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Abstract: Auxetic structures possess a negative Poisson ratio (ν < 0) as a result of their geometrical
configuration, which exhibits enhanced indentation resistance, fracture toughness, and impact resis-
tance, as well as exceptional mechanical response advantages for applications in defense, biomedical,
automotive, aerospace, sports, consumer goods, and personal protective equipment sectors. With the
advent of additive manufacturing, it has become possible to produce complex shapes with auxetic
properties, which could not have been possible with traditional manufacturing. Three-dimensional
printing enables easy and precise control of the geometry and material composition of the creation
of desirable shapes, providing the opportunity to explore different geometric aspects of auxetic
structures with a variety of different materials. This study investigated the geometrical and mate-
rial combinations that can be jointly tailored to optimize the auxetic effects of 2D and 3D complex
structures by integrating design, modelling approaches, 3D printing, and mechanical testing. The
simulation-driven design methodology allowed for the identification and creation of optimum aux-
etic prototype samples manufactured by 3D printing with different polymer materials. Compression
tests were performed to characterize the auxetic behavior of the different system configurations. The
experimental investigation demonstrated a Poisson’s ration reaching a value of ν = −0.6 for certain
shape and material combinations, thus providing support for preliminary finite element studies on
unit cells. Finally, based on the experimental tests, 3D finite element models with elastic material
formulations were generated to replicate the mechanical performance of the auxetic structures by
means of simulations. The findings showed a coherent deformation behavior with experimental
measurements and image analysis.

Keywords: auxetic structures; additive manufacturing; SLS; FDM; quasi-static compression testing;
FEA

1. Introduction

Some of the major structural advantages of sandwich composites are the high stiffness-
to-weight ratio and the high bending strength-to-weight ratio. The sandwich increases
the flexural rigidity of structures without adding substantial weight. The design and
manufacturing of lightweight composite structures for protective purposes are of inter-
est for both defense and civilian applications, including aircraft, sports, automotive, and
consumer goods [1,2]. Sandwich structures demonstrate interesting characteristics, such
as high-energy absorption capacity, high strength, and improved stability [3]. A tradi-
tional sandwich panel consists of a low-density core, mainly in the honeycomb or porous
structures, and two stiff metal or composite faces. Honeycomb matrix structures are
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favored in sandwich applications due to their impact resistance and energy absorption
characteristics [4]. However, in recent years, experiments on sandwich composites with
auxetic materials resulted in deformation reduction, higher flexure response, and energy
absorption potential when compared with honeycomb structures [5,6].

The main objective of this article is to study, develop, and analyze additively manu-
factured auxetic cores as an alternative solution to conventional honeycombs in sandwich
structures for impact applications. Auxetic structures (ν < 0), in contrast to conventional
structures (ν > 0), exhibit enhanced indentation resistance, fracture toughness, and impact
resistance as well as an exceptional mechanical response [7,8]. These superior properties
established auxetics as ideal materials for a broad range of applications, mainly in the area
of light-weight structures, due to their ability to achieve high stiffness and a large surface-
to-volume ratio, which are pertinent for applications in defense, sports, and personal
protective equipment sectors [1,9–11]. From the manufacturing perspective, 2D auxetic
structures are simpler and less expensive to fabricate than 3D structures. However, with
the advent of additive manufacturing, it has become possible to produce complex shapes
that cannot be realized by traditional manufacturing processes. Three-dimensional printing
enables easy and precise control of both the geometry and the material composition of
complex shapes, which provides an opportunity to explore different geometric aspects of
auxetic core structures. Research studies in this field have been performed by [12–14] with
a variety of core materials.

This study presents different geometrical and material combinations that can be
jointly tailored, with the aim to investigate the auxetic effects of 2D and 3D complex
structures. This was facilitated by integrating CAD design, FEM modelling approaches, 3D
printing, and mechanical testing. The advantages of additive manufacturing were engaged
in the simulation-driven design methodology to allow for the identification of unit cell
geometrical features with increased auxetic responses. Following this process, auxetic
prototype systems were fabricated by means of 3D printing with different polymer material
combinations. Then, their auxetic behavior was investigated experimentally by means of
compression tests and computationally with the aid of finite element analysis. With the use
of such proposed auxetic systems, the mechanical requirements of any sandwich composite
structure can be adapted for specific impact and protective applications, primarily for
structural protection as well as for personal and sport protective equipment for the head,
body, and feet.

A number of auxetic structure geometries were identified through a literature review.
Figure 1 provides a comprehensive overview of existing auxetic structures classified into
six major categories: chiral (a), re-entrant (b), perforation (c), origami (d) rotating rigid (e),
and others (f). For manufacturing purposes, the internal structure of an auxetic material
and its deformation mechanism to “design” the macrostructure by tailoring the mechanical
properties must be considered [15]. The most common structures of cellular auxetics,
in which the deformation mechanism response drives the negative Poisson’s ratio, are
designated into re-entrant, chiral, and rotating polygon units, although there may be certain
re-entrant structural configurations that do not exhibit auxetic behavior [16]. Regardless
of the differences between structures, Poisson’s ratio is dominated by changes in the
internal areas. All of the structures expand under tension (internal areas expand), and
while under a compressive load, their internal areas tend to enclose. These microstructural
effects are responsible for the macroscopically observed negative Poisson’s ratio response.
The first re-entrant cellular structure was proposed by Gibson and Ashby in the form of
honeycombs [17]. Re-entrants have been used widely to study the controlled mechanisms
of the auxetic effect. A variety of re-entrant structures can be found in 3D or in 2D and
are formed by hexagonal, star shape, or arrowhead face cells. When these structures
are subject to the uniaxial tensile load, the cell ribs tend to increase (moving outward),
resulting in the auxetic effect. Lakes [18] and Wojciechowski [19–21] proved that a non-
centrosymmetric, chiral structure can produce a negative Poisson’s ratio response. The
unit cell of this structure can be defined from a central node with six tangentially attached
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ribs/ligaments. When the uniaxial load is applied, the nodes rotate accompanied by
flexure of the ligaments, which rises the auxetic response in the transverse direction. With
chiral structures, a Poisson’s ratio close to −1 can be obtained. Grima and Evans [22]
presented a new structure that can achieve auxetic response by involving the rotation
of rigid squares joined with hinges at their vertices. Many authors extended the square
geometry of this rotating mechanism to other polygon geometries to capture auxeticity:
rotating tetrahedral [23], triangles [24–26], rectangles [27], and rhombi [28]. Likewise,
studies have shown that this is the dominant mechanism of the auxetic response of natural
materials, such as zeolite and a-cristobalite [29,30]. In addition to, and apart from the
above mechanisms, auxetic properties can result from a variety of cooperative phenomena,
scaling from micro [31] to macro levels [32]. Overall, there are a variety of other auxetic
structures found in the literate that show a vast number of possibilities, through varying
patterns and configurations, for achieving the desired auxeticity.
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Figure 1. Literature review and classification of existing auxetic structures: e.g., (a) chiral [33], (b) re-
entrant [34], (c) origami [35], (d) perforated [36], (e) rotating rigid [37], and (f) ‘Bucklicrystal’ [38].

The geometrical complexity of auxetic structures makes additive manufacturing tech-
nologies unavoidable for their creation. Harnessing additive manufacturing to produce
auxetic structures is a natural choice due to their intrinsic geometrical complexity. Table 1
summarizes the types of auxetic structures with the corresponding additive manufacturing
technology and the materials used for their creation. In addition to polymer 3D printing,
metal additive manufacturing technologies were incorporated to produce auxetic cellular
structures [8,39–41].

Table 1. Summary of different types of auxetic structures with corresponding additive manufacturing technology and
materials used for their creation [42].

Technology Auxetic Type Material

Polyjet 2D/3D chiral, 2D re-entrant, missing ribs Veroblue, VeroWhite, TangoPlus, VeroGray
FDM 2D/3D chiral, 2D re-entrant PLA
SLA 2D/3D chiral, 2D re-entrant Tough resin, Photosensitive resin
SLS 2D/3D chiral Polyamide 12
SLM 3D chiral, 3D re-entrant AlSi10Mg, SS 316L, Ti56Ni44
EBM 3D re-entrant Ti-6Al-4V
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2. Simulation-Driven Parametric Design of Auxetic Structures

Based on the various existing auxetic patterns studied in the literature and their
mechanical performance [43], a tetra-petal star-shaped unit cell (Figure 1) [44–46] was
selected for the design and investigation in this study due to its symmetry and mechanical
performance. The auxetic response of petal structures is attributed to a hinge and elastic
support system similar to the response of star shape structures, with the advancement
of avoiding sharp edges, which lead to stress concentrations and discontinuities during
production under additive manufacturing technologies. Furthermore, tetra-petal structures
exhibit an enhanced auxetic response compared to tri- and hexa-petal structures, and this
behavior is strongly dependent on petal geometrical characteristics, form, and size.

Following the selection of the unit cell form, a numerical parameter study was con-
ducted by varying certain geometrical features of the unit cells, including the angles of
petals and between petals, the distance of the base strut from center, and the petal radius
and the strut thickness, as shown in Figure 2. Twelve (12) variations of the tetra-petal
unit cell were used to explore the lowest Poisson’s ratio that these unit cells could exhibit
under compression loads, starting with two different polymers: polylactic acid (PLA) and
thermoplastic polyurethane (TPU), which represent the high and low Young’s moduli
classes, respectively. Number (8) was the initial design configuration of the tetra-petal
unit-cell and is used as a reference. All unit cells exhibited effective Poisson’s ratios that are
independent of the generated equivalent strains, i.e., they maintain their auxetic behavior
independently from the material’s strain. For the case of the elastomer material, ν = −0.6
was achieved, while for the case of a hard polymer, ν = −0.4 was observed (Figure 3). For
both cases, a finite element analysis was conducted, in which symmetry conditions were
applied on the bottom and left surfaces of the unit cell, roller boundary conditions on the
rear face, and vertical displacement on the upper face. The hard polymer was modeled as
von Mises plastic material and the soft polymer as hyperelastic Mooney–Rivlin material
(Table 2).
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Table 2. Material properties used for the FE analysis of unit cells: Von Mises plastic material for hard
polymer (PLA) and hyperelastic Mooney–Rivlin material for soft polymer (TPU).

Von Mises Plastic Material Hyperelastic Mooney–Rivlin Material

Property Value Property Value

Density, d 1240 kg/m3 Density, d 1200 kg/m3

Elastic modulus, E 973 MPa Poisson’s ratio, v 0.45
Poisson’s ratio, v 0.36 Tensile strength, στ 30 MPa
Yield strength, Y 15.7 MPa Mooney–Rivlin coef. C10 −1.1 MPa

Mooney–Rivlin coef. C01 5.2 MPa
Mooney–Rivlin coef. C11 −846.5 MPa
Mooney–Rivlin coef. C20 451.7 MPa
Mooney–Rivlin coef. C02 398.7 MPa

3. Fabrication of Prototypes Sample by Means of 3D Printing

After the identification of the most appropriate geometrical variations of unit cells
for the PLA and TPU polymer materials, 2D and 3D prototype samples of 3 × 3 unit cell
systems were designed for further numerical and experimental investigations. For this
purpose, two geometrical variations were favored: one for the 2D samples (Figure 4) and a
similar one for the 3D samples (Figure 5) to allow for a direct comparison between different
materials for each of the 3D printing processes. Samples were additively manufactured
through FDM (2D samples) and SLS (3D samples) technologies. The proposed auxetic
systems were created out of the following materials: PLA, PET, TPU through FDM process,
and PA12, Duraform Flex® through powder bed fusion (PBF). Table 3 summarizes the
various types of the manufactured auxetic samples used for experimental investigation in
terms of their auxetic properties under compression.

Table 3. Auxetic sample types with different materials and 3D printing method.

Auxetic Sample 3D Printing Method Geometry

PLA FDM 2D
PET FDM 2D
TPU FDM 2D
PA12 SLS 3D

Duraform Flex SLS 3D
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First, prototype samples of 2D auxetic systems were planned with the same number
of unit cells (3 × 3). Three specimens were produced for each selected material (PLA,
PET, TPU) using the fused deposition modeling (FDM) technique by means of 3D-printer
Raise3D Pro2 Plus. The layer height selected to manufacture these parts was set to 0.2 mm,
and the infill percentage was kept to 100%. Table 4 lists the process parameters of the FDM
process. All specimens were manufactured along the z-direction, as illustrated in Figure 4,
to refrain from using supports with a total size of 90 × 94 × 30 mm.
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Table 4. Process parameters for the FDM process with Raised 3D Pro2 Plus Dual Extruder.

Process Parameter
Materials

Units
PLA PETG TPU

Filament diameter 1.75 1.75 1.75 mm
Nozzle diameter 0.4 0.4 0.4 mm
Extrusion width * 0.44 0.44 0.44 mm

Nozzle temperature 205 240 225 ◦C
Bed temperature 60 80 60 ◦C
Printing speed 50 45 25 mm/s
Layer height 0.2 0.2 0.2 mm
Infill density 100 100 100 %

* Extrusion width is 110–120% of the Nozzle diameter.

In a similar fashion, two 3D samples with identical geometrical features were fab-
ricated by means of powder bed fusion of polymers with two different materials. The
PA12 sample was fabricated on an EOS P 396 SLS machine, while the Duraform FLEX
sample was fabricated on a DTM Sinterstation 2500 Plus. The geometrical features of the
3D samples are shown in Figure 5, while the process parameters for the SLS processes are
provided in Tables 5 and 6.
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Table 5. Process parameters for SLS process with PA12 powder (nylon).

Process Parameter Value Units

Machine type EOS P 396 -
Material (powder) EOS PA2200 (PA12) -

Laser type CO2 -
Laser power 40 W

Laser spot diameter F-theta lens, Standard focus µm
Laser speed 4000 mm/s

Layer thickness 100 µm
Hatch distance 0.3 mm

Table 6. Process parameters for SLS process with Duraform Flex powder (rubber).

Process Parameter Value Units

Machine type DTM Sinterstation 2500 Plus -
Material (powder) Duraform FLEX, infiltrated -

Laser type CO2 -
Laser power 30 W

Laser spot diameter 300 µm
Laser speed 5000 mm/s

Layer thickness 150 µm
Hatch distance 0.3 mm

4. Experimental Mechanical Testing of 3D Printed Auxetic Structures
4.1. Experimental Setup

The sample prototypes created with 3D printing were experimentally tested under
compression loading to investigate their auxetic response. All samples were characterized
using a universal uniaxial compression tester with a strain rate of 0.04 s−1. Figure 6 shows
the experimental setup for the compression testing. The force response during compression
was captured with a force sensor as a function of the displacement of the hydraulic pressing
punch, which was measured with a linear potentiometer. The measurements were captured
by means of a data acquisition system, and the experiment was repeated three times for
each auxetic sample type to ensure the repeatability of the recorded measurements.
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4.2. Experimental Results

Figure 7 illustrates the force-displacement measurements for PLA, PET, TPU materials
made by FDM and PA12 material by means of PBF. All four materials showed strong
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reproducibility. The Duraform Flex rubber 3D sample made by SLS demonstrated only
minor force response (less than 2 N) due to very low overall stiffness. Since the measuring
accuracy of the available force sensor was unable to capture forces of that range, the results
for this material are omitted.
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Figure 7. Experimental measurements of force vs. displacements on auxetic samples.

The experimental study for the 2D auxetic geometries has shown that PLA samples
provide the highest stiffness and force response, due to their high elastic modulus, com-
pared to the other materials tested in this experiment. The experiments showed that
between 15 mm and 20 mm of travelled compression distance of punch, the FDM 2D
samples (PLA, PET, and TPU) produced an increase in the gradient. This elevated stiffness
in samples was caused by the contact of the unit cells in the vertical direction during
compression. In PLA and PET, the contact took place after the plastic deformation, while
for TPU, the contact occurred in the elastic region of the auxetic samples due to the con-
siderably lower Young’s Modulus. The SLS 3D auxetic sample made of PA12 powder
indicates that lower levels of stiffness were due to the overall lower utilization of material,
as illustrated in Figure 5 compared to the FDM 2D samples (Figure 4). The maximum
force measured on the samples follows a trend comparable to the stiffness. This can be
justified in a similar manner as the stiffness according to the mechanical properties and the
overall geometry configuration between the 2D and 3D auxetic samples. The auxeticity was
derived by the observed shrinkage only in the transverse x-direction for the 2D samples
over the displacements in the loading z-direction, whereas the shrinkage that occurred in
both the transverse plane x- and y-directions was used for obtaining the auxeticity of the 3D
samples. Here it is worth mentioning that for all samples, the loading z-direction concurs
with the building direction of the 3D printing processes for both FDM and SLS. The lower
Poisson’s ratio estimated for the 3D sample compared to the 2D samples can be explained
by the 3D nature of the sample and the fact that auxeticity occurred only in one transverse
direction (x-direction) for the 2D samples, while shrinkage was observed in both of the
plane directions x and y for the 3D probes. Table 7 summarizes the results on the average
stiffness and maximum force recorded during the experiments, as well as the average
resulting Poisson’s ratios for each auxetic sample. The average Poisson’s ratio for the 2D
samples was obtained using the measured length reduction in the transverse x-direction
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during loading of the three samples for each material. Nevertheless, the average Poisson’s
ratio for the 3D auxetic sample was calculated by means of the captured shrinkage in
both transverse x- and y-directions with respect to the axial loading direction for three
samples. A detailed auxetic response variation as a function of the strains for each sample
was captured by image analysis and is illustrated in Figure 8.

Table 7. The results of the average stiffness and average maximum force for the auxetic samples compared to the bulk
mechanical properties of filament and powder materials.

Auxetic Sample Stiffness
(N/mm) Max. Force (N) Aver. Poisson’s

Ratio (-)
Young’s Modulus

(N/mm2)
Tensile Strength

(N/mm2)

2D Auxetic Samples made by FDM

PLA 28.5 480 −0.43 2636 46.6
PET 16.3 320 −0.47 1472 31.9
TPU 0.5 65 −0.59 9.4 29.0

3D Auxetic Sample made by SLS

PA12 1.6 34 −0.22 1700 48.0
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Figure 8. Poisson’s ratio variation as a function of strains captured by image analysis of each sample
at different displacements.

The above experimental results are used to evaluate the FE models, which are defined
to replicate the compression tests of the auxetic samples and to allow for the determination
of the auxeticity, i.e., Poisson’s ratio, of the samples based on the geometrical features and
the material, as presented in the next section.

5. Numerical FE Modelling of Auxetic Systems’ Mechanical Behavior

Using the experimental testing results presented in Section 4 as a reference, finite
element models were defined as a means of replicating the auxetic response of the fabricated
samples. For this purpose, the 2D auxetic system with PLA and the 3D auxetic system with
PA12 were modelled by means of implicit FE analysis, using the commercially available
software ABAQUS/Standard of Dassault Systemes [47]. Details of the model geometry
are shown in Figure 9, which consists of the auxetic sample, bottom plate, and top plates.
The auxetic unit cell has identical geometrical characteristics as that of 3D printed models.
For both cases (2D and 3D auxetic systems), the samples were meshed with the element
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C3D8R (an 8-node linear brick, reduced integration), and the two plates were simulated
using discrete rigid surfaces with a reference point at their center. A mesh sensitivity
analysis was performed to ensure that the simulations’ results were insensitive to the
mesh size (convergence study). The auxetic sample was modeled as an elastic-perfectly
plastic material (von Mises) by defining its elastic modulus E, Poisson’s ratio ν, and yield
point Y values, based on the properties of PLA and PA12 taken from the literature for
FDM and SLS processing, respectively [48,49]. General contact conditions were defined
between the two plates and the sample, ensuring an accurate calculation of contact stresses
at each node. The contact between them introduces moving boundary conditions, which
are often discontinuous, and solving the contact requires iterations for updating the model
stiffness at every load increment. The contact formulation includes the use of a constrained
enforcement method for the pair surfaces of the master (plates)–slave (auxetic sample) and
accounts for finite strain, rotations, and sliding. Furthermore, the reference point of the
top plate was subjected to a displacement load along the z-direction, while all degrees
of freedom of the reference point of the bottom plate were fixed. Regarding all of the
simulated studies, it is assumed that the loading rate is slow enough such that static friction
can securely model the interface response. The force–displacement curve was calculated by
defining the vertical punch compression motion as a function of time-step and the reaction
forces at the bottom plate. The FE analysis was conducted for a compressive deformation
for which no contact or self-contact occurred between or within unit cells of the auxetic
systems.
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The rendered simulation results for the two auxetic systems are presented in
Figures 10 and 11. The calculated deformed shape for the 2D auxetic system with PLA
(left) as well as for the 3D auxetic system with PA12 (right) demonstrated alignment with
the experimental results for progressive compression displacements with a maximum
deviation less than 5%. It is also important to explain that the material yield strength did
not exceed up to this level of compression and that the commencement of a non-linear
behavior captured at the top of the force–displacement curve in Figure 11a is attributed to
the buckling effect of the struts with increasing deformation.
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Figure 10. Comparison of FE calculated deformed shapes with experimental images for progressive
compression deformation of (a) the 2D auxetic system with PLA and (b) the 3D auxetic system with
PA12.
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6. Discussion and Conclusions

The presented design work on auxetic tetra-petal structures initially aimed to identify
the most suitable unit cells that exhibit the highest Poisson’s ratio for specific polymers.
Furthermore, based on the selected unit cells, the proposed configurations were fabricated
with various 3D printable polymers and evaluated experimentally and numerically. De-
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sign aspects for additive manufacturing, 3D printing processes, and materials, as well
as characterization tools, were utilized in this study to demonstrate the potentials of 3D
printing techniques towards further improvement of the auxetic behavior of such auxetic
systems. A Poisson’s ratio increase reaching 28% for hard polymers, i.e., PLA, for the best
performing configuration (6) and up to 47% for elastomers, i.e., TPU, for the best perform-
ing configuration (12) compared to the reference unit cell configuration (8) of Figure 2 was
initially demonstrated by means of FE calculations, by selecting the appropriate geometri-
cal features, as shown in Figure 3b. Furthermore, the 3D printed FDM samples with PLA,
PET, and TPU reached Poisson’s ratios of ν = −0.43, −0.47, and −0.59, respectively, as
measured from experimental compression tests (Table 7). Hereby, an actual final Poisson’s
ratio improvement of 36% for PLA samples was achieved compared to the FE calculated
Poisson’s ratio of the reference unit cell (8). On the other hand, the final measured Poisson’s
ratio on TPU samples reached the same Poisson’s ratio with the FE simulated unit cell (12).
In addition, the possibility offered by powder bed fusion to evolve the auxetic geometry
in further directions, thus creating 3D auxetic patterns, was presented demonstrating the
auxeticity of ν = −0.22 in two transverse directions, i.e., in x- and y-direction. Finally, the
introduced FE models reproduced the auxetic performance of the tested 2D and 3D samples
in the elastic region with only marginal deviation compared to experiments. Noticeable
deviation is observed in case of the 2D samples at higher deformation due to the buckling
effect of the struts.

7. Outlook and Future Research

The current research work has shown promising results, and certain topics have been
identified which require further research. More specifically, future research is needed in
the context of enhancing the obtained results:

• Use the rendered knowledge for the 3D printing of auxetic structures with metallic
alloys by means of powder bed fusion for lightweight energy absorption applications
and for human bone implants with adapted stiffness properties;

• Implement material properties in the finite element model derived from the experi-
mental mechanical characterization of samples created by the particular 3D printing
process, i.e., FDM or SLS, with specific process parameters, in order to replicate
irregularities and possible anisotropy in the real built-up material;

• Enhance the finite element model definition to include contact conditions between
and within the auxetic unit cells, plasticity behavior, and fracture criteria;

• Perform experimental testing at higher impact speeds to characterize the auxetic
behavior at high strain rates.
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