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Abstract: When it comes to association rule mining, all frequent itemsets are first found, and then
the confidence level of association rules is calculated through the support degree of frequent itemsets.
As all non-empty subsets in frequent itemsets are still frequent itemsets, all frequent itemsets can
be acquired only by finding all maximal frequent itemsets (MFIs), whose supersets are not frequent
itemsets. In this study, an algorithm, named right-hand side expanding (RHSE), which can accurately
find all MFIs, was proposed. First, an Expanding Operation was designed, which, starting from
any given frequent itemset, could add items using certain rules and form some supersets of given
frequent itemsets. In addition, these supersets were all MFIs. Next, this operator was used to add
items by taking all frequent 1-itemsets as the starting point alternately, and all MFIs were found in the
end. Due to the special design of the Expanding Operation, each MFI could be found. Moreover, the
path found was unique, which avoided the algorithm redundancy in temporal and spatial complexity.
This algorithm, which has a high operating rate, is applicable to the big data of high-dimensional
mass transactions as it is capable of avoiding the computing redundancy and finding all MFIs. In
the end, a detailed experimental report on 10 open standard transaction sets was given in this study,
including the big data calculation results of million-class transactions.

Keywords: association rule; frequent itemset mining; big data; maximal frequent itemsets

1. Introduction

Association rule mining, a research hotspot in recent years, has been widely applied in
the era of big data (e.g., cause analysis of traffic accidents [1], association analysis of weather
forecasting [2], interest-based real-time news recommendation [3], recommendation of
bank marketing plan [4], recommendation of e-commerce matching purchase and shopping
basket analysis [5]). In particular, it has been used to realize the data-driven optimization
of complex systems in various industries [6].

Association rule mining refers to finding implications such as A⇒ B from the given
transaction set, where A and B are itemsets. The former is called an association rule
antecedent, while the latter is called an association rule consequent. If the probability
for A and B to appear in the transaction set is greater than a certain threshold, it is then
called a frequent itemset; otherwise, it is referred to as a non-frequent itemset. |A| or |B|
represents the number of items in the itemset. If |A| = k, A is called k-itemset. Hence, any
item can be independently called a frequent 1-itemset or non-frequent 1-itemset. However,
the feature of big data association rule mining is that the transaction number of a given
transaction set is massive, and the dimension of the transaction set is very high, so it is
difficult to mine association rules from it.

I = {I1, I2, . . . , Im} is the set of all items. D = {T1, T2, T3, . . . , Tn} is the big data transac-
tion set with association rules to be mined, where m is the dimension of the transaction set
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and n is the number of transactions in transaction set. Ti ⊆ I, Ti 6= Ø, and i = 1, 2, . . . , m.
Ti = {Ii1, Ii2, Ii3, . . . } is a transaction in the transaction set. If A⇒B is an association rule,
A ⊂ I, B ⊂ I, and A ∩ B = Ø. The support degree (support) and confidence level (confidence)
are used in association rule mining to measure the weakness of one rule, which are defined
as follows:

support(A⇒ B) = P(A ∪ B) (1)

con f idence(A⇒ B) =
P(A ∪ B)

P(A)
(2)

where P (X) is the probability (support) for itemset X to appear in given transaction set D.
Therefore, the corresponding support degree and confidence level of association rule A
⇒ B can be calculated only if P (A ∪ B) and P (A) are obtained, and whether the two are
strongly associated can be determined according to the threshold. For example, assume
that A is the itemset {1, 2} and B is the itemset {2, 3, 4}. Then, support (A⇒ B) is equal to the
probability of the {1, 2, 3, 4} appearing in transaction set D. confidence (A⇒ B) is equal to
the ratio of the probability of the {1, 2, 3, 4} to probability of the {1, 2} in transaction set D.
Hence, the association rule mining problem can be transformed into a mining problem of
frequent itemsets.

As frequent itemsets have a very important property (i.e., the non-empty subsets of all
frequent itemsets are also frequent itemsets, and the supersets of all non-frequent itemsets
are also non-frequent itemsets), if an itemset is a frequent itemset but any of its superset
is a non-frequent itemset, it contains most frequent itemsets with the maximum capacity.
In this way, the algorithm is able to find all frequent itemsets with the least optimization
objectives. The itemsets of this type are called maximal frequent itemsets (MFIs). Thus,
the frequent itemset mining (FIM) problem can also be transformed into the problem of
maximal frequent itemsets mining (MFIM).

For the purpose of association rule mining, MFIM has some advantages over FIM.
Firstly, it makes the optimization problem have fewer targets to be searched. For a set of
transactions with a given support threshold, the set of all MFIs is a subset of the set of all
frequent itemsets. The number of elements in a subset is always less than the number of
elements in the set, so there were fewer targets for optimization. This helps to speed up the
running time of the algorithm. Secondly, not all frequent itemsets are useful in calculating
association rules. The algorithm avoided reinventing the wheel. The disadvantage of
MFIM is the theoretical addition of frequent itemsets generated by MFI. However, in fact,
the long pattern MFIs found were not very long in practice, and it is very easy to generate
the required frequent itemsets. This disadvantage is almost negligible compared with the
benefits brought to the algorithm.

In addition, both MFIM and FIM can not only be used to calculate association rules
such as (1) and (2), they also have many other applications. For example, they can be
used for outlier detection [7], which is a kind of data mining technique to detect rare
events, deviant objects, and exceptions from data, which has been drawing increasing
attention in recent years. MFIM and FIM can also be used for web clustering [8]. A vast
number of documents in the Web have duplicates, which is a challenge for developing
efficient methods that would compute clusters of similar documents. Web clustering can
be conducted through FIM. MFIM can also be used for partitional clustering. Dinh et al. [9]
took advantage of non-random initialization from the view of MFIM to improve clustering
quality. Beyond this, MFIM may have more applications.

However, most of the present studies regarding the association rule mining aim at
frequent itemset mining, while MFIs have been scarcely taken as the mining object. The
current algorithms specific to frequent itemset mining are largely divided into two major
types: exact algorithms and heuristic algorithms. The most classical exact algorithms
are the Apriori algorithm [10] and FP-Growth algorithm [11], as well as many improved
algorithms derived from the two algorithms [12–26].

Faced with high-dimensional mass big data, the exact algorithm itself is almost of no
practicability due to the temporal complexity and explosion of storage space. However,
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some calculation platforms that can realize the temporal and spatial decomposition of data
mining tasks have emerged in order to process big data, so the exact algorithm becomes
feasible [12,27–29]. The advantage of these calculation platforms lies in the fact that a big
data analysis becomes feasible due to computer clusters, among which Spark reaches the
highest rate at present.

Most of the heuristic algorithms have integrated evolutionary computation [30–32],
particle swarm optimization (PSO) [33–35], and other artificial intelligence algorithms with
exact algorithms [36]. Bagui et al. [31] applied a genetic algorithm (GA) to data flow to
mine frequent itemsets, and the novelty of this work is in the use of frequent itemsets to
determine the concept drift. As the object was partial data selected from the data flow
using a sliding window, the dimension (number of items) and number of transactions
of the processed dataset were small. Sizov et al. [31] also designed a GA to acquire the
frequent itemsets and large bite sets of the binary transaction set, and gave the application
cases of 23-column 5712-row transaction sets, whose volumes were small. Ykhlef et al. [32]
used a quantum evolutionary computation to mine frequent itemsets from the nursery
transaction set, comprising 12,960 transactions and a dimension of 32.

Zhang et al. [33] designed a binary PSO algorithm to mine frequent itemsets. This
algorithm could realize dynamic pruning during the population initialization and evolution
process to relieve the time pressure of memory and CPU, and it was applied to four
different transaction sets. The number of transactions was small in all four transaction
sets, among which three transaction sets contained 1000 transactions, and one contained
500 transactions. Chiu et al. [34] used the PSO algorithm to mine frequent itemsets in a
transaction set called FoodMart2000, which contained 12,100 transactions with a dimension
of 34. Kabir et al. [35] enhanced the random search performance of the PSO algorithm and
mined frequent itemsets in a transaction set with 1000 transactions and a dimension of 5.

Paladhi et al. [36] designed an artificial cell division algorithm, which was very
successful in solving multipath search tasks involving search space and achieved superior
effect when applied to small-scale transaction sets compared with the Apriori algorithm.

Although the abovementioned algorithms have not been applied to high-dimensional
big data transaction sets, the heuristic algorithm is theoretically feasible in the face of
high-dimensional mass big data. Nevertheless, the solution found is an optimized solution
but not an exact solution. The exact solution can be found using the exact algorithm, which,
however, decomposes a task based on special computing platforms when applied to big
data (e.g., Spark). Moreover, exact algorithms are based on cluster computing, which
requires multiple computers. Therefore, both algorithms have their respective advantages
and disadvantages when solving the big data association rule mining problem.

For large-scale transactions set, parallel data mining is very promising, so a few
algorithms for parallel mining association rules were proposed. The most well-known one
of them is the Count Distribution (CD) algorithm [37], which is a parallel version of the
Apriori algorithm. In CD algorithm, databases are initially partitioned and distributed
across multiple processing nodes.

The FPMAX algorithm [38] based on FP-Tree was one of the most efficient and stable
mining algorithms for maximum frequent itemsets. However, for mining in dense transac-
tion sets, FPMAX would generate many redundant recursive procedures, resulting in an
additional conditional FP-tree construction overhead. Additionally, when the support was
low, FPMAX would degrade the performance of superset detection due to the large global
MFI-tree used for superset detection.

The parallel max-miner (PMM) algorithm [39] and the distributed max-miner (DMM)
algorithm [40], proposed by Soon M. Chung and Congnan Luo, are two excellent MFI
mining algorithms for high-dimensional big data. Compared to most of existing mining
algorithms, PMM looked ahead at each pass and prunes more candidate itemsets by
checking the frequencies of their supersets. DMM has a local mining phase and global
mining phase. During the local mining phase, each node mines the local database to
discover the local maximal frequent itemsets, and then they formed a set of maximal
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candidate itemsets for the top–down search in the subsequent global mining phase. A new
prefix tree data structure was developed in DMM to facilitate the storage and counting of
the global candidate itemsets of different sizes. This global mining phase using the prefix
tree can work with any local mining algorithm. Both PMM and DMM were implemented on
a cluster of workstations, and they required very low communication and synchronization
overhead in distributed computing systems.

From the above analysis, we propose an exact algorithm. This algorithm does not
used any computing platform, nor does it required a cluster of computers, but it could find
the exact solution—all MFIs of big data transaction set within an acceptable time range. In
the other word, the motivation of the algorithm proposed in this paper is to realize the MFI
mining in an acceptable time range without using cluster computers for the big data with
high-dimensional attributes and massive transaction numbers.

The algorithm presented in this paper will contribute to the MFIM problem in the
following ways. 1© The reduced transaction set is generated and used without changing
the mining results. In this way, the effective part of the transaction set can be loaded
into the RAM to be accessed, which not only accelerates the algorithm speed, but also
provides a basis for single-machine computing of high-dimensional big data with a massive
transaction number. 2© The Expanding Operation adopts the strategy of one-way search
so that every MFI can be found and the path to be found is unique. In this way, the
computational redundancy of the algorithm is avoided as much as possible.

2. Right-Hand Side Expanding Algorithm

In this study, the proposed algorithm was divided into three parts: 1© First, the
transaction set with mass data was preprocessed. A transverse and longitudinal data
reduction was then performed according to the given support threshold. Thus, a simplified
transaction set was obtained. The use of a simplified transaction set would not change the
algorithm’s accuracy. Instead, it could significantly accelerate the computation. 2© Second,
an any frequent itemset-oriented operator, which could extend and add items from any
given frequent itemset so as to find the MFIs, was designed. 3© The itemsets of starting
points were reasonably organized and given for the Expanding Operation so that it could
find all MFIs.

Above all, the notations, and functions to be used often in the text firstly are listed
in Table 1. They will be explained at first use in the text. However, the reader may find it
more convenient to look up definitions in the table.

Table 1. Notations and functions.

Notation Meaning

D D = {T1, T2, T3, . . . , Tn} is the given transaction set
I I = {I1, I2, . . . , Im} is the set of all items
m The dimension of the transaction set
n The number of transactions in transaction set

Support ( ) Return the support for a given itemset
Additionally, the probability of occurrence for the given itemset

Confidence ( ) Return the credibility for given association rule
Ti Ti = {Ii1, Ii2, Ii3, . . . , Iik} represents the ith transactions
Iij The jth item of ith transactions in transaction set

Support_T Support threshold
ND The new transactions set returned by the Algorithm 1
NTi The ith transactions in ND
m− The dimension of the reduced transaction set
n− The number of transactions in the reduced transaction
k Has been used as the number of items of itemsetIt’s also used as a general constant

k−, k+ Two different natural numbers comparing with k, and k− < k < k+

P ( ) Returns the probability of a given item set in transaction set
P The base point at which the Expanding Operation adds item
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2.1. Transaction Set Preprocessing

The preprocessing of transaction set was conducted to obtain a reduced transaction set,
and the original transaction set should be scanned twice. First, the appearance probability
(support) of each 1-itemset was acquired. Next, all items with a probability smaller than
the threshold were excluded. Thus, a new and reduced transaction set was obtained.

D = {T1, T2, T3, . . . , Tn} is the original big data transaction set, and n is the number of
transactions in the transaction set, where Ti = {Ii1, Ii2, Ii3, . . . }, (i = 1, 2, . . . , n) represents
the ith transactions of the transaction set, Iij represents the jth item of ith transactions. Each
transaction is a set of items is also a subset of set of all items I = {I1, I2, . . . , Im}.

If Iij is the ID of one item and all of ID are continuously numbered together from 1,
then,

m = Maxn
i=1Max{Ii1, Ii2, . . .} (3)

where m is the maximum ID of an item in original big data transaction set. By this way,
the m is also the dimension of the transaction set because the ID is from 1, namely, the
value of m directly decides the dimension of the solution space in itemset mining. For
example, we assume that the itemset {I11, I12, . . . } is {1, 2}, the itemset {I21, I22, . . . } is
{2, 3, 4}, and the number of transaction n is 2. Then, m = Max{2, 4} = 4, the dimension
of the transaction set is 4. Under a given transaction set D with the known dimension
m and support threshold (Support_T), the pseudocode of transaction set preprocessing is
expressed as seen in Algorithm 1.

Algorithm 1 contains two two-level nested “for” loops. The first two-level nested
loop records the number of occurrences of each item, the inner loop traversed the items
of each transaction, and the outer loop traversed the entire transaction set. At the end
of the first two-level nested loop, the m-dimensional vector (S1, S2, . . . , Sm) recorded the
number of occurrences of each item in the transaction set. The second two-level nested
loop was used to rebuild a new reduced transaction set. The inner loop was used to rebuild
a new transaction that does not contain infrequent items. The outer loop added each new
transaction to the newly created reduced transaction set.

The algorithm returned to a new transaction set ND, which consisted of new trans-
actions NTi. When a new transaction was generated, it was first made empty, and only
the items with a high support degree could join in the new transaction. It was possible
that all items in some transactions in the original transaction set D were not frequent items,
so they would not be added in the new transaction, and then the new transaction was an
empty set before and after the third for loop. As a result, it would not be added into ND,
the number of transactions in ND would be reduced, and the number of transactions in
the pseudocode was turned from n into n−, and n− < n. The number of transactions in the
new transaction set would be reduced to different degrees due to the change of the data
sparsity in the original transaction set D.

When a new transaction NTi was established, some items would be given up, and
the quantity of all different items appearing in the new transaction set would be reduced,
and so would the dimension of the reduced transaction set. The decreased amplitude of
dimension varied with the given support threshold after the reduction. The dimension of
the original transaction set is expressed as m, and that of the reduced transaction set as
m−, and m− < m. The optimization space of the algorithm was greatly reduced due to the
dimension reduction, thus elevating the operating rate to a great extent.
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Algorithm 1: Transaction Set Reduction

Input: D = (T1,T2, . . . ,Tn), Ti = (Ii1,Ii2, . . . )
Output: ND = (NT1,NT2, . . . ,NTn-)
(S1,S2, . . . ,Sm) = (0,0, . . . ,0);
n− = 0;
for i = 1: n do

for j = 1: |Ti| do
S(Iij) = S(Iij) + 1;

end
end
ND = Ø;
for i = 1: n do

NTi = Ø;
for j = 1: |Ti| do

if S(Iij)/n > Support_T then
NTi = NTi ∪ {Iij};

end
end
if NTi 6= Ø then

ND =ND ∪ {NTi};
n− = n− +1;

end
end
Return ND;

2.2. Expanding Operation

The expanding operator adds items to frequent itemsets according to certain rules
and finds the supersets of some frequent itemsets, all of which are MFIs. The expanding
operator has two features: First, the given initial itemsets must be frequent because all
supersets of non-frequent itemsets cannot be MFIs. Second, what the Expanding Operation
finds are not all MFI supersets corresponding to the given frequent itemsets but partial
MFIs. As any MFI can be obtained by expanding different frequent itemsets, the Expanding
Operation only finds the partial MFIs corresponding to the given frequent itemsets, and
the remaining part is obtained through the other frequent itemsets using the Expanding
Operation. This ensures that each FMI is found only once.

The initial frequent itemset T = {I1, I2, I3, . . . } was given, an integer p (0 < p<m−,
where m− is the dimension of the reduced transaction set, namely, the total number of
different items) as the reference position for the added items, and then the pseudocode of
Expanding Operation was expressed as in Algorithm 2, where ND = {NT1, NT2, NT3, . . . ,
NTn−} is the reduced transaction set, NTi = {NIi1, NIi2, NIi3, . . . } and i = 1, 2, . . . , n− are
the transactions in the transaction set, and n− is the number of transactions in the reduced
transaction set (n− < n).

The operation contained four “for” loops (nested loops excluded). In the first “for”
loop, a frequent itemset T was expressed by a decision variable (x1, x2, . . . , xm−). xi = 0
means that the item i was not a member of the itemset. If xi = 1, the item i is a member of the
itemset. The second “for” loop acquired all single items that could be added into the given
frequent itemset, and after the addition, the itemset was still a frequent itemset. In the third
“for” loop, the number of single items was calculated. If it was equal to the number of
items in the frequent itemset, the given frequent itemset was namely an MFI, and then this
itemset was returned. Otherwise, the fourth “for” loop should be executed: An addable
single item was added rightward from point P by turns. The values of the given initial
frequent itemset T and base point P were reset once a single item was added, followed by
the recursive invocation of Expanding Operation itself. After all recursive nested structures
were returned, all MFIs corresponding to the original given frequent itemset were found.
As the operator only added the items at the right-hand side of point P (items with ID value
greater than the p value) each time, the algorithm was named right-hand side expanding
(RHSE) algorithm.
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Algorithm 2: Expanding Operation (T, P)

Input: T = (I1,I2, . . . ), P
Output: A group of maximal frequent itemsets
(x1,x2, . . . ,xm−) = (0,0, . . . ,0);
(e1,e2, . . . ,em−) = (0,0, . . . ,0);
for i = 1: |T| do

x(Ii) = 1;
end
for i = 1: n− do

if T ⊆ NTi then
for j = 1: |NTi| do

e(NIij) = e(NIij) + 1;
end

end
end
e_item_number = 0;
for i = 1: m− do

if e(i)/(n−) > Support_T then
ei = 1;
e_item_number = e_item_number + 1;

else
ei = 0;

end
end
if e_item_number = |T| then

Adds T into group of maximal frequent itemset;
else

for i = P + 1: m− do
if (xi = 0)&(ei 6= 0) then

Expanding Operation (T ∪ {i}. P = i);
end

end
end

2.3. Overall Framework of Algorithm Running

With this Expanding Operation, it is only necessary to reasonably organize and
alternately give the initial frequent itemset of the Expanding Operation, which is then
invocated. Thereafter, all MFIs of the given support threshold can be found. Under the
overall framework of algorithm running, a reduced transaction set was first obtained after
the preprocessing. During the preprocessing, all frequent 1-itemsets were acquired, which
were set as the initial itemset alternately. Items were added by invocating the Expanding
Operation, and then a group of MFIs corresponding to each frequent 1-itemset could
be found. When placed together, these groups were the set of MFIs discovered by the
algorithm. These MFIs were neither repeated nor omitted, being the exact solution but not
the optimized solution to the problem.

The overall framework of algorithm running was expressed by a block diagram in
Figure 1, where I1, I2, . . . , Im− are the m− frequent 1-itemsets acquired in the preprocessing
of the transaction set, which aimed to obtain a reduced transaction set, and m− is the
dimension of the reduced transaction set. As the dimension of the original transaction set
is m, the dimension of the reduced transaction set is expressed by m−, and m− < m. The m−

frequent 1-itemsets were set as the initial itemset of Expanding Operation, namely, Ii, and
the base point P = i, (i = 1.2, . . . , m−) was given in turn. The Expanding Operation was
then invocated. Subsequently, several MFIs were acquired and called the group of MFIs,
and these groups of MFIs finally formed a larger pool of MFIs. This larger pool of MFIs
was an exact solution to the problem, and it was a set of MFIs.
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2.4. Complexity Analysis

The time complexity of the proposed algorithm RHSE was analyzed with respect to
Algorithms 1 and 2. Algorithm 1 was used to generate the reduced transaction set, which
requires scanning the transaction set twice. n is the number of transactions in transaction
set, and let Li be the average number of items in the transaction (itemsets). Thus, the time
complexity of this task is O (n × Li). Algorithm 2 is the Expanding Operation with an initial
itemset and position point. Each Expanding Operation contained (m− − (P + 1)) branch
recursions, where m− is the dimension of the reduced transaction set (m− < m), and P is
the base point at which the expanding operation adds item. Thus, the time complexity of
Algorithm 2, Expanding Operation, is O ((m− − (P + 1))!). In comparison, the solution space
of the problem is 2m and the time complexity of the enumeration method is O (2m). We
will learn in Section 4.3 that the time complexity of Algorithm 2 is much lower than that of
enumeration.

3. Proof of Algorithm Accuracy

The solution to the optimization problem is divided into two types: an exact solution
and optimized solution, both of which are feasible solutions. The corresponding algorithms
can also be classified according to the solution type. For instance, in the introduction
part, the algorithm acquiring the exact solution was called the exact algorithm, and the
algorithm acquiring the optimized solution was called the heuristic algorithm. The exact
solution refers to the optimal solution to the problem, and this solution or set of solutions
is unique. Here, the solutions may be a set of feasible solutions with equivalent excellence,
and the uniqueness means that this set is unique. The optimized solution may not certainly
be the optimal solution, but it may also be the optimal, and its excellence is pursued as
much as possible. If the solution is a set, this set may have a missing element.

The exact solution to MFI mining is the set of all MFIs found by the algorithm. The
itemsets in this set should not be estimates. Instead, this set is the well-determined set
consisting of itemsets. The proof of algorithm accuracy aims to prove that under the given
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transaction set and support threshold, all MFIs will be found (lack of any itemset is not
allowed), and each MFI is found only once (repetition is not allowed). Given this, two
problems remain to be proven: 1© any MFI can be found, which is called integrity; 2© any
MFI can be found only once. The MFIs found from the pool of MFIs are not the same; this
is referred to as uniqueness.

3.1. Integrity Proof

Assuming that {I1, I2, . . . , Ik} is a random MFI, the corresponding decision variable is
X = (x1, x2, . . . , xm−), and xi∈{0,1}. xi = 0 means that the item i is not a member of itemset,
and xi = 1 means that it is a member of itemset. Then,

∑m−
i=1(xi) = k (4)

The above is called frequent item k-itemset. xa, xb, . . . , xk are set as the first, second,
. . . , and the kth non-zero items from the left to right in (x1, x2, . . . , xm−), namely, 1 ≤ a < b
<≤k. According to the overall algorithm flow in Section 2.3, the Expanding Operation will
be invocated for m− times (the number of nested invocation times not included), where it
will be invocated in the form of Expanding Operation ({a}, P = a) for the ath time.

As shown in Figure 2, a < b− < b < b+ < . . . < k−< k < k+, E-Operation ( ) represents
the function of Expanding Operation. According to the principle of Expanding Operation
stated in Section 2.2, the Expanding Operation is invocated by m− times. When it is
invocated for the ath time, it is certainly judged that items b and c can be added into the
itemset. In one step, item b is added, followed by the recursive invocation of Expanding
Operation ({a, b}, P = b). Similarly, the recursive invocation of Expanding Operation ({a, b,
c}, P = c) is carried out after the addition of item c inside the Expanding Operation ({a, b},
P = b). By parity of reasoning, the recursive nesting at the deepest layer is implemented by
invocating the Expanding Operation ({a, b, c, . . . , k}, P = k), and {a, b, c, . . . , k} is determined
as the MFI. Hence, the MFI {I1, I2, . . . , Ik} = {a, b, c, . . . , k} will be certainly found. If any
MFI without loss of generality can be found, all MFIs can be too, so this algorithm ensures
the high integrity of the solution set.
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Figure 2. Recursive nested structures of Expanding Operation ({a}, P = a).

Of course, not only Expanding Operation ({a, b}, P = b) will be invocated inside
Expanding Operation ({a}, P = a), but Expanding Operation ({a, c}, P = c) may also be
parallelly invocated. Therefore, the finally found MFI after the ending of Expanding
Operation ({a, c}, P = c) will contain a and c but not b, which is another MFI, but this is not
contradictory with the hypothetical proposition to be proven.
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3.2. Uniqueness Proof

According to the overall algorithm framework and item addition rules of Expanding
Operation, each time the Expanding Operation adds one item since one frequent 1-itemset,
it will be recursively invocated by itself once again or find the other items that can be added.
The discovery process of an MFI is as shown in Figure 3a. The top–down sequence of
nodes in the figure denotes the sequential order of item addition, the left or right position
of each node represents the ID value of item, and the left-to-right direction is the increasing
direction of ID value. Given this, the root nodes are located at the upper left corner and leaf
nodes at the lower right corner, and this path forms a branch. The set of ID values of all
nodes on one branch corresponds to one frequent itemset, which may be maximal or not.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 20 
 

of ID values between two nodes connected by the edge in Branch1 is certainly greater than 

1, the difference value in y-coordinates is equal to 1, and the two branches must share the 

same root nodes. If the difference value is equal to zero, the Expanding Operation adds 

two items once. If it is greater than 1, the Expanding Operation enters recursive invocation 

without adding any item. 

Obviously, this contradicts with the rules of Expanding Operation. Then, the hypoth-

esis does not hold true, and the proposition of path uniqueness is proven. In other words, 

the pool of MFIs does not contain the same itemsets. According to the proposition proven 

in Section 3.1 (i.e., there are no MFIs missing in the pool of MFIs), the integrity and path 

uniqueness indicate that the algorithm is accurate without complexity or redundancy in 

the path optimization. 

 

Figure 3. (a) A branch is a frequent itemset; (b) a tree is a group of MFIs; (c) the forest is the pool of 

MFIs. 

4. Experiment 

The algorithm proposed in this study aimed to find all MFIs, being different from 

most of the present algorithms aiming at frequent itemsets. The second objective was to 

realize standalone operations specific to big data and mass transaction sets and get rid of 

limitations of special computing platforms (it was thought in this study that special plat-

forms only targeted at task decomposition to make big data computation feasible, while 

the computational complexity was not changed). On this basis, no horizontal comparison 

was made with the existing algorithms. The standalone test of only 10 open transaction 

sets was implemented to demonstrate the feasibility and practicability of standalone com-

putation for big data. In the end, the detailed computation results were given, and the 

details of MFI with the maximum support searched by the algorithm were expounded. 

Readers may verify according to the results and compare with their own algorithm re-

sults. These open transaction sets are available on http://fimi.uantwerpen.be/data/ for free 

(accessed on 28, February, 2020). The algorithm source code in this study may also be 

acquired from the corresponding author. 

Figure 3. (a) A branch is a frequent itemset; (b) a tree is a group of MFIs; (c) the forest is the pool of
MFIs.

At each root node, multiple branches may grow, so as to form a tree, as shown
in Figure 3b. The ID values of all nodes on one branch from root nodes to leaf nodes
constitute a frequent itemset, and all MFIs on one tree form a group of MFIs, as mentioned
in Section 2.3.

As stated in Section 2.3, each frequent 1-itemset can serve as the root node to grow
a tree. In Figure 3c, all green nodes can be root nodes to grow a tree. For the conciseness
of this diagram, the tree growing out of green nodes was not drawn. Many trees form a
forest, corresponding to the pool of MFIs in Section 2.3. Therefore, to prove that all MFIs
are different in the pool of MFIs, it is only necessary to prove that only one branch, but not
a second branch, corresponds to each itemset.

This proposition was proven through the reduction to absurdity. Assume that an MFI
(MFI1) is determined for a branch (Branch1), and this MFI has a corresponding relation
with another branch (Branch2).

According to the right-hand side item addition rules of Expanding Operation, only
items with greater ID values are added, and then the difference (difference value of x-
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coordinates) of ID values between two nodes connected by any edge in Branch1 is certainly
greater than 1, while the difference value of y-coordinates is bound to be 1.

In order for Branch2 and Branch1 to correspond to the same itemset, the nodes of
Branch2 should be different from those of Branch1 only in y-coordinates; otherwise, their
horizontal projections will be different, so will the corresponding itemsets.

If the nodes of Branch2 are different from those of Branch1 only in the upper or lower
position, there will certainly be such an edge in Branch2 that the difference value of y-
coordinates of two nodes it connects is equal to zero or greater than 1 because the difference
of ID values between two nodes connected by the edge in Branch1 is certainly greater than
1, the difference value in y-coordinates is equal to 1, and the two branches must share the
same root nodes. If the difference value is equal to zero, the Expanding Operation adds
two items once. If it is greater than 1, the Expanding Operation enters recursive invocation
without adding any item.

Obviously, this contradicts with the rules of Expanding Operation. Then, the hypothe-
sis does not hold true, and the proposition of path uniqueness is proven. In other words,
the pool of MFIs does not contain the same itemsets. According to the proposition proven
in Section 3.1 (i.e., there are no MFIs missing in the pool of MFIs), the integrity and path
uniqueness indicate that the algorithm is accurate without complexity or redundancy in
the path optimization.

4. Experiment

The algorithm proposed in this study aimed to find all MFIs, being different from
most of the present algorithms aiming at frequent itemsets. The second objective was to
realize standalone operations specific to big data and mass transaction sets and get rid
of limitations of special computing platforms (it was thought in this study that special
platforms only targeted at task decomposition to make big data computation feasible, while
the computational complexity was not changed). On this basis, no horizontal comparison
was made with the existing algorithms. The standalone test of only 10 open transaction
sets was implemented to demonstrate the feasibility and practicability of standalone
computation for big data. In the end, the detailed computation results were given, and
the details of MFI with the maximum support searched by the algorithm were expounded.
Readers may verify according to the results and compare with their own algorithm results.
These open transaction sets are available on http://fimi.uantwerpen.be/data/ for free
(accessed on 28 February 2020). The algorithm source code in this study may also be
acquired from the corresponding author.

The standalone operation was implemented using the following hardware: Intel®

Core™ i7-8550U CPU @ 1.80 GHz (8 CPUs) and 16,384 MB RAM, Timi Personal Computing
Limited, Beijing, China. The programming language of the algorithm is Python. The
advantage of using Python is that the programming environment is lightweight and easy
to popularize.

4.1. Brief Description of Transaction Sets

The 10 transaction sets varied in volume and features. The number of transactions
might reach as many as 990,000, the maximum length of transaction was 2498, and the
maximum dimension was 41,270. The experimental results were given separately in
two tables, where Table 2 lists the test results of small-scale transaction sets and Table 3
presents the test results of slightly larger-scale transaction sets. The results in Table 2
demonstrated the integrity of calculation results for the 10 transaction sets. Moreover,
the calculation results of small-scale problem were convenient for readers to verify their
algorithm accuracy. The results in Table 3 manifested the feasibility of the algorithm in
the standalone operations for big data and high-dimensional transaction sets. A proper
support threshold was used for each transaction set. As the data sparsity varied among the
different transaction sets, they were different in the intensity of data association, and the
support thresholds given in the experiment might also be greatly different.

http://fimi.uantwerpen.be/data/
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Table 2. Experimental on small size transaction sets.

1 Name of Transaction Set Chess Connect Mushroom T10I4D100K Retail

2 Dimension of transaction set 75 129 119 870 16,470
3 Number of transactions 3196 67,557 8124 100,000 88,162
4 Average transaction length 37.000000 43.000000 23.00000 10.102280 10.30575
5 Minimum transaction length 37 43 23 1 1
6 Maximum transaction length 37 43 23 29 76
7 Maximum support of item 0.999687 0.998757 1.000000 0.078280 0.574794
8 Support threshold 0.950000 0.965000 0.520000 0.022500 0.001250
9 Dimension of transaction set reduced 9 14 12 125 1652
10 Number of transactions reduced 3196 67,557 8124 97,844 85,840
11 Average transaction length reduced 8.809449 13.813446 8.886017 4.286119 7.196249
12 Transaction set reduction rate 0.238093 0.321243 0.386349 0.415125 0.679884
13 Minimum transaction length reduced 5 11 4 1 1
14 Maximum transaction length reduced 9 14 11 16 47
15 Pretreatment time (s) 2.09 50.33 5.17 51.33 46.35
16 Algorithm running time (s) 0.51 137.86 2.30 15.71 956.72
17 Number of MFIs 11 37 11 125 2586
18 Item list of the top MFI 29 40 52 58 60 75 88 91 109 124 127 34 36 85 86 90 368 39 48 14098
19 Support of the top MFI 0.969650 0.972231 0.772033 0.078280 0.006125

Table 3. Experimental on large size transaction sets.

1 Name of Transaction Set Accidents Pumsb_Star Pumsb T40I10D100K Kosarak

2 Dimension of transaction set 468 2088 2113 942 41,270
3 Number of transactions 340,183 49,046 49,046 100,000 990,002
4 Average transaction length 33.807892 50.482139 74.00000 39.605070 8.099999
5 Minimum transaction length 18 49 74 4 1
6 Maximum transaction length 51 63 74 77 2498
7 Maximum support of item 0.999906 0.790054 0.997920 0.287380 0.607447
8 Support threshold 0.500000 0.275000 0.800000 0.025000 0.002400
9 Dimension of transaction set reduced 24 63 25 545 431
10 Number of transactions reduced 340,183 49,046 49,046 100,000 938,824
11 Average transaction length reduced 18.632792 31.831057 23.51786 35.122340 4.815123
12 Transaction set reduction rate 0.551137 0.630541 0.317809 0.886814 0.563729
13 Minimum transaction length reduced 5 19 11 4 1
14 Maximum transaction length reduced 24 42 25 67 398
15 Pretreatment time (s) 281.45 60.70 84.79739 123.59 463.31
16 Algorithm running time (s) 8530.40 245,644.41 46,591.14 645.86 12,645.81
17 Number of MFIs 216 512 3145 1061 1265

18 Item list of the top MFI 12 16 17 18 21 27 29
31 43 2297 4933 4937 7072

170 180 184 188 4426
4428 4430 4432 4434

4438 7062
54 1 6 11 90 148 218

19 Support of the top MFI 0.560634 0.344207 0.820862 0.088950 0.005552

4.2. Mining Results

Tables 2 and 3 were of the same structure. The eighth row (Support threshold) divided
each table into two parts: the upper part and lower part, where the former presented
the parameters of the original transaction set and the latter gave the results after the
preprocessing and algorithm operation.

The name of each transaction set is given in the first row, and the dimension of each
transaction set is listed in the second row, namely, the number of all different items in
each transaction set. During the itemset mining process, the acceptance or rejection of
these different items in the itemset constituted a solution space of the algorithm, so it was
called dimension. The number of transactions in each transaction set and average length of
overall transactions are presented in the third and fourthth rows, respectively, and their
product could reflect the volume of each transaction set, with a direct impact on the time
spent by the algorithm in traversing the CPU of the transaction set. The fifth and sixth rows
list the lengths of shortest and longest transactions in each transaction set, respectively. The
seventh row shows the maximum probability of single item to appear in each transaction
set, which was also called the maximum support of frequent 1-itemset, reflecting the data
sparsity of the transaction set.

In the eighth row, the parameters of the reduced transaction set obtained by prepro-
cessing the original transaction set are displayed. The 9th row shows the dimension of
the reduced transaction set. This dimension was decided by the given support thresh-
old: the greater the threshold, the less the intercepted frequent 1-itemsets, the smaller the
dimension, and the smaller the solution space after the reduction, which was better for
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the optimization. However, fewer MFIs were found, so this was contradictory. However,
Table 3 shows that the dimensions of transaction sets reduced from the two largest transac-
tion sets were taken as 545 and 431, respectively, and the algorithm running time was also
acceptable. The number of transactions in each reduced transaction set and the average
length of overall transactions are given in the 10th and 11th rows. If the two figures were
reduced, the volume of each transaction set was also shrunk. The shrinkage rate (12th
row) was acquired by dividing two figures, where the divisor was the product between the
number of transactions in the original transaction set and the average transaction length,
and the dividend was the product between the number of transactions in the reduced
transaction set and the average transaction length. Although the shrinkage degree of the
transaction set was also decided by the given support threshold, individual transactions
in each transaction set had different properties, so the shrinkage rate would differ even
under the same threshold. The minimum and maximum transaction lengths of reduced
transaction sets are given in the 13th and 14th rows.

The preprocessing time of transaction (15th row) was the time spent on acquiring a
reduced transaction set from the original one, including the time needed to acquire the
parameters of the original transaction set, generate files of the reduced transaction set, and
establish a memory data matrix. The time(s) needed to mine all MFIs is presented in the
16th row. Table 3 shows that the number of transactions in the largest transaction set kosarak
reached nearly million class, where its original dimension was 41,270. When the dimension
was reduced to 431, it took the algorithm less than 4 h to find all MFIs. The quantity of
MFIs found was 1265, which, theoretically, was accurate (i.e., the sets were of integrity
and uniqueness). Therefore, the standalone big data association rule mining was feasible.
If the transaction sets came from practical production and life, the algorithm would be
pragmatic.

The 17th–19th rows list the number of MFIs found, item details in the MFI with the
maximum support, and the corresponding support degree, respectively, aiming to facilitate
readers in verifying and comparing this information.

4.3. Comparison of Algorithm Running Time with Solution Space Size

From the above experiment, a reduced transaction set was acquired from each original
transaction set after the support threshold was given, and the dimension was also reduced.
Therefore, the reduced dimension would vary with the support threshold, and so would
the algorithm running time. The algorithm was proposed to implement the standalone
operation of big data transaction sets. For the same transaction set, the reduced dimension
would be increased if the support threshold was reduced, and as a result, the solution
space would present an exponential (base number: 2) increase. If the algorithm running
time was also increased according to an exponent with a base number of 2, the algorithm
running time would experience explosive growth with the increase in dimension, which,
obviously, deviated from the intention of this study.

To this end, the largest transaction set kosarak was experimented under different
thresholds for five times. The dimension reduced grew from 42, reaching as high as 431,
and the acquired number of MFIs and algorithm running time are as seen in Table 4. The
data showed that the algorithm running time did not present exponential growth with the
increase in dimension.

Table 4. Testing on kosarak with a different support threshold.

Support Threshold 0.0127 0.0063 0.0040 0.0029 0.0024

Dimension reduced 42 106 212 328 431
Number of MFIs obtained 65 212 467 876 1265

Algorithm running time (s) 238.9 1054.2 2962.1 6714.2 12,645.8

The solution space size was incomparable to the algorithm running time in dimension.
As the algorithm ran for 238.9 s under the dimension of 42, the dimension-dependent
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exponential growth curve of solution space took the point (42, 238.9) in the plane as the
starting point, and the fitted curvilinear contrast relation between the growth curve of
solution space and actual algorithm running time is as shown in Figure 4. Obviously, when
the solution space showed exponential explosive growth (red line in the figure) with the
dimension, the algorithm running time was under a slow growth trend (blue line with red
circle, the experimental data are shown at the red circles). As the algorithm running time
did not present exponential growth with the dimension (i.e., it did not experience explosive
growth), the algorithm was feasible for the standalone calculation of high-dimensional
properties of big data transaction sets.
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4.4. Comparison of Algorithm Running Time with Traditional Exact Algorithm

The Apriori and FP-Growth algorithms were the two most classical accurate algo-
rithms for mining association rules. PF-Growth was recognized to be faster than Apriori.
However, PF-Growth was sensitive to the dimensions of the transaction set. Even the
running time is unacceptable for mining the small transactions set listed in Table 2, but the
smallest dimension of the transaction set listed in Table 2 is only 75.

In order to investigate quantitatively the running time of the algorithm, we extracted a
small part of the Accident transaction set on average, such as 100, or 200, or 300 transactions,
etc. Each transaction captures only 10%, or 20%, or 30% at the beginning of each transaction.
In this way, small transaction sets with different transaction numbers and dimensions
are used to test the running time of the PF-Growth algorithm. The dimensions of each
transaction set are listed in Table 5. The rows represent the different number of transactions,
and the columns represent the percentage of each transaction captured. These transaction
sets were used to test the PF-Growth algorithm, and the running time of PF-Growth is
shown in Table 6.

Table 5. Dimensions of extracted Accidents.

100 200 300 400 500

10% 15 16 17 17 17
20% 22 24 25 26 24
30% 29 31 30 33 31
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Table 6. Running time of FP-Growth for the extracted Accidents.

100 200 300 400 500

10% 13.116257 s 18.344052 s 26.346489 s 40.406259 s 44.279161 s
20% 444.653654 s 714.085102 s 772.977960 s 901.212257 s 982.893483 s
30% 7956.674653 s >2.21 h >2.21 h >2.21 h >2.21 h

Since FP-Growth algorithm mined frequent itemsets and proposed algorithm mined
maximal frequent itemsets, it had been verified that the results of FP-Growth were indeed
subsets of the maximal frequent itemsets mined by proposed algorithm.

Table 6 reflects that the FP-Growth algorithm was not sensitive to transaction number
but sensitive to dimension. When the dimension grown from 15 to 29, the FP-Growth had a
longer running time than the exponential growth. By comparison, the proposed algorithm
mined the full size set of incident transactions in only 8530.40 s. Of course, the proposed
algorithm had fewer optimization targets, while FP-Growth had more optimization targets.
The former was the maximal frequent itemsets, while the latter is the frequent itemsets, and
the number of maximal frequent itemsets was less than the number of frequent itemsets.

4.5. Comparison with FPMax, CD, and DMM

Since parallel algorithms were very promising in solving big data mining, we make
a simple comparison between the proposed algorithm and several well-known parallel
algorithms, which are FPMax algorithm [38], Count Distribution algorithm [37], and DMM
algorithm [40]. Although PMM algorithm [39] was also an excellent parallel algorithm and
DMM was better than PMM algorithm overall, we do not compare with PMM.

In Section 4.2, we present some experimental results on 10 public datasets. Some of
these datasets have also been reported in the literature [37,38,40]. We picked the experimen-
tal results data to the same dataset as Table 7. Some figures were estimated from reported
graphs, which gave a rough idea of algorithm performance.

Table 7. Running time and resources used for various algorithm on various databases.

Chess (0.95) Mushroom (0.52) Pumsb (*) Accidents (*)

FPMax <0.4 s 0.3 s

CD
35,000 s 28,000 s

0.8, node:8 0.4, node:1

DMM
9000 s 3000 s

0.8. node:8 0.4, node:1

Proposed algorithm 0.51 s 2.3 s
46,591.14 s 8530.40 s

0.8, node:1 0.5, node:1

With regard to the Chess dataset and Mushroom dataset, the experimental results of
FPMax and our algorithm had the same support thresholds of 0.95 and 0.52. The running
time of the algorithm is listed in Table 7. FPMax is faster than the proposed algorithm, but
the former was conducted using a cluster of computers, while the latter was carried out by
a single computer. Of course, the hardware of the computer is also different, and the small
data set leaded the running time to be haphazard.

The Pumsb dataset with the same support threshold 0.8 to three algorithms, CPU-time
of CD algorithm was approximately 35,000 s, our algorithm was 46591.14 s. CD is great
in that it executed the Pumsb * dataset, which is eight times larger than the Pumsb dataset.
However, CD was executed on an eight-node cluster calculation. The DMM execution time
under the same conditions was 9000 s, which was faster than CD algorithm. Additionally,
DMM was executed on an 8-node cluster calculation.
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The Accidents * dataset is four times larger than Accidents. To Accidents dataset and
Accidents * with the different support threshold, CD and DMM for Accidents * with 0.4 and
our algorithm for Accidents with 0.5. All three algorithms use single machine, that is, the
number of nodes is 1. DMM was the fastest, CD was the slowest and our algorithm was in
middle. However, the support thresholds they used were different. If the threshold value
was small, more MFIs would be mined and it would take a longer time.

To sum up, the running time is basically an order of magnitude, and each algorithm
has its own advantages and disadvantages. Some are suitable for dense datasets, while
others are for long transaction data sets. Under the limitation of computer hardware, it is
feasible to select the proposed algorithm which was executed on single notebook computer.

5. Discussion, Conclusion, and Expectation

According to the algorithm theory stated in this study, the transaction sets should be
visited during the MFI searching. Therefore, the larger the volume of transaction sets, the
longer the time needed by the algorithm running. The volume of the transaction set is
the product between the quantity of transactions and average transaction length. As the
Expanding Operation needs to add items, the greater the dimension of the transaction set,
the longer the time needed by the algorithm running.

However, in the experiment on the 10 transaction sets, the reduced dimensions of
both pumsb_star and pumsb are no more than 63, which are small compared with those of
other transaction sets in the table, but the two transaction sets take the longest time (at
least 12 h). The reduced dimension of T40I10D100K is the maximum (545), but it takes the
least time, about 10 min. Moreover, the quantity of transactions and average transaction
length in T40I10D100K are greater than those in pumsb_star and pumsb, and the quantity of
transactions is even more than twice of those in pumsb_star and pumsb.

This is just like picking fruits in an orchard: the larger the orchard, the longer the
time needed to search it once, but the experimental data show that this is not the case.
Then, is it the case that the more the fruits, the longer the time needed? However, the
experimental data in Table 3 show that the quantity of MFIs found in T40I10D100K is larger
than those found in pumsb_star and pumsb. Is this related to the length of MFIs found? Even
if the average length of MFIs found in T40I10D100K is multiplied by 10 in order that it is
equivalent to the average length of MFIs found in pumsb_star and pumsb, the calculation
time will also be tenfold. Even so, the time spent is less than 1/10 of the time spent by
pumsb_star and pumsb.

On the basis of the above analysis, there should be only one possibility: the main
factor influencing the algorithm running time is neither the volume of transaction set nor
the quantity of MFIs found, but it is correlated with the complexity of MFIs found. The
complexity of MFIs does not have a linear relation with their length. Instead, the two
present a growth relation greater than the linear growth relation. Whether this relation
is an exponential relation and what the exponential relation (base number) remains to be
further explored.

From another side, this indicates that the algorithm running time is not sensitive to
the volume of the transaction set, so the algorithm is practical for big data.

Given this, can we understand it that the algorithm spends the time mainly in “picking
fruits” but not “finding fruits”? From this angle, does it mean that the algorithm spends
most of the time in acquiring the optimal solution with the excellent optimization path?
The long algorithm running time is ascribed to the large quantity of MFIs but not to the
large volume of transaction set or the great dimension of the reduced transaction set. The
practical experimental data also verify that the algorithm is feasible, and even superior, for
the standalone operation of high-dimensional big data transaction sets.

The algorithm is feasible and accurate for the MFI mining of high-dimensional transac-
tion sets. However, it has a disadvantage in the association rule analysis based on frequent
itemset mining. It can be known from the dimension of the reduced transaction set under
the given support threshold that the time needed to search all MFIs subsequently is un-
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predictable. At times, the acceptable time is limited, and it is unnecessary to find all MFIs.
Instead, the MFI with the maximum support should be first found within the limited time,
followed by the MFI with the second largest support, and so on. In this way, the algorithm
practicability will be higher.

Therefore, the subsequent study of this algorithm should focus on MFI mining under
an adaptive support threshold in the following way: no support threshold is given in the
algorithm running. Instead, as the time passes by, the algorithm finds the thresholds of all
MFIs and sort them in a descending order. Within given time, the algorithm returns the
minimum support threshold and the corresponding MFI.
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