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Abstract: The reported incidence of node metastasis at sentinel lymph node biopsy is generally
low, so that the majority of women underwent unnecessary invasive axilla surgery. Although the
sentinel lymph node biopsy is time consuming and expensive, it is still the intra-operative exam
with the highest performance, but sometimes surgery is achieved without a clear diagnosis and
also with possible serious complications. In this work, we developed a machine learning model
to predict the sentinel lymph nodes positivity in clinically negative patients. Breast cancer clinical
and immunohistochemical features of 907 patients characterized by a clinically negative lymph
node status were collected. We trained different machine learning algorithms on the retrospective
collected data and selected an optimal subset of features through a sequential forward procedure. We
found comparable performances for different classification algorithms: on a hold-out training set, the
logistics regression classifier with seven features, i.e., tumor diameter, age, histologic type, grading,
multiplicity, in situ component and Her2-neu status reached an AUC value of 71.5% and showed a
better trade-off between sensitivity and specificity (69.4 and 66.9%, respectively) compared to other
two classifiers. On the hold-out test set, the performance dropped by five percentage points in terms
of accuracy. Overall, the histological characteristics alone did not allow us to develop a support tool
suitable for actual clinical application, but it showed the maximum informative power contained in
the same for the resolution of the clinical problem. The proposed study represents a starting point
for future development of predictive models to obtain the probability for lymph node metastases by
using histopathological features combined with other features of a different nature.

Keywords: sentinel lymph node biopsy; breast cancer; machine learning; histopathological features;
clinically negative lymph node
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1. Introduction

The prediction of lymph node involvement in breast cancer represents an important
task which could reduce unnecessary surgery and improve the definition of oncological
therapies [1–6]. The research of a trade-off strategy among time-consuming, expensive and
invasive methodologies is the scientific goal of several research studies [7,8], especially
with reference to breast cancer patients with clinically negative sentinel lymph nodes.

For patients with clinically negative lymph nodes at the clinical or radiological
exam [9], the current guidelines provide the removal of sentinel lymph node biopsy (SLNB).
These are the first axillary draining lymph nodes, known as “sentinel” lymph nodes [10–12].
However, the SLNB is time-consuming and expensive, and may lead to complications
such as wound infection, seroma, paraesthesia, lymphedema and hematoma [7,13–17].
In patients with early stage breast cancer for whom there is a low incidence of axillary
metastases (about 10–25%) it may be an unnecessary invasive procedure [7,12–14,18].

The aim of our work is to develop other less invasive and preferably cheaper diagnostic
tools without compromising the diagnosis of patient care. In clinically negative patients,
the availability of a new tool able to provide an accurate probabilistic estimation makes
surgical actions unnecessary, and this would result in an immediate improvement in both
the effectiveness and the quality of care [19].

In our previous work [20] we had generalized an open-source classification algorithm
adding other prognostic factors with respect to those used in the original work [21–23]. In
this study, we report the results of a multivariate analysis aimed at developing a sentinel
lymph nodes status predictive model for patients with and characterized by a clinically
negative lymph node status. Particularly, we evaluated the predictive power of different
breast cancers’ clinical and immunohistochemical features. With respect to previous
work, we introduced new prognostic factors such as Her2/neu, multiplicity and an in
situ component and trained three different state-of-the-art machine learning algorithms
on the retrospective collected data. Moreover, we implemented a sequential forward
procedure to select an optimal subset of features, and we evaluated the results obtained in
hold-out cross-validation.

2. Materials and Methods
2.1. Experimental Data

The dataset used in our analysis is composed by the histological outcomes of 907 patients,
registered in the period 2015–2018 and referred to Istituto Tumori “Giovanni Paolo II”
in Bari (Italy), which resulted negative at both clinical and instrumental examination
and had undergone the one-step nucleic acid amplification (OSNA) procedure. This
procedure is time consuming and expensive, but it is still the intra-operative exam with
the highest performance (it currently has a sensitivity of 87.5–100% and a specificity of
90.5–100%) [12–14].

We considered the patients with clinically negative lymph nodes who did not have sus-
picious signs in axillary ultrasound, which is a routine examination during the presurgical
staging phase of the armpit, or patients that resulted negative after a fine needle aspiration
biopsy following the identification of axillary changes on instrumental examination.

For each patient, we collected several prognostic factors characterizing the tumor
evaluated on postoperative specimen pathology. The retrospective observational study
was approved by the Scientific Board of the Istituto Tumori “Giovanni Paolo II” and carried
out according the Helsinki Statement. Based on our regulation on retrospective studies, all
patients who gave consent to use the data for scientific purposes were recruited.

2.2. Histological Evaluation Procedure

We collected the immunohistochemical data carried out by our Pathological Anatomy
department, such as tumor size (T, measured in mm), histological subtype (ductal, lobular,
other special types), estrogen receptor expression (ER, Pos/Neg), progesterone receptor
expression (PgR, Pos/Neg), histological grade (G, Elston–Ellis scale: 1, 2, 3), cellular
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marker for proliferation (Ki67, Pos/Neg with cut-off 20%), human epidermal growth factor
receptor-2 (HER2/neu: 0, 1+, 2+, 3+), tumor multiplicity (Pos/Neg), presence of carcinoma
in situ associated with invasive component (Pos/Neg), and also the sentinel lymph nodes
status (N, Pos/Neg) required in the associated supervised approach.

The tumor grade G was defined by the Elston–Ellis modification of the
Scarff–Bloom–Richardson grading system on a three-grade scale, i.e., grade G1 (low grade),
G2 (intermediate grade) or G3 (high grade), where a lower grade indicates a better prog-
nosis [24]. The histological exam was performed through multiple biopsy sampling with
14–16 G core under ultrasound guidance. Immunohistochemical expression is categorized
according to the following molecular subtypes on the basis of the St. Gallen convention [25],
using a threshold equal to 20% for Ki67 [26]: luminal A (ER+ and/or PR+, HER2- and low
Ki67), luminal B (ER+ and/or PR+, and HER2+ or HER2- with high value of Ki67), HER2
positive (ER/PR- and HER2+) and triple negative (ER-, PR- and HER2-).

2.3. Statistical Analysis

In order to evaluate the association between each clinical feature and the sentinel
lymph node status, we used the Mann–Whitney test for the age feature measured on an
interval scale, whereas we used the Chi-square or Spearman test for all the other features
that were measured on a nominal or ordinal scale, respectively. A result was considered
statistically significant when the p-value was less than 0.05.

Partitioning Around Medoids (PAM) algorithm was employed to identify non-supervised
clustering in k-groups. Specifically, the PAM algorithm tries to minimize the mean square
error, trying to reduce the distance between the points of a cluster and the point that, among
the observed data, is located more centrally, called the Medoid. For the optimal estimate
of the k-medoids (and therefore of the k clusters), we used the analysis of the silhouette
that allows us to graphically visualize the quality of the clustering. The silhouette index is
generally used to identify the optimal number of groups in a hierarchical cluster and as a
synthetic indicator to evaluate the overall quality of clustering [27]. Its advantage is the
low computational complexity and the simple rules of interpretation.

In order to show the results of the cluster analysis in a bivariate space, we applied a
Multiple Correspondence Analysis for dimensionality reducing.

2.4. Classification Models

Three different classification models were trained to predict the sentinel lymph node
positivity. We used well-known machine learning methods, which were Random Forest
(RF), logistic regression, and Naïve Bayesian.

Random Forests is a well-known ensemble machine learning classifier, which generally
provides good performance with low over-fitting [28]. RF provides an embedded method
for feature selection: it takes advantage of its own feature selection process and performs
classification at the same time. There are two measures of importance for each feature: the
first one measures how much the accuracy decreases when a feature is excluded to the
forest, the second one measures the decrease in Gini impurity when a feature is chosen to
split a node of a tree. In our work, we used this second method. A standard configuration
of RF was adopted with 100 trees and 20 features (as described in Breiman (24)) randomly
selected at each split because more complicated architectures did not give any significant
classification improvement. Moreover, in order to control the over-fitting risk, we have
fixed a small number of observations per tree leaf, such as five.

A logistic regression prediction model measures the underlying relationships between
features and patient outcomes existing within the data [29]. The accuracy of a logistic
regression model is mainly judged by considering discrimination and calibration. Dis-
crimination is the model capability to correctly assign a higher risk of an outcome to the
patients who are truly at higher risk, whereas calibration is the model capability to assign
the correct average absolute level of risk, i.e., to accurately estimate the probability of the
patient outcome.
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The Naive Bayes classifier is a probabilistic machine learning model that is used to
fulfill classification tasks based on the Bayes theorem [30]. It requires a small amount of
training data to estimate the necessary parameters; despite their apparently over-simplified
assumptions, Naive Bayes classifiers worked well in many real-world situations.

Default parameters were used for logistic regression and Naive Bayes classifiers.
The considered classifiers are based on a different approach to solve the classification

task. A RF classifier is an ensemble technique that combines several decision trees to
calculate the predicted class, so that the forecasts made by decision trees, which may be
individually inaccurate, aim to improve performance and reduce over-fitting when com-
bined together. The Naïve Bayesian classifier is based on a probabilistic approach to solve
a classification problem, whereas the logistic regression model exploits a mathematical
approach to the problem through the estimation of the classification score performance by
means of a linear combination of features.

Feature importance techniques and classification models were performed using the
MATLAB R2018a (Mathworks, Inc., Natick, MA, USA) software.

2.5. Performance Evaluation

We performed the hold-out cross-validation procedure in order to evaluate the classi-
fication performance of each learning model to lymph node status. Specifically, we carried
out a feature selection analysis and developed the learning classification models on 70% of
the samples (training set) randomly selected. Then, we evaluated the obtained results on
the remaining 30% of 907 clinically negative patients.

On the training hold-out training set, in order to identify a subset of features with
higher diagnostic power, we developed a forward stepwise feature selection. The sequential
forward selection algorithm identified a subset of features that best predicted the expected
result by sequentially adding at the each step the features that improve the classification
performances on 100 ten-fold cross-validation rounds. Specifically, the selection of features
according to their importance is driven by the AUC index: in each series of cross-validation,
we appended to the prognostic factors sequence the one endowed with the highest median
value of AUC distribution. Then, we proceeded with the evaluation of the new distribution
for each sequence obtained by adding a feature in the remaining set and comparing the
associated median until the remaining prognostic factors were empty.

Performances of each classification model on both training and test hold-out sets are
assessed in terms of Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve and also F1 score, accuracy, sensitivity and specificity calculated by choosing
the optimal threshold through the Youden’s index [31].

The performance measures at each feature selection step on the hold-out training set
were estimated on 100 ten-fold cross-validation rounds and summarized in terms of the
median, first and third quartile.

3. Results
3.1. Statistical Analysis Results

The samples’ characteristics are summarized in Table 1. Nine hundred and seven
patients aged between 23 and 92 years (with a median, first, and third quartile of 51,
61 and 70 years, respectively) were involved in the study. In total, 296 patients were
positive on histological examination of the sentinel lymph nodes, whereas 611 patients
resulted negative.

The association test between the sentinel lymph node status and each prognostic factor
is essential to understand whether there is a relationship between the two variables. Our
experimental results have shown that there was a relationship between the sentinel lymph
node status and tumor diameter, ki67, grading, histological type, multiplicity and also
age (p-value < 0.05). All the other variables were not significantly associated with sentinel
lymph node status.
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Table 1. Observed number of patients with positive sentinel lymph nodes according to the considered
prognostic factors.

n Patients n Positive n Patients n Positive

Overall 907 296 ER
Age $ Negative 94 29

21–40 33 14 Positive 813 267
41–50 128 46 PgR
51–60 151 50 Negative 202 65
61–70 164 54 Positive 705 231
71–80 114 33 Ki67 *
>80 45 17 Negative 518 148

Diameter * Positive 389 148
T1a 46 6 HER2/neu
T1b 191 30 0 676 227
T1c 420 132 1 + 123 33
T2 250 128 2 + 59 24

Grading * 3 + 49 12
G1 274 62 Multiplicity §

G2 418 150 Negative 710 205
G3 215 84 Positive 197 91

Histologic
type § In situ component

Ductal 704 246 Absent 397 133
Lobular 147 41 Present 510 163
Special

type
56 9

* p-value Speraman Test < 0.05; § p-value Chi-Square Test < 0.05; $ p-value Mann–Whitney Test < 0.05.

3.2. Classification Results on Hold-Out Training Set

The training set of hold-out validation sampling was made up of 635 clinically negative
patients with 421 negative sentinel lymph node cases (control cases) and 214 positive cases
at postoperative histological survey.

Figure 1 shows the performance of the three classifiers considered in terms of AUC
value (median, first and third quartiles’ values) at increasing the number of features selected
on the hold-out training set (Table 2).

Figure 1. AUC distribution of the three classification models trained on a hold-out training set by
increasing the number of features according to our feature selection order as indicated in the table.
The solid line stands for the median yielded by 100 ten-fold cross validation, while the shaded region
correspondds to the interquartile range.
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Table 2. Features selected by each classifier in the different steps of the stepwise procedure implemented.

Number of Features RF Logistic
Regression Naive Bayesan

2 Diameter +
Multiplicity Diameter + Age Diameter + Histologic

Type
3 +Histologic Type +Histologic Type +Her2/Neu
4 +Grading +Grading +Age
5 +In Situ +Multiplicity +Grading
6 +Ki67 +In Situ +Multiplicity
7 +Age +Her2/Neu +In Situ
8 +ER +PGR +PGR
9 +Her2/Neu +Ki67 +ER
10 +PgR +ER +Ki67

The logistic regression classifier seems to always achieve slightly higher performances
than the others, although overcoming the Naïve Bayesian classifier of a few percentage
points. The best performance was reached with seven features for the Naïve Bayesian and
logistic regression classifiers, whereas eight features were needed for the RF classifier.

In Table 3, we report the performances obtained for each classifier by using the subset
of features that maximized performance. Although the performances were comparable
in terms of accuracy, the logistics regression classifier reached an accuracy of 71.5% and
showed a better trade-off between sensitivity and specificity than the other two classifiers
(69.4 and 66.9%, respectively) when seven features, i.e., tumor diameter, age, histologic
type, grading, multiplicity, in situ component and Her2-neu status, were considered.

Table 3. Median performance of the best models calculated on the hold-out training set by means of the sequential forward
feature selection evaluated on 100 ten-fold cross validation rounds for each of the used classification algorithms. The
prediction performances are summarized in terms of median, 1st and 3rd quartile.

Classifier # Features AUC (%) F1 Score Accuracy (%) Sensitivity (%) Specificity (%)

RF 8 68.1 (65.9–68.6) 54.5 (48.9–59.5) 67.7 (65.9–68.8) 57.9 (52.2–61.7) 72.3 (68.9–76.8)
Logistic

Regression 7 71.5 (71.1–71.7) 59.2 (55.60–63.7) 67.9 (66.0–68.7) 69.4 (67.3–74.3) 66.9 (61.9–70.0)

Naïve Bayesian 7 70.8 (70.6–71.0) 58.4 (54.7–61.8) 66.3 (65.2–67.6) 70.6 (66.4–73.0) 63.9 (61.2–68.0)

3.3. Cluster Analysis on Hold-Out Training Set

The classification performance does not exceed 68% accuracy with any of the used
classifiers. In order to highlight any profile characterizing the cases not correctly identified
by the classifiers, we implemented unsupervised hierarchical analysis of the groups. On
the whole dataset, on the basis of the relative Silhouette index, we identified the optimal
number of groups in which to divide the samples (Figure 2). In particular, in Figure 3,
we represent the three groups with respect to the first two main components. For the
sake of simplicity, we separated the control case clusters from those made up of patients
who tested positive for the sentinel lymph node and in each of them, we reported the
cases (24 false negative and 25 false positive) that were never correctly classified in all the
validation rounds by each of the three implemented classifiers. Evidently, such cases are
not characterized by a particular pattern of the used features.

False negatives are mostly related to group 2, characterized by patients with mildly
aggressive tumors, i.e., small T1b and T1c, low grading (G1 or G2), negative ki67 and an
absent in situ component. On the contrary, the false positives are afferent to group 1 or 3,
characterized by T1c and T2 tumors, ki67 positive, medium-high grading G3 or G2 and
components present in situ (Table 4).
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Figure 2. Relative increases in width silhouette related to PAM clustering implemented on hold-out
training set.

Figure 3. Clustering of positive (a) and negative (b) cases in three groups identified by PAM algorithm on overall hold-out
training set. In the clustering plot of positive cases, we have indicated the FN, whereas in the clustering plot of negative
cases we have indicated the FP.

3.4. Classification Results on Hold-Out Test Set

In order to evaluate the robustness of obtained results, we calculated the performance
classification of the three best models on the hold-out test set by using hold-out validation
sampling, which was made up of 272, composed of 190 control cases and 82 cases with
negative and positive sentinel lymph nodes, respectively.

The performance of each classifier loses accuracy by about five percentage points
(Table 5). However, the logistic regression model still shows a sensitivity higher than 68%
and a specificity of about 60%, thus losing about six percentage points compared to the
results observed on the hold-out training set.
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Table 4. Frequency distribution (percentage) of each group identified by PAM algorithm on the
overall hold-out training set.

Features
Cluster 1 2 3

n
(Pos/Neg)

164
(66/98)

207
(70/137)

264
(96/168)

Histologic
Type

Ductal 152 (92.7%) 146 (70.5%) 214 (81.1%)
Lobular 5 (3.1%) 33 (15.9%) 29 (11.0%)
Special 7 (4.3%) 28 (13.5%) 21 (8.0%)

Diameter

T1a 5 (3.1%) 12 (5.8%) 14 (5.3%)
T1b 21 (12.8%) 62 (30.0%) 42 (15.9%)
T1c 40 (24.4%) 94 (45.4%) 147 (55.7%)
T2 98 (59.8%) 39 (18.8%) 61 (23.1%)

Age Median 57 61 61

ER
Neg 61 (37.2%) 0.0 3 (1.1%)
Pos 103 (62.9%) 207 (100%) 261 (98.8%)

PgR Neg 112 (68.3%) 20 (9.7%) 15 (5.7%)
Pos 52 (31.7%) 187 (90.3%) 249 (94.3%)

Ki67
Neg 13 (7.9%) 154 (74.4%) 65 (24.6%)
Pos 151 (92.1%) 53 (25.6%) 199 (75.4%)

Grading
G1 10 (6.1%) 130 (62.8%) 35 (13.3%)
G2 15 (9.1%) 71 (34.3%) 201 (76.1%)
G3 139 (84.8%) 6 (2.9%) 28 (10.6%)

Her2/Neu

0 93 (56.7%) 177 (85.5%) 202 (76.5%)
1+ 19 (11.6%) 26 (12.6%) 33 (12.5%)
2+ 20 (12.2%) 3 (1.4%) 23 (8.7%)
3+ 32 (19.5%) 1 (0.5%) 6 (2.3%)

Multiplicity Neg 123 (75.0%) 177 (85.5%) 192 (72.7%)
Pos 41 (25.0%) 30 (14.5%) 72 (27.3%)

In Situ
Neg 54 (32.9%) 153 (73.9%) 59 (22.3%)
Pos 110 (67.1%) 54 (26.1%) 205 (77.7%)

Table 5. Classification performance calculated on the hold-out test set by using the subset of features
that maximized performance for each classifier.

Classifier # Features Accuracy (%) Sensitivity
(%) Specificity (%)

RF 8 63.6 52.4 68.4
Logistic Regression 7 62.1 68.3 59.7

Naïve Bayesian 7 61.8 52.4 65.8

4. Discussion

In patients with clinically node-negative breast cancer, current international guidelines
require sentinel lymph node biopsy (SLNB) [11–14]. Although it is currently the most-
performed exam, it is a time consuming and expensive procedure and is also extremely
invasive, and could result in a number of side effects [7,18,32]. However, in patients with
early stage breast cancer the incidence of axillary metastases is low, therefore that procedure
may be an unnecessary invasive procedure.

The aim of our work was to develop a sentinel lymph nodes status predictive model for
clinically negative patients that could replace the SLNB. Starting from a set of 907 patients,
for each of them we collected several prognostic features, such as age, tumor size, histolog-
ical subtype, estrogen receptor expression, progesterone receptor expression, histological
grade, cellular marker for proliferation, human epidermal growth factor receptor-2, mul-
tiplicity, in situ component and also the sentinel lymph nodes status. Subsequently, we
trained three different classifiers combined with a sequential forward feature selection
algorithm on the hold-out training set to select the feature subset which reached the highest
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value of AUC. Then, we trained the three previously selected models on the hold-out test
set and we compared their performances in terms of accuracy, sensitivity and specificity.

On the hold-out training set, the best classification model was the Logistic Regression
algorithm on a subset of seven features, i.e., tumor size, age, histologic type, grading,
multiplicity, in situ component and Her2-neu status. This model reached a median AUC
equals to 71.5%, a median accuracy of 67.9%, sensitivity equal to 69.4% and specificity
of 66.9%.

Furthermore, on the same training set we performed a cluster analysis, in order to
identify the positive or negative contribution of different feature subsets for classification
purposes. The cluster analysis highlighted the correlation among some feature subsets and
the realization of either false-positive or false-negative cases. Indeed, we observed that
false negatives were afferent to features such as small T1b and T1c tumors, low grading (G1
or G2), negative ki67 and absent in situ component; instead, false positives were related to
features as T1c and T2 tumors, ki67 positive, medium-high grading G3 or G2 and present
during the in situ component.

Finally, we observed that the performance of the best Logistic Regression model, as
well as the performances of the other ones, were lower on the hold-out test set. Even
though the best model in terms of accuracy and specificity resulted the RF classifier on
a subset of eight features, the only model with a sensitivity still greater than 68% was
the Logistic Regression algorithm, which had the same result as the best model of the
hold-out training set. The state-of-the-art model is characterized by many works, which
propose non-sentinel lymph nodes status predictive models based on features of different
nature [33–37]. On the contrary, there are a low number of studies whose aim was the
development of a sentinel lymph nodes status predictive model through the analysis of
histological features [20,38–41]. Thus far, the nomogram developed by the researchers of
Memorial Sloan-Kettering Cancer Center (MSKCC) (a, b, c) is the most widely used model
to predict the likelihood of SLN metastasis. The baseline model (a) reached an AUC value
of 75.4%. In subsequent validation studies, comparable performances were achieved (b, c).
However, these models were evaluated on cohorts of non-clinically negative patients and
therefore different from the sample object of our study.

The model developed in [41] for prediction of sentinel lymph nodes metastasis reached
an AUC value equal to 88.3% by considering some histological features, such as tumor size,
and lymph vascular invasion in ER-positive and HER2-negative (ER+/HER2−), but also
genetic ones.

In our previous work [20], we evaluated the usefulness of the CancerMath tool to pre-
dict the sentinel lymph node status for clinically negative patients referred to our institute.
In this validation study, by using tumor size, age, histologic type, grading, expression of
estrogen receptor, and progesterone receptor ki67 and HER2 on the independent test set,
the model showed an accuracy of 53.8%, which is much lower than the accuracy value
achieved thanks to the analysis exposed here.

The current work differs from the other mentioned research studies because of the
use of a machine learning approach for the analysis. Although the model can be further
optimized by evaluating other feature selection techniques or classification algorithms on a
very extensive experimental database, the only histological features did not allow us to
develop a support instrument suitable for actual clinical application. What emerges, and
which is important to underline to a public of biomedical data scientists or clinician with a
transactional interest field, is that the maximum informative power contained in the only
characteristics considered for the prediction of the sentinel lymph node status does not
exceed 62–63% on the independent test. For this reason, encouraged by recent studies with
improved results in the prediction of the lymph node metastasis probability thanks to the
joint use of histopathologic and radiomic features [6,40–54], in our future works we will
also involve radiomic features extracted from first-level radiological examinations, such as
ultrasound and mammography.
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5. Conclusions

In patients with clinically negative lymph nodes, the incidence of lymph nodes is
generally low. Although for this type of patient the sentinel lymph node biopsy (SLNB)
is the intra-operative exam with the highest performance, it often represents a useless
invasive procedure with possible serious complications. Therefore, an important clinical
task is to develop a procedure that could surrogate SLNB without compromising the quality
of care. In this work, we presented a preliminary model to predict the sentinel lymph node
status. We trained different machine learning algorithms on tumor histopathology features
but the performances evaluated on a hold-out test set reached an accuracy classification
of about 64%. Therefore, the model trained on histopathologic features is yet not suitable
for clinical use for the prediction of metastatic lymph nodes in clinically negative patients.
However, in future works we will explore other information sources, such as radiomics
and genetics, in order to use them conjointly with clinical data considered in this study.
By reaching high levels of accuracy, the use of such a support system would have a high
clinical impact, either avoiding the sentinel lymph node procedure or reducing the time and
cost of surgical interventions, unnecessary axillary dissections with related comorbidities.

Author Contributions: Conceptualization, A.F., D.L.F., D.P. and R.M.; data curation, A.F., M.D., D.P.,
A.Z., A.V.P. and R.M.; formal analysis, A.F., A.V.P. and R.M.; methodology, A.F.; resources, V.L. and
A.Z.; software, A.F., A.B. and D.P.; supervision, R.M.; writing—original draft, A.F., D.P. and R.M.;
writing—review and editing, A.F., V.L., A.B., S.B., M.C.C., C.C., M.D., V.D., D.L.F., A.N., D.P., P.T.,
A.Z., A.V.P. and R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Scientific Board of Istituto Tumori ‘Giovanni Paolo
II’—Bari, Italy.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Cancers 2021: 13, 352 10 of 12.

Data Availability Statement: The data presented in this study are available on request to the corre-
sponding author. The data are not publicly available because they are the property of Istituto Tumori
‘Giovanni Paolo II’—Bari, Italy.

Acknowledgments: This work was supported by funding from the Italian Ministry of Health
“Ricerca Finalizzata 2018”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The evolving role of lymphatics in cancer metastasis. Curr. Opin. Immunol. 2018, 53,

64–73. [CrossRef]
2. Nagahashi, M.; Ramachandran, S.; Rashid, O.M.; Takabe, K. Lymphangiogenesis: A new player in cancer progression. World J.

Gastroenterol. 2010, 16, 4003–4012. [CrossRef] [PubMed]
3. Argentiero, A.; de Summa, S.; di Fonte, R.; Iacobazzi, R.M.; Porcelli, L.; da Vià, M.; Brunetti, O.; Azzariti, A.; Silvestris, N.;

Solimando, A.G. Gene expression comparison between the lymph node-positive and -negative reveals a peculiar immune
microenvironment signature and a theranostic role for WNT targeting in pancreatic ductal adenocarcinoma: A pilot study. Cancers
2019, 11, 942. [CrossRef] [PubMed]

4. Egger, M.E.; Stevenson, M.; Bhutiani, N.; Jordan, A.C.; Scoggins, C.R.; Philips, P.; Martin, R.C.; McMasters, K.M. Age and
Lymphovascular Invasion Accurately Predict Sentinel Lymph Node Metastasis in T2 elanoma Patients. Ann. Surg. Oncol. 2019,
26, 3955–3961. [CrossRef] [PubMed]

5. Falck, A.K.; Fernö, M.; Bendahl, P.-O.; Rydén, L. St Gallen molecular subtypes in primary breast cancer and matched lymph node
metastases–aspects on distribution and prognosis for patients with luminalAtumours: Results from a prospective randomised
trial. BMC Cancer 2013, 13, 558. [CrossRef] [PubMed]

6. Qiu, S.-Q.; Zeng, H.-C.; Zhang, F.; Chen, C.; Huang, W.-H.; Pleijhuis, R.G.; Wu, J.-D.; van Dam, G.M.; Zhang, G.-J. A nomogram to
predict the probability of axillary lymph node metastasis in early breast cancer patients with positive axillary ultrasound. Sci.
Rep. 2016, 6, 21196. [CrossRef] [PubMed]

http://doi.org/10.1016/j.coi.2018.04.008
http://doi.org/10.3748/wjg.v16.i32.4003
http://www.ncbi.nlm.nih.gov/pubmed/20731013
http://doi.org/10.3390/cancers11070942
http://www.ncbi.nlm.nih.gov/pubmed/31277479
http://doi.org/10.1245/s10434-019-07690-4
http://www.ncbi.nlm.nih.gov/pubmed/31392528
http://doi.org/10.1186/1471-2407-13-558
http://www.ncbi.nlm.nih.gov/pubmed/24274821
http://doi.org/10.1038/srep21196
http://www.ncbi.nlm.nih.gov/pubmed/26875677


Appl. Sci. 2021, 11, 10372 11 of 13

7. Land, S.R.; Kopec, J.A.; Julian, T.B.; Brown, A.M.; Anderson, S.J.; Krag, D.N.; Christian, N.J.; Costantino, J.P.; Wolmark, N.;
Ganz, P.A. Patient-reported outcomes in sentinel node-negative adjuvant breast cancer patients receiving sentinel-node biopsy
or axillary dissection: National Surgical Adjuvant Breast and Bowel Project phase III protocol B-32. J. Clin. Oncol. 2010, 28,
3929–3936. [CrossRef] [PubMed]

8. Diotaiuti, S.; de Summa, S.; Altieri, R.; Dantona, C.; Tommasi, S.; di Gennaro, M.; Rubini, G.; Pastena, M.I.; Argentiero, A.;
Zito, F.A.; et al. Biomarker phenotyping drives clinical management in axillary sentinel node: A retrospective study on women
with primary breast cancer in 2002. Oncol. Lett. 2020, 20, 2469–2476. [CrossRef] [PubMed]

9. Gruppo di lavoro AIRO per la Patologia Mammaria. Consensus Per L’irradiazione delle Stazioni Linfonodali Mammarie; Associazione
Italiana Radioterapia Oncologica: Milano, Italy, 2016.

10. Early and locally advanced breast cancer: Diagnosis and management. In NICE Guideline NG101, Evidence Reviews; National
Institute for Health and Care Excellence: London, UK, 2018.

11. Tsujimoto, M.; Nakabayashi, K.; Yoshidome, K.; Kaneko, T.; Iwase, T.; Akiyama, F.; Kato, Y.; Tsuda, H.; Ueda, S.; Sato, K.; et al.
One-step Nucleic Acid Amplification for Intraoperative Detection of Lymph Node Metastasis in Breast Cancer Patients. Clin.
Cancer Res. 2007, 13, 4807–4816. [CrossRef] [PubMed]

12. Galimberti, V.; Fontana, S.R.; Maisonneuve, P.; Steccanella, F.; Vento, A.R.; Intra, M.; Luini, A. Sentinel node biopsy after
neoadjuvant treatment in breast cancer: Five-year follow-up of patients with clinically node-negative or node-positive disease
before treatment. Eur. J. Surg. Oncol. 2016, 42, 361–368. [CrossRef] [PubMed]

13. Banerjee, S.M.; Michalopoulos, N.V.; Williams, N.R.; Davidson, T.; el Sheikh, S.; McDermott, N.; Tran-Dang, M.-A.; Davison, S.;
Keshtgar, M.R. Detailed evaluation of one step nucleic acid (OSNA) molecular assay for intra-operative diagnosis of sentinel
lymph node metastasis and prediction of non-sentinel nodal involvement: Experience from a London Teaching Hospital. Breast
2014, 23, 378–384. [CrossRef]

14. Szychta, P.; Westfal, B.; Maciejczyk, R.; Smolarz, B.; Romanowicz, H.; Krawczyk, T.; Zadrożny, M. Intraoperative diagnosis of
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