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Abstract: An estimation of the elastic-plastic stress state using elasticity-theoretical input data is an
essential part of the service life estimation with the local strain approach in general and a German
guideline based on it, in particular. This guideline uses two different notch root approximations (an
extended version of Neuber’s rule and an approach according to Seeger and Beste) for this estimation.
Both require the implementation of Newton’s method to be iteratively solved. However, many
options are left open to the user concerning implementation in program code. This paper discusses
ways in which notch root approximation methods can be implemented efficiently for use in software
systems and elaborates an application recommendation. The following aspects and their influence
on the computational accuracy and performance of Newton’s method are considered in detail:
influence of the formulation of the root finding problem, determination of the derivative required for
Newton’s method and influence of the termination criterion. The investigation shows that the advice
given in the abovementioned guideline indeed leads to a conservative implementation. By carefully
considering the investigated aspects, however, the computational performance can be increased by
approximately a factor of 2–3 without influencing the accuracy of the service life estimation.

Keywords: Neuber’s rule; fatigue life calculation; notch strains; notch stresses; fatigue of materials;
local strain approach; notch strain concept

1. Introduction

The assessment of fatigue strength is one of the most important aspects in the design
of safety-relevant components. As an alternative or a supplement to an experimental
strength assessment, an analytical assessment can be performed. Various calculation
approaches exist for this purpose, which can be distinguished into stress- and strain-based
concepts [1,2]. The latter, which are also called local strain approaches, assume elastic-
plastic material behavior in the component and use the calculated local stresses and strains
as basic load quantities.

The notch strain concept, also known as the local strain approach, can be found
in many variants throughout the literature [1–5]. These variants differ primarily in the
procedures used to determine the local stresses and strains, e.g., the notch root approx-
imations [6–16], and in the load parameters used to evaluate the damage of individual
stress-strain hystereses, [17–24]. Both can have a significant influence on the calculation
result of the component lifetime. In addition, the calculation procedures of the notch
strain approach—regardless of how it is expressed—can only be applied with the help of
computational algorithms, since, for example, numerical solution procedures need to be
used. Therefore, the calculation result also depends to a certain extent on the user-specific
implementation of these calculation algorithms.
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To be able to use local strain approaches for a reliable analytical component assess-
ment, the abovementioned diversity of variants and the dependency of the calculation
result on the implementation tend to be disadvantages. Calculation results are not com-
parable. To overcome this weakness, the guideline “Rechnerischer Festigkeitsnachweis
für Maschinenbauteile unter expliziter Erfassung nichtlinearen Werkstoffverformungsver-
haltens” (Analytical strength assessment for components under explicit consideration of
nonlinear material behaviour, [25]) has been developed in Germany. In this guideline, the
abovementioned diversity of variants in the calculation algorithms has been reduced to
two variants of different complexity. Both variants are also described in such detail that
the deviations in the calculation results by different users are reduced to a minimum. In
addition, the calculation algorithm is provided with a safety factor concept that allows
the assessment of component fatigue lives for low probabilities of failure. The described
guideline was developed by the German research association “Forschungskuratorium
Maschinenbau” (FKM) and will be referred to as the FKM Guideline nonlinear in the
following. As this guideline is only available in the German language so far, the calculation
model for the fatigue strength assessment will be briefly explained in the following. More
detailed information can be found in [25,26].

The FKM Guideline nonlinear allows two different calculation procedures for fatigue
strength assessment, which differ in the estimation of the local stresses and strains and the
load parameter used.

• On the one hand, the local elastic-plastic stresses and strains can be estimated using
the notch root approximation according to Neuber [27] with the extension according to
Seeger and Heuler [28]. For each closed hysteresis detected from the local stress-strain
paths estimated in this way, a load parameter PRAM, Equation (1), is calculated.

PRAM =
√
(σa+k · σm) · εa · E if (σa+k · σm) ≥ 0

PRAM = 0 if (σa+k · σm) < 0
(1)

Here, σa is the stress amplitude, σm is the mean stress and εa is the strain amplitude
of the detected hysteresis. E is Young’s modulus, and k is a correction factor that takes into
account the mean stress sensitivity of the material.

The load parameter PRAM is a modification of the widely used approach according
to Smith, Watson and Topper [17]. This modification extends the Smith, Watson, Topper
approach by a material-dependent mean stress sensitivity, as originally suggested by
Bergmann [19,29].

With the help of the PRAM values for the individual hystereses and a corresponding
PRAM Wöhler curve, damage accumulation can be carried out, and the component service
life can be calculated.

• On the other hand, the local stresses and strains can be estimated using the notch root
approximation according to Seeger and Beste [30–32]. The evaluation of the damage
of the individual hystereses is carried out with the PRAJ load parameter, which is a
refined version of the PJ parameter according to Vormwald [21,24].

PRAJ= 1.24 · ∆σeff
2

E
+

1.02√
n′
· ∆σeff · ∆εeff −

∆σeff
E

(2)

This is motivated by the fracture mechanics of short cracks and is thus able to take
into account the sequence effects of different load sequences through crack opening and
closing effects.

The calculation procedure with PRAM is less complex in terms of the calculation
algorithm and therefore is easier to implement. However, the variant using PRAJ has the
advantage that load sequence effects can be taken into account, which promises a better
accuracy, especially for load sequences with changing statistical characteristics.

Both described calculation procedures have in common that a notch root approxima-
tion is used to determine the local stresses and strains (extended notch root approximation
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according to Neuber or notch root approximation according to Seeger and Beste). With
these, the local elastic-plastic stresses are estimated based on stresses that were determined
using linear-elastic material behavior and, for example, finite element (FE) analysis. The
procedure for a notch root approximation is shown in a generalized and simplified form in
Figure 1. The determination of the local linear-elastic stress is marked as point 1.
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Figure 1. Estimation of local elastic-plastic stresses and strains from linear-elastic stresses using a
notch root approximation (schematically).

The notch root approximation determines how linear-elastic and elastic-plastic stresses
and strains are related. Thus, starting from point 1, the intersection with the elastic-plastic
material law can be determined with the help of the notch approximation function (point 2).
The combination of elastic-plastic stress and strain determined in this way represents the
estimate for the local stress-strain state.

The specific implementation for the two notch root approximations in question, which
rely on numerical solution methods, is not completely covered within the FKM Guideline
nonlinear [25].

Therefore, in this paper, the focus is on the application of notch approximation meth-
ods. On the one hand, the correctness of the implementation and, on the other hand, the
efficiency with respect to the computation time of different implementation variants shall
be demonstrated.

This paper is structured as follows: Section 2 describes the notch root approximations
used in the FKM Guideline nonlinear. In Section 3, issues regarding the implementation of
notch root approximations are listed and explained. These issues result in several possible
implementations of the notch root approximations in program code. Therefore, in Section 4,
some of these variants are implemented, evaluated, and discussed with regard to the
expected performance and accuracy. For this purpose, a database of artificial geometries in
combination with different configurations for the cyclic material properties is used. Finally,
Section 5 summarizes the results with recommendations for application.

2. Notch Root Approximations in the FKM Guideline Nonlinear

Two different notch root approximations are available in the calculation algorithm of
the FKM Guideline nonlinear:

• Notch root approximation according to Neuber [27] in the variant according to [28].
• Notch root approximation according to Seeger and Beste [30–32].

Both notch root approximations are used in the FKM Guideline nonlinear in such a
way that they establish the relationship between a linear-elastically determined stress and
the local elastic-plastic stresses and strains. The elastic-plastic stress state is thus estimated.
This relationship between the linear-elastic stress and elastic-plastic stress is called the
load-notch-strain curve of the component. This is used as a template with discrete values
for the respective stresses in the Rainflow HCM algorithm [33] to simulate the path of the
local stresses and strains depending on the path of the linear-elastic stress (load sequence)
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and to identify closed hysteresis loops. The HCM algorithm takes into account the effects
of Masing’s behavior during load reversal [34] and material memory [1,33].

The FKM Guideline nonlinear uses the approach according to Ramberg and Osgood
to describe the elastic-plastic material behavior [35].

εel,pl =
σel,pl

E
+

(
σel,pl

K′

) 1
n′

(3)

Here, E is Young’s modulus, K’ is the cyclic hardening coefficient, and n’ is the cyclic
hardening exponent.

The determination of these parameters can be carried out either experimentally or by
using estimation methods. For the evaluation of strain-controlled tests, the FKM Guideline
nonlinear suggests a procedure based on [36] and [37]. In addition, a method developed
by Wächter et al. [38,39] for the estimation of the cyclic properties using tensile strength is
provided for use. This enables an analytical fatigue assessment to be carried out without
the need for expensive experiments.

Using the cyclic parameters K’ and n’, it is possible to calculate a cyclic yield strength
R’p0,2 as in Equation (4). R´p0,2 will later be of importance to estimate a maximum load.

R′p0.2= 0.002n′ ·K′ (4)

For the material behavior on a hysteresis branch, the doubled curve applies with
regard to stress and strain because of Masing’s behavior, illustrated in Figure 2:

∆εel,pl =
∆σel,pl

E
+2·

(∆σel,pl

2 ·K′
) 1

n′
(5)
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Figure 2. Schematic illustration of Masing’s behavior (a) and the shape of the stress-strain curve due
to Masing’s behavior (b).

Due to this different behavior at the initial load and on load reversal, two load-
notch-strain curves have to be determined. This can be performed before applying the
HCM algorithm. In the FKM Guideline nonlinear, a total of 100 values with equally
spaced intervals between the respective elasticity-theoretical values are specified for the
discretization of the load-notch-strain curve for the initial load. According to Equation (5),
the number of values for the hysteresis branch must be twice as large and amount to 200.
The procedure is shown schematically for only eight values in Figure 3.
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Figure 3. Creation of a discretized load-notch-strain-curve via notch root approximations [40].

The load-notch-strain curves of the component for the initial load and for the hysteresis
branch are related. It is possible to derive the initial load-notch-strain curve from the
load-notch-strain curve of the hysteresis branch. By halving the values of elastic stress
∆σel, elastic-plastic stress ∆σel,pl, and elastic-plastic strain ∆εel,pl range of every second
of the abovementioned interval of the load-notch-strain-curve of the hysteresis branch,
the initial load-notch-strain-curve is obtained. This is used in Sections 4 and 5 to limit the
investigation to the determination of the load-notch-strain-curve for the hysteresis branch.

For the application of both notch root approximations available in the FKM Guideline
nonlinear, the knowledge of the limit load factor Kp is necessary. The limit load factor
describes the ratio of the external load Le, which leads to yielding at the local point under
consideration, and the external load Lp, which leads to global component collapse in the
case of an elastic-ideal plastic material law, Equation (6). The limit load factor can either be
approximately calculated by analytical relations for simple geometries [28,31,41] or, in the
case of complex geometries, by FE analyses using elastic-ideal plastic material behavior.
More details on the determination of Kp can be found in [28]. The limit load factor is
assumed to be given from this point on.

Kp =
Lp

Le
(6)

At first glance, it may seem questionable to perform a notch root approximation
if results from an elastic-plastic FE analysis are necessary for its application. However,
it should be pointed out that the FE calculation is only needed to determine the load
Lp leading to plastic collapse. For this purpose, a much coarser FE mesh can be used
compared to what would be necessary for the calculation of precise stress and strain values.
In addition, Kp is calculated with elastic-ideal-plastic material behavior. Both lead to
significantly less calculation effort than when calculating the load-notch-strain curve using
FE analysis with the Ramberg-Osgood material behavior.

2.1. Extended Version of Neuber’s Rule

The original version of Neuber’s rule [27] postulates, assuming elastic net-section
behavior, the equality of the products of stress and strain for linear-elastic and elastic-plastic
material behavior, Equation (7):

σel,pl · εel,pl= σel · εel (7)

As shown by Seeger et al. [28,30–32] but also noted by Ellyin and Kujawski [42], this
equation must be modified to account for high loads. To take into account the increasing
net-section plasticity, Seeger and Heuler proposed a modification of the Neuber equation
from Equation (7):

σel,pl · εel,pl= σel · ε∗el ·Kp (8)
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The use of ε∗el · Kp modifies the linear-elastic material behavior so that on the one
hand, the real material behavior and on the other hand, the increasing net-section plasticity
are taken into account [28,40]. The net section plasticity is modelled by ε∗el using fictitious
nominal stresses, obtained by means of the linear-elastic local stress σel and the limit load
factor Kp, and inserting these into the material law. In this case the Ramberg and Osgood
Equation (3) approach is used.

ε∗el =
σel/ Kp

E
+

(
σel/ Kp

K′

)1/n′

(9)

As mentioned above the load-notch-strain curve for initial load can be derived from
the load-notch-strain curve of the hysteresis branch. Therefore, in the following only the
procedure and the root finding equations for the hysteresis branch are explained. The
detailed derivation, which also includes the formulas for the initial load curve, is shown
in Appendix A. Equation (8) applied to the hysteresis branch can be transformed, as
described above, into the root finding problem specified in the FKM Guideline nonlinear
Equation (10).

f(∆σ el,pl) = 0 =
∆σel,pl

E
+2 ·

(∆σel,pl

2 ·K′
)1/n′

−
(

∆σel
∆σel,pl

·Kp ·
(

∆σel/Kp

E
+2 ·

(
∆σel/Kp

2 ·K′
)1/n′

))
(10)

Equation (10) has to be solved for the 200 discrete required load steps of the load-
notch-strain curves, respectively. The FKM Guideline nonlinear specifies Newton’s method
for this purpose. (Other solution methods would also be possible, but since this paper
focuses on the FKM Guideline nonlinear, only Newton’s method will be investigated, as
specified).

Newton’s method is a numerical solution method in which, starting from an initial
value x0, the following iteration (iteration step n) is executed up to a termination criterion:

xn+1= xn −
f(x n)

f′(x n
) (11)

The objective is to find the root of the function f(x).
In the FKM Guideline nonlinear [25], the start values of iterations ∆σ0 are defined to

be the corresponding elasticity-theoretical solutions ∆σel. The iteration is terminated after
a fixed number of ten steps.

To apply Newton’s method, Equation (11), the user must first determine the deriva-
tives f’ of the function f from Equation (10).

With the value for the stresses ∆σel,pl determined in this way, the corresponding strain
value can be calculated using Equation (5).

2.2. Notch Root Approximation according to Seeger and Beste

In addition to the extended version of Neuber’s rule, the notch root approximation of
Seeger and Beste [30–32] is utilized in [25]. The relationship applied in this case is shown
in Equations (12) and (13).

εel,pl =
σel,pl

E
·

( σel
σel,pl

)2

· 2
u2 · ln

(
1

cos(u)

)
− σel
σel,pl

+1

 ·(ε∗el · E ·Kp

σel

)
(12)

with

u =
π

2
·
(
(σ el/σel,pl) − 1

Kp − 1

)
(13)

The resulting root finding problem specified in the FKM Guideline nonlinear for the
hysteresis branch is shown in Equations (14)–(16).
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f(∆σ el,pl) = 0 =

(
∆σel,pl

E +2 ·
(∆σel,pl

2K′

)1/n′
)
− ∆σel,pl

E ·
[(

∆σel
∆σel,pl

)2
· 2

∆u2 · ln
(

1
cos(∆u)

)
− ∆σel

∆σel,pl
+1
]
·
(

∆ε∗el·E·Kp
∆σel

)
(14)

with

∆u =
π

2
·
(
(∆σ el/∆σel,pl)− 1

Kp − 1

)
(15)

and

∆ε∗el =
∆σel/ Kp

E
+2
(

∆σel/ Kp

2K′

)1/n′

(16)

for the application of Newton’s method, a starting value is required. However, when
considering the division term ∆u, it is noticeable that the starting value for the Newton
iteration cannot be the linearly elastically determined stress, as described in Section 2.1,
since the quotient ∆σel/∆σel,pl = 1 and thus the division term ∆u = 0 would follow. As a
result, the undefined division by 0 would have to be carried out. Therefore, in [25], it is
suggested to set the initial value ∆σ0 slightly lower depending on the limit load factor Kp
according to Equation (17)

∆σ0= ∆σel ·
(

1 −
1− 1/Kp

1000

)
(17)

analogous to the notch root approximation according to Neuber (Section 2.1), Newton’s
method and the termination criterion of 10 iteration steps are specified in [25] to solve
Equations (14)–(16).

3. Issues concerning the Implementation of Notch Root Approximations

When implementing the two notch root approximations presented above in the fatigue
strength assessment in accordance with [25], the following questions arise for the user:

1. Is the formulation of the root finding problem a good option to ensure consistent
accuracy over the entire load range?

2. How can the derivative f’ of the functions for the notch root approximation used in
Newton’s method be obtained? Is it better to perform the derivation analytically or
numerically?

3. Is the termination criterion specified in [25] for Newton’s method with a fixed number
of 10 iterations suitable for reliably performing the notch root approximations? As
alternative termination criteria, criteria based on an accuracy value could also be
considered, which would lead to a variable number of iterations.

4. Are there other aspects to be considered with regard to a (numerically) stable and
reliable implementation?

The following paragraphs first present proposed solutions for the mentioned aspects.
These are later evaluated in Section 4 with regard to their effects on accuracy and efficiency.

3.1. Formulation of the Root Finding Problem for Use in Newton’s Method

In Section 2, the formulation of the root finding problem was described in the form
defined in [25]. The disadvantage of this formulation is that it optimizes the difference of the
strain (or strain range) εel,pl,RO calculated with the material behavior according to Ramberg
and Osgood (index RO) and εel,pl,NRA calculated with the notch root approximation (index
NRA) Equation (18).

f
(
σel,pl

)
= 0 = εel,pl,RO(σ el,pl) − εel,pl,NRA(σ el,pl

)
(18)

However, the underlying issue is that stresses and strains may be spread over several
orders of magnitude, e.g., 1 MPa to 1000 MPa. In such a case, optimization of a difference
leads to a situation where the relative error at the end of the iterations is dependent on
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the load level. It is thus considered reasonable to optimize on a factor so that a constant
relative accuracy is ensured over all orders of magnitude.

Therefore, as a possible alternative, a formulation will be suggested here in which the
factor between the resulting strain according to Equations (3)–(5), and the resulting strain
from the notch root approximation is formed, Equation (19).

f
(
σel,pl

)
= 0 =

εel,pl,RO

(
σel,pl

)
εel,pl,NRA

(
σel,pl

)−1 (19)

For the case of the extended Neuber’s rule, Equation (20) is the result for the hysteresis
branch.

f
(

∆σel,pl

)
= 0 =

∆σel,pl
E +2 ·

(∆σel,pl

2·K′
)1/n′

∆σel
∆σel,pl

·Kp ·
(

∆σel/Kp
E +2 ·

(
∆σel/Kp

2·K′
)1/n′

)−1 (20)

For the notch root approximation according to Seeger and Beste, the formulation via
quotient results in Equation (21) for the hysteresis branch.

f
(

∆σel,pl

)
= 0 =

∆σel,pl
E +2 ·

(∆σel,pl

2K′

)1/n′

∆σel,pl
E ·

[(
∆σel

∆σel,pl

)2
· 2

∆u2 · ln
(

1
cos(∆u)

)
− ∆σel

∆σel,pl
+1
]
· ∆ε∗el·E·Kp

∆σel

−1 (21)

using ∆u from Equation (15) and ∆ε∗el from Equation (16).

3.2. Derivatives of the Functions for Use in Newton’s Method

To apply Newton’s method, not only the functions for the root finding problem, i.e.,
Equations (10), (14)–(16), (20) and (21), are required but also their derivatives need to be
known. In this section only the derivatives for the hysteresis branch formulations of the
root finding problems will be discussed, the full list of derivatives are given in Appendix B.

In the case of the extended notch root approximation according to Neuber, the deriva-
tive of Equation (10) is relatively easy to determine analytically. It is given in Equation (22).

df
d∆σel,pl

= f′
(

∆σel,pl

)
=

1
E
+

(∆σel,pl

2·K′
)1/n′−1

K′ · n′
+

Kp · σel ·
(

2 ·
(

∆σel
2·K′ ·Kp

)1/n′
+ ∆σel

E·Kp

)
∆σ2

el,pl
(22)

The derivative for the alternative approach, Equation (20), described in the Section 3.1,
is given in Equation (23).

df
d∆σel,pl

= f′(∆σ el,pl) =

∆σel,pl
E +2 ·

(∆σel,pl

2·K′
)1/n′

Kp · ∆σel ·
(

2 ·
(

∆σel
2·K′ ·Kp

)1/n′
+ ∆σel

E·Kp

) +

∆σel,pl ·

 1
E +

(
∆σel,pl

2·K′

)1/n′−1

K′ ·n′


Kp · ∆σel ·

(
2 ·
(

∆σel
2·K′ ·Kp

)1/n′
+ ∆σel

E·Kp

) (23)

The notch root approximation according to Seeger and Beste has clearly more extensive
expressions in the root finding problem, namely, Equations (14)–(16) and (21). In principle,
the derivatives can also be determined analytically. However, practically, the analytical
derivative can only be calculated using a computer algebra system (CAS). The derivative
of Equation (14) is shown in Equation (24).
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df
d∆σel,pl

= f′(∆σ el,pl) =
1
E +

(
∆σel,pl

K′

)1/n′−1

K′ ·n′ − 1
∆σel

Kp · ∆ε∗el ·

 8∆σel
2·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ2
el,pl·π2·

(
∆σel

∆σel,pl
−1
)2 − ∆σel

∆σel,pl
+1




+
Kp·∆ε∗el·∆σel,pl

∆σel

·

 ∆σel
∆σ2

el,pl
−

16∆σ2
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ3
el,pl·π2·

(
∆σel

∆σel,pl
−1
)2 +

16∆σ3
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ4
el,pl·π2·

(
∆σel

∆σel,pl
−1
)3 − 4∆σ3

el·sin(∆u)·(Kp−1)

∆σ4
el,pl·π·cos(∆u)·

(
∆σel

∆σel,pl
−1
)2


(24)

The derivative of Equation (21) is shown in Equation (25). It is noticeable that these
equations are practically difficult to handle without error.

df
d∆σel,pl

= f′(∆σ el,pl) =

∆σel·

 1
E+

(
∆σel,pl

2K′

)1/n′−1

K′n′


Kp·∆ε∗ ·∆σel,pl·

 8∆σ2
el,pl ·ln

(
1

cos(∆u)

)
·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel

∆σel,pl
−1

)2 − ∆σel
∆σel,pl

+1



−
∆σel·

(
∆σel,pl

E +2·
(

∆σel,pl
2K′

)1/n′
)

Kp·∆ε∗ ·∆σ2
el,pl·

 8∆σ2
el ·ln

(
1

cos(∆u)

)
·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel

∆σel,pl
−1

)2 −
∆σel

∆σel,pl
+1


− 1

Kp·∆ε∗ ·∆σel,pl·

 8∆σ2
el ·ln

(
1

cos(∆u)

)
·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel

∆σel,pl
−1

)2 −
∆σel

∆σel,pl
+1


2 · ∆σel ·

(
∆σel,pl

E +2
(∆σel,pl

2K′

)1/n′
)

·

 ∆σel
∆σel,pl

2
−

16∆σ2
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

π2·∆σ3
el,pl·

(
∆σel

∆σel,pl
−1
)2 +

16∆σ3
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

π2·∆σ4
el,pl·

(
∆σel

∆σel,pl
−1
)3 − 4∆σ3

el·sin(∆u)·(Kp−1)

π·∆σ4
el,pl·cos(∆u)·

(
∆σel

∆σel,pl
−1
)2



(25)

Therefore, an alternative procedure will be discussed here. It is possible to approxi-
mate the derivative numerically via the difference quotient, whereby the central difference
quotient is used here, Equation (26). Here, h is the step size, which is set to 0.0001.

f′(x0) ≈
f(x0+h)−f(x0−h)

2h
(26)

3.3. Termination Criteria for Newton’s Method

Numerical methods generate an infinite sequence of values if no termination criterion
is defined. If correctly chosen, the termination criterion guarantees that the procedure
is terminated after a finite number of steps. In general, the procedure is terminated if a
desired accuracy of the solution is reached or if no solution can be found with the selected
parameters. In the case of Newton’s method, the following variants are conceivable:

• Termination after a predefined number of iterations.
• Termination when the value of the root finding problem falls below εV, i.e., when

Equation (27) is fulfilled. This is the case if the function value of the root finding
problem is sufficiently close to zero; compare Figure 4.

f(σn) < εV (27)
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In this paper, the following criteria are investigated in more detail:

1. Termination after 10 fixed steps, as suggested in [25].
2. Termination after falling below a function value f(σn) < εV.

a. using f according to Equations (10) and (14) (i.e., finding the root of the differ-
ence of εel,pl,RO−εel,pl,NRA) and εVd = 10−7.

b. using f according to Equations (20) and (21) (i.e., finding the root of the quotient
of εel,pl,RO/εel,pl,NRA−1) and εVq= 10−3.

Variants 2a and 2b aim to reach a defined accuracy for the solution, while no prediction
can be made about the required number of iterations. On the other hand, the number of
iterations is fixed for variant 1, but no control of the calculation accuracy is provided.

The concrete threshold levels for termination criteria 2a and 2b were determined based
on the following considerations:

• A small remaining strain deviation in criterion 2a has a high influence, especially at
low stresses.

# For example, for steel (Young’s modulus E ≈ 200, 000 MPa), a value of
εVd= 10−7 leads to a deviation in the stress direction of 0.02 MPa at 1 MPa,
which corresponds to a relative deviation of 2%.

# With increasing loads, the deviation of 0.02 MPa remains almost constant, so
the relative error decreases.

# The maximum error is ≈ 2%.

• If the absolute deviation of 0.02 MPa from the previous point is now applied to a load
height of 20 MPa, then the following value results for εVq for termination criterion 2b:

# εf =
(20 MPa/200,000 MPa)+10−7

(20 MPa/200,000 MPa) = 1.001 or since in Equations (20) and (21), 1 is

subtracted. The result is εVq= 10−3.

Variants 2a and 2b are motivated by the assumption that Newton’s method with a
quadratic order of convergence usually converges in 3 to 4 steps, meaning that it may not
be necessary to use 10 steps in most cases, and therefore, on average, a performance gain
might be achieved compared to variant 1, as proposed in [25].

3.4. Consideration of the Numerical Stability

In the case of the extended notch root approximation according to Neuber, no special
considerations have to be made with regard to stability. In all variants considered in this
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paper, the solution via Newton’s method reacts insensitively to small interferences of the
input data.

The calculation of the notch root approximation according to Seeger and Beste, on the
other hand, can result in complex numerical values, regardless of whether the analytical
derivation or the numerical approximation is used. Complex values become possible in
the context if, for example, the term ln(1/cos(u)), see Equation (12), becomes negative.
This always seems to occur when a comparatively large number of Newton iterations are
carried out, i.e., using the termination after 10 fixed steps. However, using termination
criteria 2a and 2b, the condition for termination is always reached before complex values
occur. A specific formula for determining when complex numbers are to be expected
cannot be provided. The example in Table 1 demonstrates that a small rounding error can
lead to unstable behavior. In this example, a small change in the 9th decimal place of the
elastic stress range ∆σel can lead to this unstable behavior and thus to complex values. This
example is taken from the study described in the next section and thus represents a case
that can also occur in this way in practical applications.

Table 1. Exemplary selection of parameters for which termination criteria 1 and 3 lead to complex
values when applying the notch root approximation according to Seeger and Beste.

Parameter Value

K’ in MPa 902.2915
n’ 0.187
Kp 1.7

∆σel leading to numerical stable behavior in MPa 110.022454508070
∆σel leading to numerical unstable behavior in

MPa 110.022454507071

4. Evaluation of Performance and Accuracy of Different Implementations

The described options in Section 3 regarding the implementation of the two notch root
approximations are to be evaluated in terms of the following two aspects:

• The accuracy with which the notch root approximations are carried out affects the
results of the fatigue strength assessment.

• The calculation resources required for the application or the required computing time
matter for an efficient implementation. When performing single calculations on a
single or a few individual locations of a component to be verified, this aspect is not
important. However, in regard to performing many assessments, e.g., when applied
to a whole FE surface mesh of a component, the calculation time becomes a decisive
factor.

For this purpose, a large number of artificial examples are considered in the following,
which contain all necessary input variables for a notch root approximation with the two
notch root approximations described above. For these examples, notch root approximations
are performed with the different implementation variants, and the calculation results of
the different variants are compared with each other in terms of accuracy and efficiency.

4.1. Database

For the following evaluation of calculation quality and efficiency, a database with
10 fictitious example geometries, each with 100 different configurations for the cyclic
properties, is used. These example geometries are represented by one dataset containing
all required input values for the two notch root approximations specified in [25]. These are
as follows:

• Maximum linear-elastic stress range relevant for the strength verification ∆σel,max.
• Tensile strength Rm for estimation of Ramberg-Osgood parameters according to [25].
• Limit load factor Kp.

These input values are defined within the value ranges given in Table 2.
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Table 2. Investigated parameter space for the applicability and performance of the notch approximation with different
termination criteria when using Newton’s method.

Parameter Symbol Range Number of
Equidistant Steps in the Range

Limit load factor Kp 1–8 10
Tensile strength Rm 300–1200 MPa 100

(resulting) Cyclic hardening coefficient K’ 640–3500 MPa (same as Rm)
(resulting) Cyclic hardening exponent n’ 0.187 1

(resulting) Cyclic yield strength R′p0,2 200–1100 MPa (same as Rm)
Maximum linear-elastic stress range ∆σel,max 0.1 · R′p0.2–0.8 · R′p0.2 ·Kp 100

The tensile strength Rm varies within a large range, representing the range of validity
within the FKM Guideline nonlinear [25] for the steel material group and is used to estimate
the cyclic material properties by applying the method from [25]. The limit load factor is
varied within a range that is assumed to be relevant in practice. The maximum load is
based on the cyclic yield strength, which can be determined using Equation (4), and the
limit load factor, which, as already mentioned, is a measure of the maximum load that can
be applied.

The dataset is constructed as follows: Every possible permutation consisting of the
first two rows of Table 2 is generated. Then, for each combination, the cyclic material
properties shown in Rows 3 to 5 are estimated. Next, the maximum linear-elastic stress
ranges are determined based on the cyclic material properties in the range given in Table 2.
Finally, for each of these combinations, notch root approximations on the hysteresis branch
(since, as mentioned in Section 2, the initial load-notch-strain curve can be estimated from
the load-notch-strain curve of the hysteresis branch) are performed according to [25] with
200 discrete points. In summary, this leads to ~20,000,000 data points and notch root
approximations.

4.2. Implementation into Software Code

To evaluate the abovementioned different variants of the notch root approximation
implementation, two different programming languages are utilized:

• The software environment MATLAB (version 2020b) was used to represent script
languages and

• Fortran (Intel Ifort 2019 Update 5 using “-O3” optimization) was used to represent
compiled languages in machine code.

Script languages and compiled programming languages can be optimized differently
for the respective calculation tasks. This in turn can lead to situations where a termination
criterion for the Newton iteration, which results in high performance in one case, is not
optimal in the other case. For this reason, both of the abovementioned programming
languages were used for this study.

All calculations were carried out separately for the variants of the termination criteria.
For the notch root approximation of Seeger and Beste, in addition to the termination
criterion, the type of derivation (analytical derivation according to Equations (24) and (25)
or numerical approximation according to Equation (26)) is also varied here. Therefore, the
following nine variants are investigated:

1. Enhanced Neuber using the analytical derivative and termination after 10 fixed steps
2. Enhanced Neuber using the analytical derivative, termination if Equation (10) falls

below εVd= 10−7

3. Enhanced Neuber using the analytical derivative, termination if Equation (20) falls
below εVq= 10−3

4. Seeger/Beste using the analytical derivative, termination after 10 fixed steps
5. Seeger/Beste using the analytical derivative, termination if Equation (14) falls below

εVd= 10−7
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6. Seeger/Beste using the analytical derivative, termination if Equation (21) falls below
εVq= 10−3

7. Seeger/Beste using the numerical approximation of the derivative, termination after
10 fixed steps

8. Seeger/Beste using the numerical approximation of the derivative, termination if
Equation (14) falls below εVd= 10−7

9. Seeger/Beste using the numerical approximation of the derivative, termination if
Equation (21) falls below εVq= 10−3

4.3. Results and Discussion

The database described in Section 4.1 is used to investigate the performance of the
abovementioned variants. For each dataset, the notch root approximations of each of the
nine variants 1 through 9 (Section 4.2) are executed using both MATLAB and Fortran
implementations.

For a qualitative comparison of the individual variants, two calculation runs are
performed. In the first calculation run, the number of Newton iterations until convergence
is recorded (which is independent from the programming language used). The distribution
of the number of iterations is shown in Figure 5. The boxes graphically represent the 25%
and 75% quantiles of the required number of Newton iteration steps to converge. In other
words, 50% of all points are inside the box. The whiskers represent the minimum and
maximum values of iteration steps ignoring outliers.
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Figure 5. Number of Newton iterations required to reach the termination criteria when performing the extended Neuber
notch root approximation (a) and the notch root approximation according to Seeger and Beste (b).

The distribution of the number of iterations required until the termination criteria are
met is independent of whether the analytical derivation or the numerical approximation
is used. For this reason, Figure 5b shows the distribution of the required Newton steps
independent of the method of derivation.

Figure 5a,b show that for termination criteria where an accuracy is specified, almost
always less than 10 Newton steps are required. In some cases, i.e., when applying low
loads, the termination criteria are fulfilled before the iteration starts. At the same time, it
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should be noted that in a few cases, when using a criterion quotient below εVq, more than
10 steps are required to achieve the desired accuracy.

In a second calculation run, only the calculation times are recorded. The result-
ing summed calculation time obtained by performing the extended version of Neuber’s
rule on the ~20,000,000 data points, carried out on an Intel i5-8400H CPU, is on the or-
der of 120–180 s when using MATLAB and 10–15 s when using Fortran. In the case of
the MATLAB script, the overall fastest variant for the extended version of the Neuber
rule is termination when Equation (20) (meaning the quotient of εel,pl,RO/εel,pl,NRA con-
verges) reaches the desired accuracy. In case of the Fortran program the fastest variant is
Equation (10) (difference εel,pl,RO−εel,pl,NRA) falls below εVd.

In the case of the notch root approximation of Seeger and Beste, the summed calcula-
tion time is on the order of 200–300 s when using MATLAB. In the Fortran program, the
summed calculation time is on the order of 35–70 s. As in the case of the extended version
of Neuber’s rule, Equation (21) (quotient εel,pl,RO/εel,pl,NRA) is the fastest approach when
using MATLAB, and Equation (14) (difference εel,pl,RO−εel,pl,NRA) is the fastest approach
when using Fortran.

The summed calculation times and the abovementioned findings are shown graphi-
cally in Figure 6.
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Figure 6. Summed calculation times for all 20,000,000 data points depending on the different formulations of the termination
criteria for Newton’s method, the different formulations of the root finding problem and depending on the programming
language (MATLAB and Fortran).

The distribution of the individual calculation times for each data point is shown in
Figure 7. The calculation times for the extended version of Neuber’s rule are shown in
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Figure 7a. It can be seen that the termination after reaching a desired accuracy results in
shorter calculation times on average compared to the 10-step approach.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 24 
 

The deviations of the estimated stresses of all variants in comparison to each other 
are on the order of 10  MPa. Deviations of this order of magnitude have a negligible 
influence on the calculated service life estimation. 

It can therefore be concluded that for both notch root approximations in question, 
termination criteria using a specific accuracy significantly reduces the number of 
necessary Newton iterations and improves the computational performance compared to 
the 10-step termination criterion proposed in the FKM Guideline nonlinear [25]. At the 
same time, the resulting stresses and strains are not significantly influenced. 

 
Figure 7. Calculation time of the various Newton termination criteria when using the extended notch root approximation 
according to Neuber (a), according to Seeger and Beste using the analytical derivative (b) and according to Seeger and 
Beste using the numerical approximation of the derivative (c). 

  

Figure 7. Calculation time of the various Newton termination criteria when using the extended notch root approximation
according to Neuber (a), according to Seeger and Beste using the analytical derivative (b) and according to Seeger and Beste
using the numerical approximation of the derivative (c).

The calculation times for the Seeger and Beste approach are shown in Figure 7b using
the analytical derivation and in Figure 7c using the numerical approximation. As with
Neuber’s rule, the approaches using a desired accuracy lead to faster calculations compared
to the 10-step approach. This influence is greater in the implementation in Fortran by a
factor of 2.5 than in MATLAB (Factor 2).

Using Figure 7b,c, the two approaches for the derivation can also be compared with
regard to the computing time. Notably, in the case of the implementation in MATLAB,
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the approximate method for the derivative via the difference quotient leads to higher
calculation times with the same termination criterion, while in Fortran, no significant
influence is visible.

One attempt at an explanation is based on Fortran’s high degree of optimization. The
recorded calculation times in Fortran are so short that other effects, such as background
tasks in the operating system, have a greater influence than the actual calculations.

Considering that the numerical derivative from Equation (26) is significantly easier to
handle than the analytical derivation from Equations (24) and (25), it can be concluded that
for the notch root approximations according to Seeger and Beste, the numerical derivative
in combination with the termination criterion 2a or 2b is a practical choice.

The deviations of the estimated stresses of all variants in comparison to each other
are on the order of 10−7 MPa. Deviations of this order of magnitude have a negligible
influence on the calculated service life estimation.

It can therefore be concluded that for both notch root approximations in question,
termination criteria using a specific accuracy significantly reduces the number of necessary
Newton iterations and improves the computational performance compared to the 10-step
termination criterion proposed in the FKM Guideline nonlinear [25]. At the same time, the
resulting stresses and strains are not significantly influenced.

5. Conclusions

In this paper, the theoretical background of notch root approximations is reviewed
as far as it is necessary for practical implementation in the FKM Guideline nonlinear [25].
The application of notch root approximations requires the solution of a nonlinear equation.
This solution is usually performed using Newton’s method. The implementation of this
method is the subject of this paper. In this context, the aspects of stability, performance,
formulation of the root finding problem and accuracy are considered in more detail. This is
interesting, for example, if the notch root approximation is to be applied to each node in
the scope of variant calculations or in a postprocessing of a linear-elastic FE analysis.

The FKM Guideline nonlinear uses the extended Neuber’s rule and the notch root
approximation according to Seeger and Beste. Both were examined more closely in this
paper with regard to the aspects mentioned above. The results obtained show that (not
depending on the notch root approximation method):

• 10 Newton steps, as suggested in [25], almost always lead to a desired accuracy but
are not required in most cases.

• In the case of a script language, here represented by MATLAB, the formulation of the
root finding problem in the form of a quotient between the strain calculated via the
material law and the strain calculated via the notch root approximation leads to the
best computational performance.

• In the case of a language compiled in machine code, here represented by Fortran,
the formulation of the root finding problem in the form of a difference in the strain
calculated via the material law and strain calculated via the notch root approximation
leads to the best computational performance.

In particular, for the notch root approximation according to Seeger and Beste, the
following findings were also obtained:

• If Seeger and Beste’s notch root approximations are used and an incorrect termination
criterion is selected, then there is a risk that the automated calculation will produce
complex numbers that cannot be interpreted meaningfully in terms of a service life
calculation. Here, the use of the termination criteria with a desired accuracy leads to
the most stable solution, in the sense that no complex number arose in the examined
parameter field.

• The analytical derivative of the notch root approximation according to Seeger and
Beste cannot be trivially used. The numerical approximation via the difference quotient
is much easier to handle and leads to minor losses in performance when used in
MATLAB and to comparable performance when used in Fortran.
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For implementation in engineering practice, the overall recommendation for both
notch approximation methods considered here is therefore to use the termination criterion
where the quotient of the strain εel,pl,RO/εel,pl,NRA converges, which leads to a constant
relative accuracy over all orders of magnitude, especially when using a script language.
The source code implementing all considered variants in this study are provided as a
reference implementation in [43].

Author Contributions: Conceptualization, R.B., L.M., M.W. and A.E.; methodology, R.B. and M.W.;
software, R.B.; validation, L.M., M.W. and A.E.; investigation, R.B.; resources, L.M.; writing—original
draft preparation, R.B.; writing—review and editing, M.W., L.M. and A.E.; visualization, R.B. and
M.W.; supervision, A.E.; project administration, M.W. and A.E. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding. However, we acknowledge support from the
Open Access Publishing Fund of Clausthal University of Technology.

Data Availability Statement: The source code implementing all considered variants in this study is
openly available as MATLAB source in [43].

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

E Young’s modulus
F function placeholder of the root finding problem
f’ function placeholder of the derivative of the root finding problem
FE finite element
FKM Abbreviation for the german research association “Forschungskuratorium Maschinenbau”
H step size
k mean stress correction factor
K′ cyclic hardening coefficient
Kp limit load factor
Le reference load for local yielding
Lp reference load for plastic collapse
n′ cyclic hardening exponent
NRA notch root approximation
PRAJ load parameter
PRAM load parameter
R′p0.2 cyclic yield strength
RO Ramberg Osgood
∆ range of stress/strain of a hysteresis
∆εeff effective elastic-plastic strain range
∆σeff effective elastic-plastic stress range
εa strain amplitude of the detected stress-strain hysteresis
εel linear-elastic local strain
ε∗el substitution strain for net section plasticity
εel,pl elastic-plastic local strain
εV placeholder for the convergence threshold
εVd convergence threshold when finding the root of the difference
εVq convergence threshold when finding the root of the quotient
σ0 start value of elastic-plastic stress for the newton iteration
σa stress amplitude of the detected stress-strain hysteresis
σel linear-elastic local stress
σel,pl elastic-plastic local stress
σm mean stress of the detected stress-strain hysteresis
σn value of elastic-plastic stress in the n-th newton iteration
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Appendix A. Derivation of the Root Finding Equations

In this section the derivation of the different root finding equations shall be described
in more detail. Here, the derivation in which the difference of εel,pl,RO according to Ramberg
and Osgood and εel,pl,NRA according to the notch root approximation is minimised takes
place first, followed by the derivation in which the quotient of both strains is minimised.
The procedure is always demonstrated using the extended version of Neuber’s rule first
and then the results for the method according to Seeger and Beste are shown.

Appendix A.1. Root Finding Equations Formulated by Taking the Difference

The starting point is the extended version of the Neuber’s rule:

σel,pl · εel,pl = σel · ε∗el ·Kp (A1)

In a first step ε∗el, which considers the material behavior in case net section plasticity
takes place, needs to be replaced with the material behavior according to Ramberg and
Osgood:

σel,pl · εel,pl= σel ·Kp ·
(
σel/Kp

E
+

(
σel/Kp

K′

)1/n′
)

(A2)

Equation (A2) may be rearranged to:

εel,pl =
σel
σel,pl

·Kp ·
(
σel/Kp

E
+

(
σel/Kp

K′

)1/n′
)

(A3)

In order to obtain a unique solution for the stress and strain, a second equation is
required. As the FKM Guideline nonlinear uses Ramberg and Osgood material behavior
εel,pl from (A3) can be replaced with Equation (3):

σel,pl

E
+

(
σel,pl

K′

)1/n′

=
σel
σel,pl

·Kp ·
(
σel/Kp

E
+

(
σel/Kp

K′

)1/n′
)

(A4)

The next step is to solve this equation for the desired elastic plastic stress. For this
purpose, the equation is converted into a root-finding problem by taking the difference of
the strains.

0 =
σel,pl

E
+

(
σel,pl

K′

)1/n′

− σel
σel,pl

·Kp ·
(
σel/Kp

E
+

(
σel/Kp

K′

)1/n′
)

(A5)

The steps described above can be applied for the hysteresis branch in the same way.
In this case Equation (A6) results:

0 =
∆σel,pl

E
+2 ·

(∆σel,pl

2 ·K′
)1/n′

− ∆σel
∆σel,pl

·Kp ·
(

∆σel/Kp

E
+2 ·

(
∆σel/Kp

2 ·K′
)1/n′

)
(A6)

Next, the identical procedure will be applied to the approach according to Seeger and
Beste Equations (A7)–(A9).

εel,pl =
σel,pl

E
·

( σel
σel,pl

)2

· 2
u2 · ln

(
1

cos(u)

)
− σel
σel,pl

+1

 ·(ε∗el · E ·Kp

σel

)
(A7)

with

u =
π

2
·
(
(σ el/σel,pl)− 1

Kp − 1

)
(A8)
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and

ε∗el =
σel/ Kp

E
+

(
σel/ Kp

K′

)
1/n′ (A9)

Equation (A7) (including (A8) and (A9)) is now equated with Equation (3).

σel,pl
E +

(
σel,pl

K′

)1/n′
=
σel,pl

E ·
[(

σel
σel,pl

)2
· 2

u2 · ln
(

1
cos(u)

)
− σel
σel,pl

+1
]
·
(
ε∗el·E·Kp
σel

)
(A10)

Rearranging the equation as already demonstrated for Neuber’s rule also leads here
to the difference formulation of the root finding problem.

0 =
σel,pl

E
+

(
σel,pl

K′

)1/n′

−
σel,pl

E
·

( σel
σel,pl

)2

· 2
u2 · ln

(
1

cos(u)

)
− σel
σel,pl

+1

 ·(ε∗el · E ·Kp

σel

)
(A11)

In the case of calculating a hysteresis branch Equation (A12) results:

0 =
∆σel,pl

E
+2 ·

(∆σel,pl

2K′

)1/n′

−
∆σel,pl

E
·

( ∆σel
∆σel,pl

)2

· 2
∆u2 · ln

(
1

cos(∆u)

)
− ∆σel

∆σel,pl
+1

 ·(∆ε∗el · E ·Kp

∆σel

)
(A12)

with

∆u =
π

2
·
(
(∆σ el/∆σel,pl) − 1

Kp
′1

)
(A13)

and

∆ε∗el =
∆σel/ Kp

E
+2
(

∆σel/ Kp

2K′

)1/n′

(A14)

Appendix A.2. Root Finding Equations Formulated by Taking the Quotient

Instead of forming the difference between the strain from the material law and the
strain from the notch root approximation, the quotient can also be formed and converted
into a zero-point formulation. In the case of the extended version of Neuber’s rule, starting
from Equation (A4), the quotient can now be formed as follows.

1 =

σel,pl
E +

(
σel,pl

K′

)1/n′

σel
σel,pl

·Kp ·
(
σel/Kp

E +
(
σel/Kp

K′

)1/n′
) (A15)

To obtain the root finding equation one has to subtract 1.

0 =

σel,pl
E +

(
σel,pl

K′

)1/n′

σel
σel,pl

·Kp ·
(
σel/Kp

E +
(
σel/Kp

K′

)1/n′
) − 1 (A16)

The above steps can be applied in the same way for the hysteresis branch. In this case
Equation (A17) results:

0 =

∆σel,pl
E +2 ·

(∆σel,pl

2·K′
)1/n′

∆σel
∆σel,pl

·Kp ·
(

∆σel/Kp
E +2 ·

(
∆σel/Kp

2·K′
)1/n′

) − 1 (A17)
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Transferred to the method according to Seeger and Beste, we obtain for the initial load
curve

0 =

σel,pl
E +

(
σel,pl

K′

)1/n′

σel,pl
E ·

[(
σel
σel,pl

)2
· 2

u2 · ln
(

1
cos(u)

)
− σel
σel,pl

+1
]
· ε
∗
el·E·Kp
σel

− 1 (A18)

and for the hysteresis branch Equation (A19)

0 =

∆σel,pl
E +2 ·

(∆σel,pl

2K′

)1/n′

∆σel,pl
E ·

[(
∆σel

∆σel,pl

)2
· 2

∆u2 · ln
(

1
cos(∆u)

)
− ∆σel

∆σel,pl
+1
]
· ∆ε∗el·E·Kp

∆σel

−1 (A19)

Appendix B. Derivatives of the Root Finding Equations

In this section the analytical derivatives of the different root finding equations, derived
in the Appendix A are listed.

In the case of the extended notch root approximation according to Neuber, the deriva-
tives of Equation (A5) (initial load curve) and Equation (A6) (hysteresis branch) are given
in Equations (A20) and (A21).

f′
(
σel,pl

)
=

1
E
+

(
σel,pl

K′

)1/n′−1

K′ · n′
+

Kp · σel ·
((

σel
K′ ·Kp

)1/n′
+ σel

E·Kp

)
σ2

el,pl
(A20)

f′
(

∆σel,pl

)
=

1
E
+

(∆σel,pl

2·K′
)1/n′−1

K′ · n′
+

Kp · σel ·
(

2 ·
(

∆σel
2·K′ ·Kp

)1/n′
+ ∆σel

E·Kp

)
∆σ2

el,pl
(A21)

The derivatives for the alternative approach, i.e., Equation (A16) (initial load curve)
and Equation (A17) are given in Equations (A22) and (A23).

f′
(
σel,pl

)
=

σel,pl
E +

(
σel,pl

K′

)1/n′

Kp · σel ·
((

σel
K′ ·Kp

)1/n′
+ σel

E·Kp

) +

σel,pl ·

 1
E +

(σel,pl
K′

)1/n′−1

K′ ·n′


Kp · σel ·

((
σel

K′ ·Kp

)1/n′
+ σel

E·Kp

) (A22)

f′(∆σ el,pl) =

∆σel,pl
E +2·

(
∆σel,pl

2·K′

)1/n′

Kp·∆σel·
(

2·
(

∆σel
2·K′ ·Kp

)1/n′
+

∆σel
E·Kp

) +

∆σel,pl·

 1
E+

(
∆σel,pl

2·K′

)1/n′−1

K′ ·n′


Kp·∆σel·

(
2·
(

∆σel
2·K′ ·Kp

)1/n′
+

∆σel
E·Kp

) (A23)

In case of the notch root approximation according to Seeger and Beste the derivative
of the difference formulation of the root finding equation Equation (A11) (initial load curve)
is shown in Equation (A24) and the derivative of Equation (A12) (hysteresis branch curve)
in Equation (A25).
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df
dσel,pl

= f′
(
σel,pl

)
= 1

E +

(σel,pl
K′

)1/n′−1

K′ ·n′ − 1
σel
·

Kp · ε∗el ·

 8σ2
el·ln

(
1

cos(u)

)
· (Kp−1)

2

σ2
el,pl·π2·

(
σel
σel,pl

−1
)2 − σel

σel,pl
+1




−Kp·ε∗el·σel,pl
σel

·

 σel
σ2

el,pl
−

16σ2
el·ln

(
1

cos(u)

)
·(Kp−1)

2

σ3
el,pl·π2·

(
σel
σel,pl

−1
)2 +

16σ3
el·ln

(
1

cos(u)

)
·(Kp−1)

2

σ4
el,pl·π2·

(
σel
σel,pl

−1
)3 − 4σ3

el·sin(u)·(Kp−1)

σ4
el,pl·π·cos(u)·

(
σel
σel,pl

−1
)2


(A24)

df
d∆σel,pl

= f′(∆σ el,pl) =
1
E +

(
∆σel,pl

K′

)1/n′−1

K′ ·n′ − 1
∆σel

Kp · ∆ε∗el ·

 8∆σel
2·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ2
el,pl·π2·

(
∆σel

∆σel,pl
−1
)2 − ∆σel

∆σel,pl
+1




+
Kp·∆ε∗el·∆σel,pl

∆σel

·

 ∆σel
∆σ2

el,pl
−

16∆σ2
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ3
el,pl·π2·

(
∆σel

∆σel,pl
−1
)2 +

16∆σ3
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

∆σ4
el,pl·π2·

(
∆σel

∆σel,pl
−1
)3 − 4∆σ3

el·sin(∆u)·(Kp−1)

∆σ4
el,pl·π·cos(∆u)·

(
∆σel

∆σel,pl
−1
)2


(A25)

In case of the notch root approximation according to Seeger and Beste the derivative
of the quotient formulation of the root finding problem Equation (A18) (initial load curve)
is shown in Equation (A26) and of Equation (A19) (hysteresis branch curve and quotient
formulation) in Equation (A27).

df
dσel,pl

= f′(σ el,pl) =

σel·

 1
E+

(σel,pl
K′

)1/n′−1

K′ ·n′


Kp·ε∗el·σel,pl·

 8·σ2
el ·ln

(
1

cos(u)

)
·(Kp−1)2

σ2 ·π2 ·
(
σel
σel,pl

−1
)2 − σel

σel,pl
+1



−
σel·

(
σel,pl

E +
(σel,pl

K′
)1/n′

)

Kp·ε∗el·σ
2
el,pl·

 8σ2
el ·ln

(
1

cos(u)

)
·(Kp−1)2

σ2
el,pl ·π

2 ·
(
σel
σel,pl

−1
)2 −

σel
σel,pl

+1


− 1

Kp·ε∗el·σel,pl·

 8σ2
el ·ln

(
1

cos(u)

)
·(Kp−1)2

σ2
el,pl ·π

2 ·
(
σel
σel,pl

−1
)2 −

σel
σel,pl

+1


2 · σel ·

(
σel,pl

E +
(
σel,pl

K′

)1/n′
)

·

 σel
σ2

el,pl
−

16σ2
el·ln

(
1

cos(u)

)
·(Kp−1)

2

σ3
el,pl·π2·

(
σel
σel,pl

−1
)2 +

16σ3
el·ln

(
1

cos(u)

)
·(Kp−1)

2

σ4
el,pl·π2·

(
σel
σel,pl

−1
)3 − 4σ3

el·sin(u)·(Kp−1)

σ4
el,pl·π·cos(u)·

(
σel
σel,pl

−1
)2



(A26)
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df
d∆σel,pl

= f′(∆σ el,pl) =

∆σel·

 1
E+

(
∆σel,pl

2K′

)1/n′−1

K′n′


Kp·∆ε∗ ·∆σel,pl·

 8∆σ2
el,pl ·ln

(
1

cos(∆u)

)
·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel

∆σel,pl
−1

)2 − ∆σel
∆σel,pl

+1



−
∆σel·

(
∆σel,pl

E +2·
(

∆σel,pl
2K′

)1/n′
)

Kp·∆ε∗ ·∆σ2
el,pl·

 8∆σ2
el ·ln

(
1

cos(∆u)

)
·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel

∆σel,pl
−1

)2 −
∆σel

∆σel,pl
+1


− 1

Kp·∆ε∗ ·∆σel,pl·

 8∆σ2
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1

cos(∆u)
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·(Kp−1)2

π2 ·∆σ2
el,pl ·

(
∆σel
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−1

)2 −
∆σel

∆σel,pl
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2 · ∆σel ·

(
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E +2
(∆σel,pl

2K′

)1/n′
)

·

 ∆σel
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2
−

16∆σ2
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2

π2·∆σ3
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(
∆σel

∆σel,pl
−1
)2 +

16∆σ3
el·ln

(
1

cos(∆u)

)
·(Kp−1)

2
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