0.0366 0.0471 0.2387
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2019–2025 0.8292 0.0614 0.0837 0.3248 0.5717 0.0139 0.0323 0.2060 1.2530 0.1251 0.1484 0.5088
2019–2026 1.2254 0.0695 0.0950 0.4633 0.8211 0.0135 0.0342 0.2896 1.8790 0.1410 0.1659 0.7287
2019–2027 0.6104 0.0749 0.1023 0.2625 0.2812 0.0154 0.0372 0.1113 1.2365 0.1568 0.1828 0.5254
2019–2028 0.7738 0.0829 0.1134 0.3234 0.3707 0.0175 0.0414 0.1432 1.5501 0.1728 0.2004 0.6411
2019–2029 0.8757 0.0910 0.1249 0.3639 0.4231 0.0181 0.0433 0.1615 1.8288 0.1886 0.2185 0.7453

Average 0.2635 0.1575 0.4386

As a result, the average cumulative ESCI values for sediment and nutrient export
ecosystem services under the LULC allocation of Scenario II (Maximization of ecosystem
service values) provided the lowest value, with an average ESCI value of 0.1575 among
different LULC scenarios. Additionally, Scenario II created the lowest yield of sediment,
nitrogen, and phosphorus exports between 2000 and 2029 among the scenarios, with
average values of about 37,678 tons, 196,136 kg, and 43,317 kg, respectively.
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Therefore, the LULC allocation of Scenario II (Maximization of ecosystem service
values) was selected as the suitable LULC allocation scenario to minimize sediment and
nutrient exports into Kwan Phayao from the Upper Ing watershed. These findings can
serve as crucial information to allocate LULC in the Upper Ing watershed by land-use
planners, land managers, and decision-makers in order to minimize sediment and nutrient
loads into Kwan Phayao in the future.

5. Discussion
5.1. LULC Classification Using SVM Algorithm

The overall accuracy and Kappa hat coefficient for the thematic accuracy of the LULC
map in 2009 and 2019 were 90.86 and 87.00%, and 89.59 and 85.85%, respectively. Kappa
hat coefficient values of more than 80% represent a substantial agreement between the
classification map and the reference data [66]; likewise, the overall accuracy of the LULC
maps—higher than 85%—indicates that they can provide an acceptable result [67].

In addition, the overall accuracy and Kappa hat coefficient of the current study were
consistent with other researchers who have classified LULC data based on Landsat imagery
using the SVM algorithm [68–71]; however, to apply SVM for LULC classification, users
must select sample points between the boundaries of LULC classes precisely, where mixed
pixels are common, in order to ensure accurate classification [72]. Therefore, selecting the
SVM algorithm’s training points for LULC classification under the EnMap BOX software
requires time and skill.

5.2. Land Requirement Estimation under Three Different Scenarios

Land requirement is essential information for LULC prediction using the CLUE-S
model. In this study, three different scenarios including (1) Scenario I (Trend of LULC
evolution), (2) Scenario II (Maximization of ecosystem service values), and Scenario III
(Economic crop zonation) are estimated based on their characteristics. The land requirement
of Scenario I is estimated based on the annual change rate of LULC between 2009 and 2019
from the transition area matrix using the Markov Chain model. The land requirement of
Scenario I is dictated by the accuracy of LULC data in 2009 and 2019. Meanwhile, the land
requirement of Scenario II is estimated based on LULC allocation for maximizing ESV
using Linear Programming with the Simplex method. The land requirement of Scenario
II depends on the efficiency of linear programming for determining reclaimed and other
areas changing into the wetland. At the same time, the land requirement of Scenario III is
estimated based on areas of suitability classes for economic crops (paddy field, field crop,
para rubber, and perennial trees and orchards) and the Markov Chain model. The land
requirement of Scenario III is delimited by the economic crop zonation and the accuracy
of LULC data in 2019. Consequently, the definition of each Scenario should first be well
defined and local government agencies and stakeholders should be consulted before land
requirement estimation.

5.3. LULC Prediction by CLUE-S Model

According to binary logistics regression analysis, the derived AUC values for each
LULC type allocation under the CLUE-S model exhibit good fit (0.80) and excellent fit
(0.99) between the predicted and real LULC transition, as mentioned by Chen et al. [73].
These results imply that the significant driving factors on LULC change, including soil
drainage, distance to stream, distance to water body, distance to village, slope, distance to
road, annual rainfall, elevation, and population density at subdistrict level, are suitable to
apply for each LULC type allocation under CLUE-S model.
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As a result of LULC prediction under three scenarios by the CLUE-S model, the
predicted LULC data of three scenarios can deliver realistic results as an expectation. The
deviation values between the required land area and the predicted area of each LULC
type under three scenarios are very small and vary from −0.0023 to 0.0033% or −0.23 km2

(underestimation) to 0.33 km2 (overestimation). In principle, the deviation value depends
on iteration driving factors of each LULC type, which indicate the maximum different
allowance between the land requirement and land allocation of LULC type under the
CLUE-S model [53,54].

Consequently, the CLUE-S model can be an effective tool to predict LULC data accord-
ing to specific policies as the scenario. Essentially, the suitable multiple linear equations
from the logistics regression analysis for each LULC type allocation, a land requirement
of different scenarios assigned by policy transformation, and model parameters (elas-
ticity and LULC conversion matrix) are very important for predicting LULC under the
CLUE-S model.

5.4. Sediment Export Estimation

According to the results of sediment export estimation, it was found that the primary
influence of rainfall erosivity and LULC types in the RUSLE model affect sediment export
under three different scenarios. The rainfall erosivity can explain the linear relationship
with the sediment export from about 27% in Scenario III (Economic crop zonation) to 96%
in Scenario II (Maximization of ecosystem service values). These findings are consistent
with the previous studies [56–60].

The contribution of the predicted LULC under three scenarios on sediment export
between 2020 and 2029 indicated that miscellaneous land causes the highest average
sediment export. Meanwhile, forest land generates the lowest average sediment export.
This finding was consistent with the previous study of Srichaichana et al. [14]. They found
that miscellaneous land (bare land and abandoned mine) created the highest average
sediment export, with a value of 659.72 tons/km2. At the same time, evergreen forest
generated the lowest average sediment export, with a value of 0.01 tons/km2, in the Klong
U-Tapao watershed, Songkhla Province, Thailand. Likewise, Degife et al. [74] found that
the highest sediment export per unit of area was observed from miscellaneous land (bare
land), while the highest contribution of the total sediment that reached the surrounding
water bodies was from cultivated land (40.7%). Similarly, Zhou et al. [75] found that
decreases in miscellaneous land (bare land) significantly reduced sediment export in the
Qiantang River Basin, China. In contrast, increases in agricultural land, such as cropland
and garden plots, increased sediment export in the studied watershed.

5.5. Nutrient Export Estimation

The nutrient (N and P) export estimation under three different scenarios indicates
that the change in LULC types and areas affects parameters in the biophysical table,
leading to different nitrogen and phosphorus export. The contribution of LULC type under
three scenarios indicates that the highest total nitrogen and phosphorus exports occur on
paddy fields. In contrast, the lowest total nitrogen export occurs on water bodies, and
the lowest total phosphorus export occurs on miscellaneous land. However, the highest
average nitrogen and phosphorus export mostly appeared on field crops and perennial
trees/orchards. These findings agree with [76], who indicated that the highest nitrogen
and phosphorus exports occurred on cultivated land. There was very little nitrogen and
phosphorus export on forest land, water areas, and unused land. This is similar to the
result of [77], who analyzed nutrient load and delivery from different scenarios and found
the most significant load rate per unit area and low retention efficiency of cultivated crops.
Furthermore, agriculture was the leading cause of nutrient release in the watershed under
the different LULC scenarios. These findings are similar to those of [78], who found that
cropland and agroforestry influenced roughly 90% of the nutrients exported, while water
bodies were identified as sinks.
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Moreover, as a runoff proxy, the annual rainfall is not a sensitive factor for estimating
nutrients, as suggested by [61] and the previous study of [62]. The best fit of the sixth-order
polynomial equation between annual rainfall and nutrient (N and P) export under three
different scenarios in this study reconfirm the relationship as mentioned earlier. In this
study, the R2 value of the relations between annual rainfall and nitrogen export varies from
0.4920 to 0.9638, while the R2 value of the relations between annual rainfall and phosphorus
export diverges from 0.8834 to 0.9615.

6. Conclusions

Land-use and land-cover (LULC) classification and change detection between 2009
and 2019 was successfully conducted using a supervised classification with a support
vector machine and post-classification comparison change detection algorithms. The
overall accuracy and Kappa hat coefficient of the LULC maps in 2009 and 2019 were
higher than 85%. Then, the land requirements under three scenarios—Scenario I (Trend of
LULC evolution), Scenario II (Maximization of ecosystem service values), and Scenario
III (Economic crop zonation)—were estimated based on their characteristics. Time-series
LULC data between 2020 and 2029 were then effectively predicted using the CLUE-S model.
After that, the actual LULC data in 2019, as base data, and the predicted LULC data under
the three scenarios between 2020 and 2029 were used as significant inputs for ecosystem
service assessment, in terms of sediment and nutrient export, using the SDR and NDR
models. Finally, a suitable LULC allocation scenario was successfully identified in order to
minimize sediment and nutrient export using the ecosystem services change index: the
most suitable LULC allocation scenario to minimize sediment or/and nutrient export into
Kwan Phayao was Scenario II (Maximization of ecosystem service value).

In conclusion, the integration of remote sensing data with an advanced classifica-
tion method (support vector machine classifier), GIS data with linear programming, and
advanced geospatial models (CLUE-S model, SDR and NDR model) can be used as an
efficient tool to assess ecosystem services at the watershed level—particularly sediment
and nutrient (N and P) export—and can be further applied to identify a suitable LULC
allocation scenario to minimize sediment and nutrient export into certain lakes. The results
of the current study can serve as crucial information for land-use planners, land managers,
and decision-makers in order to reduce sediment and nutrient export into Kwan Phayao in
the future.
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Appendix A

Table A1. Soil series and geology unit sand soil erodibility factor values.

Soil Series Erodibility Factor Value
Slope Complex

Geology Units Erodibility Factor Value

Chaing Rai series 0.27 Jurassic (J) 0.15
Hang Chat series 0.27 Jurassic–Cretaceous (JK) 0.27
Hang Chat/Renu association 0.27 Cretaceous (K) 0.27
Hang Dong series 0.18 Permian (P) 0.15
Lampang series 0.34 Quaternary Alluvium (Qa) 0.19
Mae Rim/Hang Chat Association 0.27 Quaternary (Qc) 0.27
Mae Sai series 0.27 Pleistocene (Qt) 0.27
Nan series 0.27 Triassic (Trhh) 0.27
Phan series 0.18 Igneous rock 0.30
Phayao series 0.18
Phimai series 0.18
Pran Buri, mottle Variant 0.27
Tha Muang/Sanphaya Association 0.27
Tha Yang/Lat Ya Association 0.27

Source: [22].

Table A2. Values of the C and P factors corresponding to each LULC type.

No LULC Type C Factor of RUSLE P Factor of RUSLE

1 Urban and built-up area 0.000 0.000
2 Paddy field 0.280 0.100
3 Field crop 0.340 1.000
4 Para rubber 0.150 1.000
5 Perennial trees and orchards 0.150 1.000
6 Forest land 0.001 1.000
7 Water body 0.000 0.000
8 Rangeland 0.032 1.000
9 Wetland 0.000 0.000

10 Miscellaneous land 0.800 1.000

Source: [22].

Appendix B

Table A3. Multicollinearity test for effect of driving factors on LULC type.

No. Driving Factor
Unstandardized Coefficients Standardized

Coefficient
t-Test Sig. VIF

Beta Std. Error

1 Soil drainage (X1) −0.0229 0.0056 −0.0207 −4.1086 0.0000 1.4736
2 Distance to stream (X2) 0.0011 0.0000 0.1476 33.5946 0.0000 1.1226

3 Distance to water body
(X3) −0.0002 0.0000 −0.3006 −29.9464 0.0000 5.8550

4 Distance to village (X4) 0.0003 0.0000 0.3579 66.7967 0.0000 1.6688
5 Slope (X5) 0.0142 0.0008 0.1225 17.8190 0.0000 2.7464
6 Distance to road (X6) 0.0003 0.0000 0.2327 26.3178 0.0000 4.5438
7 Distance to fault line (X7) −0.0001 0.0000 −0.0991 −18.5922 0.0000 1.6527
8 Annual rainfall (X8) 0.0015 0.0001 0.0737 12.3901 0.0000 2.0576
9 Elevation (X9) 0.0011 0.0001 0.0966 12.5618 0.0000 3.4356

10 Income per capita at
subdistrict level (X10) 0.0000 0.0000 0.0271 3.1387 0.0017 4.3486

11 Population density at
subdistrict level (X11) −0.0005 0.0001 −0.0576 −7.0590 0.0000 3.8632
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Table A4. Deviation between estimated land requirements and predicted LULC data in 2029 under Scenario I.

Item
LULC Type

Total
UR PD FC RB PO FO WB RL WL ML

Predicted
LULC 2029 36.90 210.84 22.81 28.45 98.75 400.39 41.35 33.36 14.82 3.68 891.35

Land
requirement 2029 36.92 210.86 22.79 28.45 98.74 400.38 41.34 33.36 14.80 3.70 891.35

Deviation
value (%) −0.0002 −0.0002 0.0002 0.00 0.0001 0.0001 0.0001 0.00 0.0002 −0.0002 0.00

Deviation
value (km2) −0.02 −0.02 0.02 0.00 0.01 0.01 0.01 0.00 0.02 −0.02 0.00

Table A5. Constraints set to maximize ecosystem service values under Scenario II.

Constraints
UR PD FC RP PO FO WB RL WL ML

Operator Area (ha) Remark
(X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9) (X10)

Constraint 1 1 1 1 1 1 1 1 1 1 1 = 89,135.00 Total area
Constraint 2 (UR) 1 0 0 0 0 0 0 0 0 0 = 3692.29 MCM
Constraint 3 (PD) 0 1 0 0 0 0 0 0 0 0 ≤ 22,074.23 LULC 2019
Constraint 4 (PD) 0 1 0 0 0 0 0 0 0 0 ≥ 21,086.41 MCM
Constraint 5 (FC) 0 0 1 0 0 0 0 0 0 0 ≤ 2279.25 MCM
Constraint 6 (FC) 0 0 1 0 0 0 0 0 0 0 ≥ 2184.17 LULC 2019
Constraint 7 (RP) 0 0 0 1 0 0 0 0 0 0 ≤ 2844.72 MCM
Constraint 8 (RP) 0 0 0 1 0 0 0 0 0 0 ≥ 1978.41 LULC 2019
Constraint 9 (PO) 0 0 0 0 1 0 0 0 0 0 ≤ 9874.03 MCM
Constraint 10 (PO) 0 0 0 0 1 0 0 0 0 0 ≥ 7922.37 LULC 2019
Constraint 11 (FO) 0 0 0 0 0 1 0 0 0 0 ≤ 43,691.43 MCM
Constraint 12 (FO) 0 0 0 0 0 1 0 0 0 0 ≥ 40,038.00 MCM
Constraint 13 (WB) 0 0 0 0 0 0 1 0 0 0 = 3336.76 LULC 2019
Constraint 14 (RL) 0 0 0 0 0 0 0 1 0 0 ≤ 2726.21 LULC 2019
Constraint 15 (RL) 0 0 0 0 0 0 0 1 0 0 ≥ 1363.11 Decreased
Constraint 16 (WL) 0 0 0 0 0 0 0 0 1 0 ≤ 2985.48 Increased
Constraint 17 (WL) 0 0 0 0 0 0 0 0 1 0 ≥ 1640.63 LULC 2019
Constraint 18 (ML) 0 0 0 0 0 0 0 0 0 1 ≤ 271.27 LULC 2019
Constraint 19 (ML) 0 0 0 0 0 0 0 0 0 1 ≥ 135.64 Decreased

Remark: MCM, Markov Chain Model; LULC 2019, classified LULC in 2019; Decreased, decreased by 50% from LULC 2019; Increased,
increased by the reclaimed areas and other LULC types.

Table A6. Deviation of estimated land requirements and predicted LULC data in 2029 under Scenario II.

Item
LULC Type

Total
UR PD FC RB PO FO WB RL WL ML

Predicted
LULC 2029 36.94 210.78 21.80 28.46 98.68 416.34 33.70 13.57 29.72 1.36 891.35

Land
requirement 2029 36.92 210.86 21.84 28.45 98.74 416.32 33.37 13.63 29.85 1.36 891.35

Deviation
value (%) 0.0002 −0.0008 −0.0004 0.0001 −0.0006 0.0002 0.0033 −0.0006 −0.0013 0.00 0.00

Deviation
value (km2) 0.02 −0.08 −0.04 0.01 −0.06 0.02 0.33 −0.06 −0.13 0.00 0.00
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Table A7. Deviation of estimated land requirements and predicted LULC data in 2029 under Scenario III.

Item
LULC Type

Total
UR PD FC RB PO FO WB RL WL ML

Predicted
LULC 2029 36.96 280.20 34.11 19.78 26.94 400.22 41.11 33.44 14.85 3.73 891.35

Land
requirement 2029 36.92 280.34 33.96 19.66 26.88 400.38 41.34 33.36 14.80 3.70 891.35

Deviation
value (%) 0.0004 −0.0014 0.0015 0.0012 0.0006 −0.0016 −0.0023 0.0008 0.0005 0.00 0.00

Deviation
value (km2) 0.04 −0.14 0.15 0.12 0.06 −0.16 −0.23 0.08 0.05 0.03 0.00

Table A8. Results of t-test for average ESCI values on sediment export among three scenarios.

Pairwise of
Scenario

Mean Variance
df t-Stat t Critical

2-TailVariable 1 Variable 2 Variable 1 Variable 2

I and II 0.6548 0.4260 0.0815 0.0358 9 4.5002 2.2622
I and III 0.6548 1.0653 0.0815 0.3223 9 −3.9847 2.2622
II and III 0.4260 1.0653 0.0358 0.3223 9 −4.1715 2.2622

Table A9. Results of t-test for average ESCI values on nitrogen export among three scenarios.

Pairwise of
Scenario

Mean Variance
df t-Stat t Critical

2-TailVariable 1 Variable 2 Variable 1 Variable 2

I and II 0.0574 0.0146 0.0005 0.0000 9 6.2809 2.2622
I and III 0.0574 0.1147 0.0005 0.0026 9 −6.3392 2.2622
II and III 0.0146 0.1147 0.0000 0.0026 9 −6.3214 2.2622

Table A10. Results of t-test for average ESCI values on phosphorus export among three scenarios.

Pairwise of
Scenario

Mean Variance
df t-Stat t Critical

2-TailVariable 1 Variable 2 Variable 1 Variable 2

I and II 0.0783 0.0319 0.0009 0.0000 9 6.0779 2.2622
I and III 0.0783 0.1358 0.0009 0.0033 9 −6.8310 2.2622
II and III 0.0319 0.1358 0.0000 0.0033 9 −6.4782 2.2622
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