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Abstract: Monitoring the progress on a construction site during the construction phase is crucial.
An inadequate understanding of the project status can lead to mistakes and inappropriate actions,
causing delays and increased costs. Monitoring and controlling projects via digital tools would
reduce the risk of error and enable timely corrective actions. Although there is currently a wide range
of technologies for these purposes, these technologies and interoperability between them are still
limited. Because of this, it is important to know the possibilities of integration and interoperability
regarding their implementation. This article presents a bibliographic synthesis and interpretation of
30 nonconventional digital tools for monitoring progress in terms of field data capture technologies
(FDCT) and communication and collaborative technologies (CT) that are responsible for information
processing and management. This research aims to perform an integration and interoperability
analysis of technologies to demonstrate their potential for monitoring and controlling construction
projects during the execution phase. A network analysis was conducted, and the results suggest that
the triad formed by building information modeling (BIM), unmanned aerial vehicles (UAVs) and
photogrammetry is an effective tool; the use of this set extends not only to monitoring and control,
but also to all phases of a project.

Keywords: monitoring progress; construction phase; automated monitoring; digital tools; as-built;
as-planned

1. Introduction

The construction industry is an important and dynamic economic activity that is
characterized by one of the economy’s reactivating mechanisms and by its contribution
to the generation of employment; however, it has also been characterized by its low pro-
ductivity [1,2]. Currently, the world economy is experiencing a major crisis caused by the
COVID-19 pandemic. This public health emergency has presented a change in paradigms
and challenges due to the lack of workers in the whole supply chain, extended closing
of businesses in other areas of the economy and interruptions due to social distancing
measures in existing projects [3]. These changes imply challenges for the reactivation of
the economy, where strategies focus on digitalization and sustainability [4].

With the arrival of the Fourth Industrial Revolution, Industry 4.0 is a new paradigm
that proposes to encourage the use of cyber physical systems; that is, technologies that
enable the merging of virtual and physical worlds to create a real networked environment
in which intelligent objects communicate and interact with each other [5]. In this context,
the concept of Construction 4.0 has been proposed as a response to Industry 4.0 in the
Architecture, Engineering, Construction and Operation (AECO) industry, which seeks to
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upgrade digitalization to improve the efficiency of production processes, business models
and value chains. This transformation is possible due to the convergence of existing and
emerging technologies, which promise to reformulate the way of designing and building
the assets of the built environment [6,7].

Integration and interoperability are two key factors in Construction 4.0 [7]. Interoper-
ability is the ability of two systems to understand each other and use the functionality of the
other, which represents the ability of two systems to exchange data and share information
and knowledge. Integration of information systems achieves seamless cooperation between
organizations and industries [8]. The traditional method, which involves manual tracking
of construction progress, still dominates the AECO industry [9]. Current monitoring prac-
tices during the execution of a construction project require multiple inspections, which are
time intensive and may, by their nature, include mistakes. Therefore, a reliable monitoring
system that can provide early detection and notification of project problems, whether actual
or potential, is necessary [10]. In this context, the application of several technologies has
great potential to improve management practices in the construction industry [11]. The
advances in digital technologies that have been established in many productive sectors are
permeating the AECO industry [8] at less accelerated rates [12].

The goal of this research is to perform an interoperability analysis of digital tools
for monitoring and controlling construction projects during the execution phase. For this
purpose, innovative technologies that are classified according to their use, in this case,
field data capture technologies (FDCT) and communication and collaboration technologies
(CT), which are responsible for the processing and management of information, are revised.
Although these technologies have unique advantages, they often offer integration with
other technologies, allowing for the formation of more powerful hybrid systems with more
than a single intelligence dimension.

2. Background

Management methods are the set of actions framed in a prototype that allow for
directing the activities of a public or private organization; their purpose may have one or
more objectives that are aimed at achieving greater productivity in all human activities [13].
Methodologies are generally approached in different ways, many of them known and
common among a high number of engineering and construction companies, with the
same guidelines for decades, which have become examples to follow and/or apply [14].
Multiple problems affect the performance of projects in the construction industry, including
lower labor productivity, inadequate identification of design requirements and lack of
standardized construction management. Therefore, the integration of projects is essential
for success, and the collaboration of different specialties in the supply chain allows for
effective interaction, keeping the budget and schedule in the expected parameters [15].

The planning and control of a construction project is the process of defining, coordi-
nating and determining the order in which activities should be carried out. The objective
is to execute the most efficient and economical use of available equipment, elements and
resources. For this purpose, a work plan, which must be controlled throughout the project
to evaluate its compliance, is established and defined. Two actions that must be carried
out in this recursive process are to carry out pertinent revisions or modifications and
to eliminate unnecessary diversification of efforts. Both actions are framed in the final
objective set since the beginning of a project [16]. Currently, as a result of technological
advancements, new techniques that allow for remote and automated management have
been incorporated to obtain information from the digitalization of the construction [8].

2.1. Traditional Construction Monitoring and Control System

The planning and control of a project is one of the key processes for the adequate
development of the project and the success of each of its phases during its life cycle. Appro-
priate planning allows for the explicit definition of the work to be done, risk identification,
consideration of different scenarios and the attainment of solutions. Adequate control
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offers the possibility of detecting deviations, informing on time the anomalies, allowing for
their correction and ensuring the quality of a project [14]. Establishing a system to ensure
the correct execution of the work is fundamental and must be adapted to the nature of each
project and its environment. For this reason, there are different methodologies to carry out
project management, that is, the application of knowledge, skills, tools and techniques to
the activities of a project to comply with its requirements [17].

According to some studies, control tasks using traditional methods generate difficul-
ties for information management caused by imprecise manual documentation and deferred
data collection, which leads to delays in decision making [18]. It is common that a lack
of opportune information about the actual state causes problems to remain unresolved
and prevents field engineering staff from solving them in an opportune amount of time.
An incorrect understanding of the current situation can cause errors and inappropriate
adjustments by the management team, which could result in further delays and increased
costs [19].

The set of monitoring and control activities consists of the processes required to
monitor, analyze and regulate the progress and performance of a project, to identify areas
where the plan requires changes and to make the corresponding modifications [20]. In
this sense, because of the dynamism in a project, maintaining daily control can have a
considerable impact, providing greater precision around the schedule and costs to comply
with the scope defined in the project [21]. To carry out progress control, it is fundamental
to have a work program to know when, with what and how the works will be executed.
During the construction phase, it is relevant to know if the work is being performed
according to the established schedule. An accurate evaluation of progress allows project
managers to make adjustments to minimize costs that lead to program deviations [10]
(Figure 1).
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Figure 1 shows a schematic of a model for real-time closed loop control. In this
model, it is necessary to establish a control system that can regularly keep project managers
informed of the progress made in each activity. In the case of delay or deficiency in any
activity, this system enables time-sensitive corrections, either by increasing the number
of workers, changing the equipment or correcting the work program. If it is verified in
an opportune way that there was a planning mistake, and it is possible, although with
modifications, to maintain the original program, then it will be possible to fulfill the
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delivery terms. If these corrections are not made on time, it is difficult to continue with
the initial project schedule, and a new plan will have to be constructed, whose application
will certainly mean disorders and greater project costs [23]. Therefore, the objective of
monitoring is to ensure compliance with the objectives and goals proposed by the plan
during its implementation, alerting any difficulties and relieving pending or delayed
tasks, and allowing visualization of complementary actions by making the necessary
adjustments. It is worth noting that for the monitoring of a plan, it is necessary to establish
methodologically how information about projects and management measures will be
obtained to understand the plan’s progress and facilitate its control. This approach allows
for the comparison between the baseline of the plan and its actual execution, consequently
identifying the gap between what was proposed and what was achieved and defining
corrective and preventive actions that minimize these gaps [17].

The practice of monitoring and control in the tracking of work, based on traditional
techniques, has become indispensable for any construction project. It is common that
the activities that include the management of information are based on collecting the
information in the field, which is documented manually for its subsequent digitalization.
The employees in charge of creating reports using this process devote between 28% and 41%
of their daily time to doing so. Because information is scattered among multiple documents,
which may exclude data, the traditional approach is slow and inefficient. Similarly, the
construction industry makes little use of technical resources, making it difficult to track
building projects due to the lack of automated processes [18].

2.2. Digitized Construction Monitoring

The current requirements presented by the AECO industry demand the application
of modern monitoring and control methods and tools by companies in order to meet
regulatory requirements and improve the competitiveness of companies in the construction
market [24]. In this respect, increasing productivity implies the improvement in various
processes by the use of new technologies and construction procedures [25]. Successful
construction management requires the integration of processes, technologies and people
to achieve its objectives [26], where information on the progress of a project offers a
continuous diagnosis of it, allowing the different members of a team to make appropriate
decisions about any measure to save the project and ensure its completion [27]. Technology
is slowly paving the way for technologically supported project management practices in
construction, for transforming and allowing the establishment of new tools for remote
monitoring and for allowing for automation of the supervision of construction progress,
improvement in data acquisition and, consequently, improvements in decision-making in
project management to meet objectives and ensure productivity [28].

The continuous development of technology has made it possible to effectively solve
practical problems associated with the AECO industry. [29]. Therefore, the development
of digitized construction monitoring has the main purpose of developing the connection
between traditional or existing methods and new technological systems. The basic theory
for developing such a model is to extend the traditional approach so that construction
operations become dynamic and simultaneous [30]. The World Economic Forum (2016)
developed a transformational framework for the construction industry that lists 30 best
practice measures. The three most important components of the transformation of its
traditional approach are the following: (i) being open to innovation to take advantage of
the opportunities offered by new technologies, materials and tools to reduce production
costs; (ii) considering the adoption of mechanized and automated production systems
with offsite construction techniques to accelerate the construction process and improve the
timely completion of projects in a collaborative environment; and (iii) the role of project
management and cost control in the design and planning stages [31].

It has been mentioned that the construction industry has been criticized for its slow
adoption of emerging technologies. However, in recent years this trend has changed. The
rapid growth of the availability and power of technologies, with their continuously decreas-
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ing cost, has allowed them to be adopted and considered an effective tool for the analysis
of massive data for the purpose of monitoring and controlling the progress of projects [32].
During recent decades, research efforts have been made towards advanced 4D planning
models by integrating three-dimensional (3D) models with the time parameter [30].

There is an evident need to develop an integrated model to automate the current prac-
tice, since monitoring and manual control have not produced the expected results. Efficient
management can be obstructed by lost time in information recovery, poor structuring and
delayed communications [33]. Manual monitoring is labor intensive and often requires a
choice between monitoring based on rough estimates or spending a lot of time collecting
and processing data. [34].

Introducing digitized construction monitoring in the construction phase would allow
project managers and site engineers to more effectively and accurately monitor project
progress. Therefore, this system will improve the decision-making process and produc-
tivity and reduce claims for delays [30]. Each team member needs to know, in a timely
and accurate manner, the progress of the project and the current status to contrast such
information with the originally established plans [35].

Some research has shown that monitoring of work and comparison with the project
baseline can be used to assess work in progress, providing an accuracy error of less than
20% [22]. Studies in the literature indicate that greater standardization of work will make
the application of automated procedures less complex [36]. For this reason, the means to
represent possible discrepancies between planned progress and constructed progress is an
important factor in facilitating decisions on corrective measures [10].

The results of the adoption of digital approaches in construction are increasingly
showing positive results; for example, projects that would otherwise present a high risk
of cost overruns are being delivered on time and within budget. The implementation of
digital tools allows for the integration of teams, processes and organizations, reducing the
problem of fragmentation present in traditional methods [31] (Figure 2).
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In the last few years, with the increasing level of competition in the AECO industry,
research efforts have focused on the application of information technology as a way to
improve the process of integration of construction supply chain management [37]. This
collaboration has emerged as computer-assisted collaborative learning, facilitating inter-
actions between two or more individuals who may be geographically and/or temporally
separated [31]. As a result, there is a need to adapt technology to improve design and
planning processes in a common and secure data environment (CDE). This type of environ-
ment allows for the integrated collaboration of project participants and their interaction via
accessible information that supports decision making [38]. This concept could be achieved
by using different technologies that provide a richness of varied and complementary in-
formation, facilitating the joint work of the teams via collaborative work and problem
solving without considering the geographical distance. These technologies could also
work both synchronously and asynchronously, allowing for the sharing of documents not
only anywhere, but also at all times. In this way, the provided tools help communication
and collaboration and provide a means of solving problems in the early stages of the
project [31].
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3. Materials and Methods

To achieve the objective of this study, the research was divided into three stages:
(1) the design of remote monitoring and control practices—the literature review; (2) in-
teroperability and integration; and (3) the validation of digital tools. Figure 3 shows the
research tools used to perform each activity and their respective deliverables.
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In the first stage, we identified and selected the techniques and methods that have
a potential use for monitoring and control during the construction or execution phase of
projects. These are presented with a brief description of their benefits, limitations and
application in the AECO industry. In the second stage, the synergies and interoperability
shared by different digital tools are identified, performing an exhaustive analysis of the
interactions presented. In the third stage, the main researcher qualified the tools based on
criteria considered critical to achieve satisfactory performance based on the deliverables of
stages 1 and 2. Five experts were invited to validate these tools by means of corrections,
suggestions and comments about the proposed evaluation.

3.1. Stage 1: Practice Design—Literature Review

A literature review of journals specialized in engineering and construction project
management and of the proceedings of the main conferences held between 2012 and 2020
was conducted. The search was carried out in the following libraries: Google Scholar,
ResearchGate, Engineering Village, Web of Science and Scopus. The search topics were au-
tomated progress monitoring, monitoring system, progress monitoring, as-built as-planned
comparison, construction method into automated progress monitoring techniques, manage-
ment model for construction monitoring and control, digitalizing construction monitoring,
constructions phases, construction management, construction progress, interoperability,
real-time monitoring and Industry 4.0.

The articles were selected by applying three inclusion/exclusion criteria: (1) innova-
tion, (2) technology and (3) adoption of monitoring and control systems. For monitoring
and information gathering, the distinction is made between (a) field data capture tech-
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nologies (FDCT), which refers to sensing techniques used to capture as-built scenes, and
(b) communication and collaboration technologies (CT), which are responsible for process-
ing and managing as-built data information.

3.2. Stage 2: Interoperability and Integration

Seamless data exchange between FDCT and CT should be performed based on the
search for the interoperability between them. In the search for relevant studies, technologies
that have application support in the AECO industry were examined. A literature review
was conducted in specialized journals in engineering and construction project management
and of the proceedings of the main conferences, and a search was carried out in the
following libraries: Google Scholar, ResearchGate and Scopus. The equations in the search
process are presented in Table 1, where the keywords and respective Boolean operators are
presented.

Table 1. Keywords and Boolean operators used to identify relevant studies.

Search Keyword B.O. 1 Keyword B.O. 1 Keyword

FDCT + FDCT

Radio frequency identification
Laser scanning
Ultrawide band

Wireless sensor networks
Unmanned aerial vehicle

Robotics
Smartphones

AND

Radio frequency identification
Laser scanning
Ultrawide band

Wireless sensor networks
Unmanned aerial vehicle

Robotics
Smartphones

AND
OR

Monitoring
Progress

Construction phase
Execution phase

CT + CT

Mobile computing
Simulations models and tools

photogrammetry
Mobile applications

Automated regulation checking and
audits

Big data analytics
Data mining

Deep learning
Embedded system

Geographic information system
Industrial Internet
Internet of Things
Machine learning

Building information modeling
Cloud computing

Common data environment
Data sharing

Edge computing
Social media

AND

Mobile computing
Simulations models and tools

photogrammetry
Mobile applications

Automated regulation checking
and audits

Big data analytics
Data mining

Deep learning
Embedded system

Geographic information system
Industrial Internet
Internet of Things
Machine learning

Building information modeling
Cloud computing

Common data environment
Data sharing

Edge computing
Social media

AND
OR

Monitoring
Progress

Construction phase
Execution phase

FDCT + CT

Radio frequency identification
Laser scanning
Ultrawide band

Wireless sensor networks
Unmanned aerial vehicle

Robotics
Smartphones

AND

Mobile computing
Simulations models and tools

Photogrammetry
Mobile applications

Automated regulation checking
and audits

Big data analytics
Data mining

Deep learning
Embedded system

Geographic information system
Industrial Internet
Internet of Things
Machine learning

Building information modeling
Cloud computing

Common data environment
Data sharing

Edge computing
Social media

AND
OR

Monitoring
Progress

Construction phase
Execution phase

1 Boolean operator.
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The articles were selected by applying three inclusion/exclusion criteria: (1) the case of
monitoring and control during the execution stage; (2) being linked to one of the following
areas—progress, machinery operation, intelligent construction or productivity; and (3) the
most recent case of application. With the information obtained, three relationship matrices
were elaborated with the possible combinations between the investigated tools for FDCT,
CT and the integration between both.

All combinatorics without repetition between pairs of technologies were performed
for the three search groups executed, according to Table 1. Table 2 identifies the total
technologies per relationship matrix and the potential interoperability cases present in the
AIC industry. The possible combinatorics are calculated according to Equation (1), where n
is the total number of technologies to be chosen and r is the chosen technologies.

n!
r!(n− r)!

=

(
n
r

)
, (1)

Table 2. Details of combinatorics generated according to the relationship matrix.

Type of Connection Relationship Matrix Possible
Combinations

Intra FDCT FDCT ∪ FDCT 21
Intra CT CT ∪ CT 253

Inter FDCT and CT FDCT ∪ CT ∩ (FDCT ∪ FDCT) ∩ (CT ∪ CT) 161

The results are presented in three relationship matrices. In the case of intra-connections,
they are represented by a square matrix of upper triangular type of dimension nxn, where
n is the number of technologies identified, particularly 7 × 7 and 23 × 23. On the other
hand, the interconnections are given by the dimensions between rows and columns, where
the rows represent the CTs and the columns represent the FDCTs, with dimensions of
23 × 7. When there is a link between two technologies, the box contains the corresponding
reference declaring the link. Otherwise, it is represented by an X.

For network analysis, the concepts of full inter- or intra-connections are employed,
the former for connections between the same type of technology subcategory and the latter
for cases of different subcategories, where only the interactions between FDCT and CT,
and not the relationships between the same subcategories, are measured. To obtain global
information, i.e., interactions between the inter-array connections of FDCT and CT and the
intra-array connections, the concept of full is utilized.

In addition, a tool that allows for interconnecting the elements and facilitating the
dissemination and understanding of the results is network analysis, which allows for
visualizing the interconnected elements and thus performing an analysis of the existing
relationships via graph theory; for this purpose, the free software Gephi 0.9.2 was employed.
The metrics applied for network analysis are described in Table 3.

Table 3. Description of metrics used in network analysis. Adapted from [39].

Metric Description

Degree centrality Describes the number of connections. Centrality measures are essential
metrics for analyzing the position of an actor in a network.

Betweenness
centrality

Quantifies the frequency or number of times a node acts as a bridge along
the shortest path between two other nodes.

Closeness
centrality

Corresponds to the level of influence of the nodes based on the shortest
routes from a node to its well-connected neighbors.

Modularity class Measurement of the network structure. It was designed to measure the
strength of the division of a network into modules and detects communities.
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3.3. Stage 3: Validation of Digital Tools

Two rating systems were developed for criteria considered critical to enable the
automation of a monitoring and control system, according to the previously mentioned
subdivision according to their function, i.e., information capture and communication and
collaboration. Scores are provided according to the qualification obtained, i.e., satisfactory
performance, intermediate performance and poor performance, marked with white, gray
and black, respectively. Likewise, a score was assigned with values of 2, 1 and 0. For each
of the criteria, a brief explanation is presented, as shown in Tables 4 and 5.

Table 4. Criteria scoring system for FDCT. Adapted from [10].

Criteria Good Performance (2) Intermediate Performance (1) Poor Performance (0)

Utility General occasion solution Solution for general occasions
with some limitations

Can only be used on limited
occasions

Time efficiency
Instantaneous recovery of

information or takes less time
than the traditional method

Recovery of the information takes
the same amount of time as the

traditional method

Recovery of information takes
longer than the traditional

method

Accuracy Most or all of the data obtained is
accurate Accuracy of some data Errors in all data

Automation level Most or all of the steps in the
process are automated

Only a few steps of the process
are automated None

Training None Needs training, learning facility Needs specialized personnel

Equipment Portable and easy-to-use
equipment within easy reach

Medium-sized equipment,
difficult to transport

Oversized equipment, not
movable

Table 5. Criteria scoring system for CT. Adapted from [9].

Criteria Good Performance (2) Intermediate Performance (1) Poor Performance (0)

Interoperability
Communicates with different

software by standardized
interfaces and processes

Communicates with some
software by standardized
interfaces and processes

Does not communicate with
different software

Virtualization Collects and monitors progress
via electronic media

Collects and monitors progress by
electronic and manual means

Manually collects and monitors
progress

Decentralization

Allows for the delegation of
actions across organizations at
CSC level and allows relevant
stakeholders to independently

make decisions.

Partially allows for the delegation
of actions and/or decisions at the

CSC level.

Does not allow for the delegation
of actions to organizations at the
CSC level or the decision making

of stakeholders.

Real-time capacity
Instantaneous recovery of

information or takes less time
than the traditional method

Recovery of the information takes
the same amount of time as the

traditional method

Recovery of information takes
longer than the traditional

method

Service oriented
Satisfies customer requirements,

internal interests and CSC
participants.

Partially satisfies customer
requirements, internal interests

and CSC participants.

Does not meet the requirements
of the customer, internal interests

and CSC participants.

Flexibility Adapts to changing stakeholder
requirements

Partially adapts to changing
stakeholder requirements

Failure to adapt to changing
stakeholder requirements

In the case of FDCT, six criteria are considered as follows: usability, time efficiency,
accuracy, level of automation, training required and equipment [10]. On the other hand, for
CTs, six criteria are considered as follows: interoperability, virtualization, decentralization,
real-time capability, service orientation and flexibility [8].

The ratings were assigned based on the information obtained in the first and second
stages of this research. Although each of the explored technologies has unique advantages
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and limitations, this rating is framed to the application for monitoring and control in the
execution stage. It is worth mentioning that there are criteria that do not apply to certain
technologies, in which case they are registered with the acronym NA.

Additionally, the ratings were grouped according to the frequency obtained for each of
the criteria, so that the results have greater representativeness, thus avoiding the linearity
of the criteria, since the choice of one technology over another depends on factors such as
application, accuracy and the scale of the project. For this reason, the adopters determine
which factor or factors they wish to prioritize.

These qualifications were then validated by means of an expert judgment made up
of academics and researchers. The experts summoned had to meet the following criteria:
(i) more than 10 years of experience in the field of monitoring and control of works and
(ii) experience in the application or research in management models for monitoring and
control of civil works via the remote adoption of digital tools. Thus, five experts were
invited to participate in this research (Table 6).

Table 6. Characterization of expert judgment.

Profession (Grade) Occupation Work Area Years of Experience

Civil Engineer, PhD Researcher BIM, lean and programming Brazil

Civil Engineer, PhD Academic
Consultant

BIM, lean and construction
management Chile

Civil Engineer, PhD Academic Technology, construction
management and robotics Chile

Industrial Engineer, PhD Researcher
Consultant

Monitoring technologies and
construction management USA

Civil Engineer, PhD Academic
Consultant

Lean, construction
management and monitoring Chile

4. Results and Discussion
4.1. Cyber-Physical Systems

A cyber-physical system is made up of layers and components specialized to process-
ing, communication, sensing and control functions. Multiple devices, hardware compo-
nents, computational resources and sensors are all connected by communication protocols.
Actuators, machines, robots and devices all have computing resources that are responsi-
ble for local decision making and onboard control. On the other hand, more centralized
systems acquire and process data from a variety of sources. Higher-level computational
processes may be responsible for autonomous or semiautonomous decision making at the
system level, whereas control algorithms may be utilized to maintain the process-specific
parameters of a device or machine [8].

Additionally, 3D data structures are significant in the architecture and construction
domains; they are used to record both design intents and the as-built condition. Multiple
input and monitoring devices, such as user interfaces and displays, may be included in
a cyber-physical system [8]. Deferred information and inefficient communication among
project stakeholders limit the efficiency of construction monitoring. Therefore, it is neces-
sary to inquire about collaborative work procedures, where the collection, analysis and
dissemination of information are standardized [29].

Based on these findings, the variation between the planned and executed schedule
and budget of construction projects is due to the absence of a system that integrates the
necessary tools to manage this type of project, from their planning and design to their
execution, follow-up and control [40]. Emphasizing the last-mentioned stage, we examine
the tools whose innovative use of technology allows for the monitoring of progress in
projects, which are shown in Figure 4, classified according to their data capture (FDCT) or
collaboration (CT) status, where the main key characteristics associated with Industry 4.0
can be distinguished.
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4.1.1. Field Data Capture Technologies (FDCT)

Progress data have encouraged many researchers and practitioners to introduce vari-
ous data acquisition technologies via digitization and an automated process of continuous
and accurate monitoring of all activities. With these technologies, a better diagnosis and
prognosis for the whole construction process is facilitated, with a direct impact on the
improvement of production capacities [41]. Construction 4.0 proposes automating and
digitizing design and construction processes, with a heavy focus on real-time data capture
and technology integration in on-site construction. Some of these technologies have already
been tried and used in construction, yielding some promising but limited outcomes; hence,
Construction 4 is currently being implemented [41].

Technologies have proven their effectiveness in different functions, such as detection,
counting, object identification, measurement of execution times and speeds, quality con-
trol, site conditions, location and tracking of elements [42]. To automate the tracking of
construction progress, several methods can be used with different types of data acquisition;
among the most used are imaging techniques and geospatial techniques [33].

These technologies are characterized according to their capture, visualization and/or
geospatial pressure capabilities. Vision-based technologies, such as digital imaging, have
enabled the development of civil engineering-related applications that aid in the design,
construction and maintenance of construction projects [37]. Visual information from re-
gions that are difficult to access can be easily collected; for example, daily photographs
arranged in chronological order make it possible to track changes at a construction site.
Therefore, there is the possibility to control the oldest state of the stored information, as
all of them are collected in a database [43]. Studies using vision-based technologies for
progress monitoring can be grouped into three categories: (i) studies on the generation of
as-built 3D models integrated with BIM, (ii) studies using image processing and machine
learning methods to monitor the construction progress and (iii) studies using unmanned
aerial vehicles for autonomous data collection [44]. In recent years, the focus of researchers
has been the use of unmanned aerial vehicles (UAVs) or drones that can be employed
for photographic surveys to develop accurate three-dimensional models for intelligent
monitoring of the construction progress of large-scale projects [45]. The use of unmanned
aerial vehicles (UAVs) or drones has captured the attention of researchers and profession-
als [46]. UAVs can be employed in different uses depending on the types of sensors that are
incorporated in the equipment [47]. Using UAVs with a camera sensor, UAVs allow for pho-
tographic surveys to develop accurate three-dimensional models for various applications,
such as intelligent monitoring of the construction progress of large-scale projects [45,48],
emergency assistance [49] and industrial operations safety monitoring [50–52].
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It is common for several of these methods, such as laser scanning, photogrammetry
and videogrammetry, to generate three-dimensional point clouds, which allow for the
construction of as-built models that give the opportunity to identify the progress at a
construction site from various angles and, thus, evaluate the current progress of a project.
Among these methods, photogrammetry is the most economical and efficient technique for
obtaining a 3D point cloud, which is necessary for progress documentation [53]. Addition-
ally, data fusion using overlapping time frames or overlapping location information from
multiple sources is possible by matching the same timestamps or locations. In this way, it
is possible to validate the geometry of 3D models with geospatial techniques, such as GPS
coordinates, and thus perform centimeter-level precision measurements, such as length,
area, and volume measurements [43]. These accuracy measurements make it possible to
evaluate the amount of work performed and efficiently and accurately identify construction
deviations [19]. There are a considerable number of studies on outdoor progress monitor-
ing; however, research on indoor progress monitoring is lacking. Researchers have used
image processing methods or laser scanners but have not utilized photogrammetry [19].
Machine teams, robots and employees can collaborate on shared building activities thanks
to device-to-device communication, which can connect many concurrent processes and
enable new modalities of construction. These possibilities come with obstacles and neces-
sitate the development of new enabling technologies, such as domain-specific hardware
and software tools tailored to the needs and restrictions of the construction industry [54].
The use of the technologies could be conditioned to meteorological conditions [55]. In the
case of the use of UAVs and image capture, recreational and semi-professional drones may
not be prepared to withstand rain, for example. Additionally, light conditions on a sunny
or cloudy day may affect the quality of the images, so it is necessary to consider weather
conditions when planning flights [55–57].

4.1.2. Communication and Collaboration Technologies (CT)

Industry 4.0 generates a large amount of data. This information needs to be processed,
analyzed and used efficiently, which demands solid technological management. By defi-
nition, this data management must occur in real time and needs human support. [58]. In
this sense, the quality of the information generated, its efficiency, the format in which it is
transferred, its applications and its subsequent uses are key elements for effective manage-
ment [35] for correct processing to provide meaningful information [59]. The application
of virtual collaboration in construction necessitates the use of various novel technologies
and communications, collaboration software and visualization applications to create a
better collaborative environment. The goal of planning and executing virtual collaboration
is to provide a communication platform that has the potential to share essential visual
information to support communication and knowledge sharing among planners, engineers
and other team members [60].

It is widely accepted that to improve productivity and performance in construction, the
industry requires an integrated collaborative approach to project execution. Collaborative
environments provide tools that support the exchange of information among different
applications, simultaneous access to data and the sharing of information sources across a
network to enable collaboration among different users and support for all teams, addressing
the challenges of fragmentation. The correct management of information is crucial to
achieve these objectives [60]. Although there has been rapid growth in the development of
collaborative tools and systems in recent years, especially in communication, visualization,
information and knowledge management, the adoption and application of these tools has
been slow and with mixed levels of success. Therefore, a well-defined methodology for
collaborative work is needed [60].

A large amount of stored and processed data requires a robust storage system, which
allows for access almost anywhere and by any stakeholder, inside or outside a network,
enabling global data management, control and analysis. [61]. This system is particularly
complex in an industry that is characterized by fragmentation and cascade planning of
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processes and performance stages of its disciplines and professionals. These barriers must
be overcome, both inside and outside an organization, by actively involving suppliers in
the logistics and innovation processes [62].

4.2. Interoperability: Integrated Use of FDCT and CT

The selection of a solution that works for each organization will depend on its role in
CSCs and the investments being made. In choosing a particular solution, organizations
should consider the compatibility among technologies [40] according to the actions carried
out both individually and concurrently [63]. There are technologies with higher develop-
ment; in this sense, Table 7 presents eight actions aligned with Construction 4.0 in relation
to the monitoring and control of tasks during the construction phase. It is evident that
the same technology can have several different actions, giving it a competitive advantage.
Given the need to identify the unobstructed data exchange among different cyber-physical
systems, a search for interoperability is carried out within the tools offered in the market.
In this sense, Tables 8 and 9 represent the intra-connections for the cases of FDCT and
CT, respectively, and Table 10 identifies the interconnections, which represent the existing
combination between the two subdivisions of concurrent technologies.

Table 7. Actions associated with the technologies applied during the construction phase: monitoring and control. Construc-
tion 4.0. Adapted from [62].

Action Description Technologies

Automate Total or partial execution of technical
tasks without human intervention.

Automated regulation checking and audits (ARCA); big data
analytics (BDA); data mining (DM); deep learning (DL); embedded
system (ES); Internet of Things (IoT); industrial Internet (II); machine
learning (ML); robotics (R)

Communicate Transmit data, information or knowledge
to a human.

Building information modeling (BIM); common data environment
(CDE); cloud computing (CC); data sharing (DS); edge computing
(EC); Internet of Things (IoT); industrial Internet (II); mixed reality
(MR); mobile applications (MAA); mobile computing (MC); radio
frequency identification (RFID); smartphone (SMP); ultrawide band
(UWB); virtual reality (VR); wireless sensor network (WSN)

Locate Track the positioning of humans and
materials in space and time.

Augmented reality (AR); deep learning (DL); geographic information
system (GIS); global positioning system (GPS); laser scanning (LS);
mixed reality (MR); radio frequency identification (RFID); unmanned
aerial vehicle (UAV); virtual reality (VR); wireless sensor networks
(WSN)

Rebuild This action translates an existing physical
system into a digital model.

Building information model (BIM); geographic information system
(GIS); laser scanning (LS); photogrammetry (PHT); unmanned aerial
vehicle (UAV)

Simulate To represent the behavior of a given
process.

Building information model (BIM); digital twin (DT); geographic
information system (GIS); machine learning (ML); simulations
models and tools (SMT); virtual reality (VR)

Visualize It allows for a visual digital model to be
made available to interested parties.

Augmented reality (AR); building information model (BIM);
digital twins (DT); mobile applications (MAA); mobile computing
(MC); mixed reality (MR); smartphones (SMP); virtual reality (VR)

Transfer data
Longitudinal transferability of
information of interest among
stakeholders.

Building information model (BIM): industrial Internet (II); Internet of
Things (IoT); mobile applications (MAA); mobile computing (MC);
radio frequency identification (RFID); smartphones (SMP); wireless
sensor network (WSN)
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Table 8. Interoperability matrix among field data capture technologies—intra-FDCT.

FDCT RFID LS UWB WSN UAV R SMP

RFID [63] [64] [65] [66] [67] X

LS [68] X [69] [70] X

UWB [71] [72] [72] X

WSN X [73] X

UAV [74] [75]

R [76]

SMP

Note: “[number]” is the reference number that evidence an integration between the two technologies. “X” implies that the authors do not
find any refence between the two technologies.

Table 9. Interoperability matrix among communication technologies and intra-CT collaboration.

CT AR VR DT MR MC SMT FTG MAA ARCA BDA DM DL ES GIS II IoT ML BIM CC CDE DS EC SN

SN X X X X X X X X X X X X X X X X X [77] X X X X

EC X [78] [78] X [79] X [80] X X X [81] X X X X [82] X [83] X X X

DS [84] X [85] X [86] X X X X X [87] X X [88] X [89] X X X X

CDE X X X X X X X [90] X X X X X X X X X [90] X

CC X X [91] X X X [92] X X X X X X [93] X [94] [95] [96]

BIM [97] [98] [99] X [100] [101] [92] [90] X [102] [103] [104] [105] [106] X [107] [108]

ML X [33] [109] X X [33] [110] X X [111] X X X [112] X X

IoT [113] [114] [115] [116] X X [117] X X X X X X X [118]

II [113] X X [119] X X X [120] X [121] X X X X

GIS [122] X [109] [123] [124] X [125] X X X X X X

ES X X X X X X [126] X X [127] X X

DL [128] X [129] [130] X X [131] X X X X

DM [132] X X X X [133] [134] X X X

BDA X X X X X [135] X [80] X

ARCA X X X X X X X X

MAA [132] X X [116] [136] X [137]

FTG [138] X [139] X X X

SMT [140] [33] [141] [142] X

MC [143] X X X

MR [144] X X

DT [145] [146]

VR [114]

AR

Note: “[number]” is the reference number that evidence an integration between the two technologies. “X” implies that the authors do not
find any refence between the two technologies.

Based on the links identified in the matrices in Tables 8–10 of the previous chapter, a
network analysis was performed. The results are represented by three types of connections:
(1) inter-edge, (2) intra-edge and (3) full. Each node represents the different technologies,
either FDCT or CT. The connections, which are represented by edges, symbolize the existing
interoperability. It is worth mentioning that the nodes that do not have edges are those that
do not manage to connect with other technologies, such as the automation of regulatory
control and audits (ARCA), for which there is no reported evidence that this technology is
linked with other technologies, which is inferred because it is a recent technology. Although
it has the potential to be utilized for monitoring and control, it still fails to integrate with
existing technologies, at least in the AECO industry. Table 11 shows the metrics analyzed
with a description of their interpretation and how they are graphically represented in the
diagrams generated.
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Table 10. Integration matrix between field data capture and communication and collaboration technologies—inter-FDCT
and -CT.

RFID LS UWB WSN UAV R SMP

AR X X X [147] [148] [149] [150]

ARCA X X X X X X X

BDA [151] [152] X X X [153] X

BIM [154] [155] X [156] [157] [158] [159]

CC [160] X X X [161] X X

CDE X X X X X X x

DL X [162] X X [163] [164] X

DM [90] X X X X X [165]

DS X X X X X X X

DT X [166] X [156] X X [167]

EC X X X X [168] [83] X

ES [169] X X [170] X [171] [172]

FTG X [173] [174] X [92] [175] [176]

GIS [174] [106] [177] [178] [179] [180] [181]

II [118] X X [118] [182] [183] [184]

IoT X X X [118] [182] [185] [186]

MAA X X X [187] [137] X X

MC X X X [187] X [188] [189]

ML [190] [191] X X [168] [192] [193]

MR X X X X [194] X X

SMT [133] [195] X [196] [197] X X

SN X X X X X X X

VR [198] [199] X [200] [201] [202] [150]

Note: “[number]” is the reference number that evidence an integration between the two technologies. “X” implies that the authors do not
find any refence between the two technologies.

Table 11. Interpretation and graphical representation of network analysis.

Metric Interpretation Graphic Representation

Degree centrality Indicates technologies with the highest number of
relationships, hence, the most influential within the groups.

Node size: the larger is the node size, the higher is the
degree centrality

Betweenness degree

Technologies that occupy an intermediary position.
Technologies that are more intermediary have a great
potential to be combined with other technologies. They
have high interoperability.

Node color intensity: the darker the color, the greater the
degree of intermediation.

Closeness centrality

It is based on the idea that nodes with a short distance to
other nodes can collaborate, which demonstrates that
technologies allow for interoperability given their
functional capacity and despite having few connections. It
represents an excellent position to monitor the flow of
information at the network level.

Node color intensity: the darker the color, the greater its
closeness centrality.

Modularity class
It arranges technologies as groups or communities
according to the existing interoperability among digital
tools.

Colors of communities: each color of the nodes represents a
community.

For intra-FCCT connections, specifically in field data capture technologies, Figure 5
presents the metrics of modularity and centrality of the intermediary, (a) and (b), respectively.
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(b) Betweenness: UAV stands out subtly; the balance of betweenness between capture technologies is
maintained, as represented by the pale green color.

The purple group is characterized by technologies that are highly automated, i.e., the
man–machine relationship for acquiring information is almost nil. On the other hand, it
is natural that the analysis of betweenness maintains the balance, since each technology
has its capabilities, and none is better than another. Thus, each technology is selected
according to the function it satisfies. In contrast, for the intra-connections’ analysis of the
CTs, Figure 6 shows that BIM is the most powerful intermediary or the intermediary with
the highest interoperability among the TC tools, i.e., it can exchange a large amount of data
and knowledge. The technologies that achieve this to a lesser extent but still significantly
are augmented reality (AR), photogrammetry (PHT), the Internet of Things (IoT) and
digital twins (DT).
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Figure 6. Analysis of intra-connections networks CT—betweenness.

Figure 7 shows the interconnections, with FDCT technologies in red and CT technolo-
gies in green. Given the magnitude of the nodes, FDCT technologies take the leading role,
and drones (UAVs) again become an influential technology within the group, which is
related to technologies that have different functions, mainly reconstruction, simulation and
visualization. Regarding the role of intermediaries, in general, FDCTs stand out over TCs,
in this case, R, WSN, SMP and RFID. It is worth mentioning that BIM, under this arrange-
ment, does not have a major role because BIM is characterized by being a communicative
and collaborative technology (refer to Figure 8).
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Figure 9 shows the full connections, where it is evident that BIM, at the moment of
relating with the totality of the interactions, undoubtedly becomes the major intermediary.
BIM has great potential to be employed with other technologies, whether FDCT or CT. BIM
is able to connect with 80% of the technologies that have the potential to be utilized for
monitoring and control in construction projects according to the evidence found in the
literature.
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In general, three communities can be distinguished in Figure 10, where the leaders are
building information modeling (BIM), unmanned aerial vehicles (UAVs) and photogram-
metry (PHT). The first group, led by BIM, is in charge of being the intermediary with the
technologies that present less interoperability. The second group, led by UAVs, presents
mostly CT-type technologies. For the orange community, CT technologies are mainly
grouped and influential for data transfer, reconstruction and simulations.
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This triad formed by BIM, UAVs and PHTs does not coincide; the construction industry
has been widely adopting these technologies, and there is evidence of success in their
application. The benefits of their use extend to not only monitoring and control but also all
phases of the construction process, including operation. In addition, the models generated
can also be integrated with surveys of other technologies, such as laser scanners, which
provide more accurate information.
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Regarding the groups or communities formed in Figure 6, it can be seen that each
group is formed by FDCT and CT technologies, which shows the need to have a source of
data capture for the subsequent communication and collaboration that they provide. It is
noteworthy that the group led by UAV is not connected to PHT or GIS.

Figure 11 shows the abovementioned BIM, which is in charge of housing the infor-
mation that is extracted and analyzed by means of the other technologies. BIM becomes
a valuable platform due to its high interoperability, which allows for the integration of
the tools, allowing those involved in the construction process to unify the information
collected in a single platform.
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4.3. Validation of Digital Tools

To validate the performance of the 30 technologies that present the potential use for
monitoring and control within the AIC industry, the judgment of five experts was used
to consider the evaluations determined by the author. Each expert gave their judgment
on each of the six criteria for the FDCT and CT groups, the ratings of which are shown in
Tables 12 and 14, respectively.

In the frequency tables (refer to Tables 12 and 14), it is possible to note the level of
performance achieved by each technology according to the criteria of each group, excluding
the “not applicable” cases (Table 12).

Note that, in general (Table 13), technologies have a general solution or certain limita-
tions; only smartphones have limited usefulness. For time efficiency, 100% of the technolo-
gies do not take more time than the traditional method, and 57% of the technologies meet
the objective of obtaining as-built data in less time compared to the traditional method,
where those that would take more time are matched by the accuracy of the information
obtained, with the exception of smartphones. The accuracy of the data is 86% reliable and
provides accurate information about the current state of progress. Automation is achieved
in 86% of the technologies, where smartphones are again the exception.

The obstacles to the implementation of technologies, as usual, are centered on the
required training and equipment. It is essential to have qualified personnel with the
necessary knowledge to perform the methods. Although these technologies have become
more prevalent in recent years, as they are complex techniques, their manipulation is not
trivial. UAVs have become the tool that has been able to close this gap and are increasingly
implemented with greater frequency due to their versatility, ease of learning and portable
equipment.
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Table 12. Performance matrix of digital tools for in situ data acquisition.

FDCT
Utility Time

Efficiency Accuracy Level of
Automation

Training
Required Equipment

UTI EFI ACC AUT TRA EQUI

Ultrawide band (UWB) 2 2 2 2 0 1

Laser scanner (LS) 2 2 2 2 0 1

Robotics ® 1 2 2 2 1 1

Radio frequency identification
(RFID) 1 1 2 2 0 1

Smartphones (SMT) 0 1 1 0 1 2

Unmanned aerial vehicle (UAV) 2 1 2 1 1 2

Wireless sensor networks (WSN) 1 2 2 2 1 2

Table 13. Frequencies obtained according to the criteria for FDCT.

Criteria
Frequency of Performance

Good
(2)

Intermediate
(1)

Poor
(0)

Utility LS; UWB; UAV RFID; WSN; R SMT

Time efficiency LS; UWB; WSN; R RFID; UAV; SMT

Accuracy RFID; LS; UWB;
WSN; UAV; R SMT

Level of automation LS; UWB; WSN; R RFID; UAV SMT

Training required WSN; UAV; SMT; R RFID; LS; UWB

Equipment WSN; UAV; SMT RFID; LS; UWB; R

For the results in Table 14, the interoperability of the technologies was measured based
on the information obtained in the previous chapter, considering the full relationships,
that is, the combination between the intra-connections relationship and interconnections
relationship of the FDCT and CT technologies. Some technologies received a score of 0
because no document was identified where these technologies interact with others. A
score of 1 was assigned to technologies that presented a betweenness less than or equal
to 5. Technologies with a score of 1 or 2 presented the highest values: in decreasing order,
building information modeling, photogrammetry, digital twins, mobile applications and
the Internet of Things.

All of the technologies collect information via electronic means; however, 39% still
use the traditional method as a complementary method. In terms of decentralization,
there is a distinct trend towards partial delegation of actions and/or decisions at the CSC
level. On the other hand, 80% of communicative and collaborative technologies present an
instantaneous retrieval of information or take less time than the traditional method.

There is a balance towards meeting the needs of stakeholders within the capabilities
offered by each of the technologies. However, there is a medium adaptation to changing
requirements, especially for visualization or simulation technologies such as AR, VR, DT,
MR and SMT, since the changes generated in the field will not always be represented in
these technologies (Table 15).
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Table 14. Communication and collaboration technology tool performance matrix.

TC
Interoperability Virtualization Decentralization Real-Time

Capacity
Service-

Oriented Flexibility

INT VIR DES RTC SO FLE

Big data analysis (BDA) 1 2 NA 2 2 NA

Mobile applications
(MAA) 2 1 1 1 1 1

Machine learning (ML) 1 2 2 1 1 1

Deep learning (DL) 1 2 1 2 1 1

Automated regulation
checking and audits

(ARCA)
0 2 1 2 1 1

Edge computing (EC) 1 2 NA 2 1 NA

Cloud computing (CC) 1 1 2 2 2 2

Mobile computing (MC) 1 1 NA 1 2 1

Common data
environment (CDE) 1 1 2 2 2 2

Photogrammetry (PHT) 2 2 NA 2 2 2

Digital twins (DT) 2 2 1 1 2 1

Data sharing (DS) 1 1 2 2 2 2

Internet of Things (IoT) 2 2 1 2 2 2

Industrial Internet (II) 1 2 NA 2 2 NA

Data mining (DM) 1 1 NA 2 1 NA

Building information
model (BIM) 2 1 2 2 2 2

Simulations models and
tools (SMT) 2 1 1 NA 2 1

Augmented reality (AR) 1 2 1 2 2 1

Mixed reality (MR) 1 2 1 2 1 1

Virtual reality (VR) 1 2 1 2 2 1

Social networks (SN) 0 1 1 1 1 2

Geographic information
system (GIS) 1 2 NA 2 2 1

Embedded system (ES) 1 2 NA 2 1 1
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Table 15. Frequencies obtained according to the criteria for CT.

Criteria
Frequency of Performance

Good
(2)

Intermediate
(1)

Poor
(0)

Interoperability AR; BIM; DT; GIS; IoT;
PHT

BDA; CC; CDE; DL; DM;
DS; EC; ES; II; MAA; MC;

ML; MR; SMT; VR
ARCA; SN

Virtualization
AR; ARCA; BDA; DL; DT;
EC; ES; GIS; II; IoT; ML;

MR; PHT; VR

BIM; CC; CDE; DM; DS;
MAA; MC; SMT; SN

Decentralization BIM; CC; CDE; DS; ML AR; ARCA; DL; DT; IoT;
MAA; MR; SMT; SN; VR

Real-time capacity

AR; ARCA; BDA; BIM;
CC; CDE; DL; DM; DS;
EC; ES; GIS; II; IoT; MR;

PHT; VR

DT; MC; MAA; ML; SN

Service orientation BDA; BIM; CC; CDE; DS;
GIS; II; IoT; PHT; SMT

AR; ARCA; DL; DM; DT;
EC; ES; MAA; MC; ML;

MR; SN; VR

Flexibility BIM; CC; CDE; DS; IoT;
PHT; SN

AR; ARCA; DL; DT; ES;
GIS; MAA; MC; ML; MR;

SMT; VR

5. Conclusions

The use of technologies for monitoring and control in construction projects involves
challenges and opportunities for the AIC industry. With the current progress, it has been
possible to facilitate data acquisition in the field due to the key features offered by their
implementation, including automation, digitization, integration and interoperability, which
are supported by the Industry 4.0 revolution.

While there is a wide range of technologies on the market that promise different
functions, their use and the interoperability among them are still limited. The contribution
of this research is to show an analysis of the integration and interoperability of digital tools
for monitoring and control of construction projects during the execution phase. The most
widely used technologies in recent decades, such as BIM, unmanned aerial vehicles and
photogrammetry, are technologies that present a greater compatibility, which allows for a
reduction in the fragmentation of information and automation to a certain extent, since
human support is still required. As evidenced, BIM is a tool with a great capacity to store
data and it allows for the dissemination of this information to stakeholders. BIM marks a
new paradigm, and the interoperability and integration it has with different technologies
allows us to improve the efficiency of information management in construction due to the
unification of information. In summary, BIM was characterized by generating connections
with emerging technologies in the industry and, therefore, its potential is evidently superior
to that of other technologies.

A limitation that emerged from the research was the limited evidence found in the
literature. Although technological advances have increased, the AEC industry has slowly
adopted these innovative techniques, even more so for the function and stage of focus
of this research. Implementing this type of technique in monitoring and control is still
considered experimental in nature and, therefore, requires a significant investment from
companies (whether public or private). Only a minority of companies dare to innovate and
leave behind the traditional method. Another limitation of the study was that a set of tools
was not applied in a real case of professional practice with the objective of analyzing and
evaluating the benefits and obstacles of implementing this type of technologies associated
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with Construction 4.0; therefore, it is recommended to carry out studies in real cases and
evaluate the impact of their implementation from a quantitative and qualitative perspective.

On the other hand, it is difficult to point out which technology or technologies will
lead the monitoring and control process, since the technologies investigated in this paper
will not necessarily be the technologies used in the medium term. In addition, given the
dynamic and changing nature of construction, it is currently difficult to standardize the
monitoring and control process. Defining which technologies and the sequence of the
process is complex, since there are different factors and variables that must be controlled
according to the particularity of each project. In addition, it is necessary to individually
or jointly evaluate the benefits and limitations of the technologies according to a given
context. It is also a challenge to promote a culture of implementation and adaptation of
these innovative methods.

From a practical point of view, this research seeks to contribute to the discussion and
promotion of other studies on the integration and interoperability of these tools studied. It
is interesting to study the advances made by the industry, analyze how these technologies
are implemented and evaluate the added value in the projects where they are implemented.
Researchers are also encouraged to experiment with finding interoperability, which was
not possible in the current literature. In this way, researchers can document them and
provide more information to contribute to a greater supply of techniques to achieve full
automation of the process.

As a future line of work, to complement what has been pointed out in this document,
it is possible to work on new criteria considered critical to allow for the automation of a
monitoring and control system. Adding new criteria, weighting them, adding multiplying
factors, etc. would make it possible to determine with greater certainty and rigor which are
more relevant when choosing one tool over another.

Additionally, we encourage developing an incremental methodology of adoption of a
group of technologies, where the levels of adoption of automation are defined and where
the technologies are subject to the functionality according to the objective to be achieved
due to the flexibility provided by the technologies. Thus, they can manage the construction
process of any building by (1) allowing for the development of integrated solutions via a
shift towards the flexibility of processes and autonomy and communication among devices
connected by multiple parallel processes and (2) allowing for new modes of networked
and collective construction in common construction tasks.
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