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Abstract: Scaling end-to-end learning to control robots with vision inputs is a challenging problem
in the field of deep reinforcement learning (DRL). While achieving remarkable success in complex
sequential tasks, vision-based DRL remains extremely data-inefficient, especially when dealing with
high-dimensional pixels inputs. Many recent studies have tried to leverage state representation
learning (SRL) to break through such a barrier. Some of them could even help the agent learn from
pixels as efficiently as from states. Reproducing existing work, accurately judging the improvements
offered by novel methods, and applying these approaches to new tasks are vital for sustaining this
progress. However, the demands of these three aspects are seldom straightforward. Without signifi-
cant criteria and tighter standardization of experimental reporting, it is difficult to determine whether
improvements over the previous methods are meaningful. For this reason, we conducted ablation
studies on hyperparameters, embedding network architecture, embedded dimension, regularization
methods, sample quality and SRL methods to compare and analyze their effects on representation
learning and reinforcement learning systematically. Three evaluation metrics are summarized, in-
cluding five baseline algorithms (including both value-based and policy-based methods) and eight
tasks are adopted to avoid the particularity of each experiment setting. We highlight the variability
in reported methods and suggest guidelines to make future results in SRL more reproducible and
stable based on a wide number of experimental analyses. We aim to spur discussion about how to
assure continued progress in the field by minimizing wasted effort stemming from results that are
non-reproducible and easily misinterpreted.

Keywords: deep reinforcement learning; representation learning; unsupervised learning; feature
embedding; end-to-end learning

1. Introduction

Deep Reinforcement Learning is an emerging subfield of Reinforcement Learning (RL)
that relies on deep neural networks as a function approximator, enabling RL algorithms in
complex environments. Over the last few years, end-to-end DRL algorithms have become
increasingly more stable and efficient. Notable application successes include learning
to play a variety of video games from raw pixels [1], continuous control tasks such as
controlling a simulated car from a dashboard camera [2], and subsequent algorithmic
developments and applications to agents that successfully navigate mazes and solve
complex tasks from first-person camera observations [3–5], and robots that successfully
grasp objects in the real world [6].

However, despite the impressive ability, learning policy directly from raw images is
found to be relatively unstable and data-inefficient (usually needs millions of samples)
than operating on coordinate-state based features [7,8]. On the one hand, unlike in classic
reinforcement learning where human-crafted representation is used, vision-based DRL
has to learn features directly from raw observations, in addition to policy learning; on
the other hand, most RL approaches assume a fully observable state space, i.e., fully
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observable Markov Decision Processes (MDPs). However, this assumption is unworkable
in real-world robotics due to factors including sensor sensitivity limitations and sensor
noise and the lack of knowledge about whether the observation design is complete or
not. Particularly in the case of learning directly from raw images, partial observability
problem arises, which is defined as a partially observable MDP (POMDP), in which the
agent can only sees a portion of the world state. Furthermore, there are numerous extrinsic
factors (e.g., hyperparameters or codebases) and intrinsic elements (e.g., effects of random
seeds or environment properties) that might affect the performance of DRL [9]. As a result,
vision-based DRL typically suffers from slow learning speeds and frequently requires
an excessive amount of training time and data to attain desired performance, making it
unsuitable to real-world situations where data collection is difficlut and expensive.

For this reason, most of the present DRL algorithms are still limited to solving tasks
with state spaces of relatively low dimensionality (less than 10 intrinsic dimensions for
value-function based methods and less than 100 for policy gradient methods [10]). In
addition, when the ground-truth state information cannot be easily accessed, it is inevitable
to extract the embedded states from the original observations to learn desirable policies
from DRL algorithms. To overcome this issue, state representation learning (SRL) [11] was
proposed which aims at learning to extract the state information which can be used for the
policy optimization.

As shown in Figure 1. This paper studies the influence factors (listed on the bottom left
corner of this figure) of SRL, and their effects on different kinds of RL methods (listed on the
bottom left corner of this figure). In the setting of SRL, instead of getting a low-dimensional
coordinate state st ∈ S at time t, the agent receives rather a high-dimensional observation
0t ∈ O, which is a rendering of potentially incomplete view of the corresponding state st of
the environment [12]. In principle, the agent should be able to learn representations that
can recover the task-related state information. Suppose the state information is covered
by pixels. In that case, it should be possible to learn from pixels as efficient as from
ground-truth states given the reasonable representation.
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Figure 1. The unsupervised state representation learning (SRL) process and the corresponding
influence factors from high-dimensional pixels for DRL.

There are many different SRL methods proposed for this objective, which have
made remarkable progress, such as autoencoders, learning forward models, inverse
dynamics and learning from robotic priors from the state characteristics [11]. Further-
more, with the tremendous development in label-efficient learning for image classification
using contrastive unsupervised representations [13,14] and data augmentation [15,16],
Laskin et al. [17,18] combined contrastive learning and data augmentation techniques from
computer vision with model-free RL to demonstrate significant sample-efficiency gains
on standard RL benchmarks. Besides, transfer learning has improved vision-based RL
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performance between different tasks further. PAD [19] performs unsupervised policy
adaption with a test-time auxiliary task (e.g., inverse dynamic prediction) to fine-tune the
visual encoder of the policy network. By means of unsupervised keypoint detection [20], a
clean foreground mask could be reconstructed from noise-augmented observations and
keep the RL policy learning between different tasks stable and fast [21].

So far, however, there has been little discussion about the influence factors (as shown
in Figure 1) and evaluation metrics of state representation learning. Most previous studies
in this field only focus on improving the effectiveness of SRL by means of designing new
mechanisms and auxiliary tasks. The evaluation metric is also limited to RL’s performance,
which means the RL agent’s learning process is the only criteria to evaluate the SRL
approaches in most cases. The diversity in methods and applications makes this field
lack statistically relevant results to analyze the influence factors of the SRL methods,
which creates the potential for misleading reporting of results and the demands for tighter
standardization of experimental reporting. More importantly, reproducing existing work
and accurately judging the improvements offered by novel methods is vital to sustaining
the progress of SRL.

Therefore, this paper is set out to analyze the effects of SRL influence factors on
vision-based DRL (Section 2). We summarized the criteria that could be used for evaluating
SRL performance and compared the SRL performance on different kinds of RL algorithms
(including value-based and policy-based methods):

• Firstly, in order to give more statistically representative experimental results and
quantitative analysis, we adopted 8 different tasks, including mobile robot navigation
and robot arm manipulation environments (Section 3). The complexity of the tasks
and the observations increases gradually;

• Secondly, three evaluation criteria, including the quantitative evaluation with rein-
forcement learning performance, are summarized to evaluate the SRL performance
based on the extensive investigation of the related works in Section 4.

• Thirdly, a large number of contrastive experiments were conducted using the control
variates approach to investigate SRL influence factors such as hyperparameter, em-
bedding network design, embedded dimension, regularization methods, and sample
quality (Figure 1). In each part of the experimental analysis, we posed questions about
major factors affecting final performance. We discovered that state embedded dimen-
sion and sample quality are crucial in the SRL model, and carefully adjusting the other
illustrated factors can assist improve the SRL model’s representative property to a
some extent (Section 5).

• Finally, we investigated the effects of these variables in reported results through a
representative set of RL algorithms. Both value-based and policy-based methods with
neural network function approximators, such as DQN, A2C, ACKTR, PPO, TRPO are
chosen for the RL experiments (Section 5.7).

The experimental results are discussed in Section 6. Based on our experiments, we
conclude with possible recommendations and points of discussion for future works to
ensure that SRL continues to matter (Section 7). To the best of our knowledge, the experi-
mental work presented in this paper provides one of the first investigations into adjusting
the influence factors and designing efficient SRL models.

2. Problem Formulation

In this section, we will introduce the preliminary knowledge of RL and SRL methods
which are integrated in our framework. As shown in Figure 2, when we describe the
network used in DRL, it could be separated into two parts for the simplicity of explanation:
the first part is used for representation learning, while the second part takes the learned
representation as input and learns the value function and the target policy. State represen-
tation is learnt to improve two kinds of objectives: performance on the RL task and the
auxiliary task.
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More details on the auxiliary tasks are given in Sections 2.2.2 and 5.6. There are many
kinds of auxiliary tasks that can be added to the SRL scheme, such as image reconstruction,
contrastive learning and model prediction. More details on the auxiliary tasks are given
in Section 2.2.2. The dash green color means some SRL methods such as CURL can
backpropagate the gradient from the RL loss function to the SRL network. The notations
adopted in this paper and their definitions are list in Table 1.
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Figure 2. The unsupervised SRL scheme for DRL. The SRL network learns a mapping from original
input observations to the embedded features.

Table 1. Summary of the notations in this paper.

Symbol Definition

π policy
rt reward at time t
ot observation at time t
O observation space
st ground-truth state at time t
S ground-truth state space

φ(s) feature vector representing state s
Φ state representation space

Vπ(s) value of state s under policy π
Qπ(s, a) value of taking action a in state s under policy π

J The objective function (expected total reward)
Gt return (accumulated rewards) following time t
θ parameter vector of policy πθ

2.1. Reinforcement Learning
2.1.1. Preliminary Knowledge

In RL, an agent learns an optimized policy through interacting with the environment.
This process can be formulated as Markov Decision Processes (MDPs). An MDP can be
defined as a 4-tuple (S, A, T, R), where S represents the state space, A denotes the action
space, transition probability T : S× A 7→ S denotes the state transition probability, and R
represents the reward function. Specifically, at time step t, the agent faces a state st ∈ S, and
it follows the policy π(at | st) : st 7→ at to choose an action at ∈ A. Then the agent receives
a reward rt, which could evaluate the performed action. After that, the agent reaches
the next state st+1. The aforementioned process will break when the terminal condition
is satisfied.

The return Gt = ∑∞
k=0 γkrt+k is the total accumulated rewards at state st with discount

factor γ ∈ (0, 1], which is a hyperparemeter to adjust the impact of actions in the future.
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The goal of RL algorithms is to maximize the expected return Rt by updating the policy π.
The value function of state st under policy π is usually defined as:

Vπ(st) = E[Gt|st = s]. (1)

Similarly, the value of selected action at in state st under policy π is defined as:

Qπ(st, at) = E[Gt|st = s, a], (2)

which is called action-value function. The advantage function estimates the average
advantage value of selected action at in state st under policy π and it is defined as:

Aπ(st, at) = Qπ(st, at)−Vπ(st). (3)

2.1.2. Value-Based and Policy-Based RL Methods

There are two important categories of RL algorithms: value-based RL methods and
policy-based RL methods. Policy-based RL methods explicitly build a representation of the
policy π(at | st; θ) and update the parameters θ. In contrast to policy-based RL methods,
value-based RL methods don’t build any explicit policy, but a value function V(s; θ) or
an action-value function Q(s, a; θ) with parameters θ. The policy is implicit and can be
derived directly from the value function (pick the action with the best value). Actor-critic
methods mix policy-based methods and value-based methods, which often achieve better
results than both policy-based methods and value-based methods.

In actor-critic methods, the actor is a parameterized policy that determines how actions
are selected. Policy gradient methods are usually employed to learn the parameters. We
consider a stochastic policy gradient with respect to the policy parameters θ. The following
equation gives the updating rule for θ:

θ = θ + α∇J(θ), (4)

where J(θ) is the expected total reward and ∇J(θ) can be calculated by:

∇J(θ) = Et[∇θ log πθ(at|st)A(st, at)] (5)

The advantage function captures how better an action is than the others at a given
state to evaluate the current policy. It is found that using the advantage function has a
better performance than other metrics like the Q values [22].

With sufficient samples, the expectation of A(st, at) can be evaluated accurately. Unfor-
tunately, in many real-world tasks, it is impractical to collect such a great amount of samples,
leading to the high variance of A(st, at). Therefore, it is necessary to use the value-based
critic to estimate the A(st, at). If two critic networks are employed to estimate the value
function Qπ(st, at) and Vπ(st) respectively, it will lead to more bias. Thus, Time-difference
method is often used. In fact, Qπ(st, at) and Vπ(st) satisfy the following equation:

Qπ(st, at) = E[rt + Vπ(st+1)] (6)

Though rt is a random variable, the variance of rt is much smaller than that of Aπ(st, at)
when Aπ(st, at) is estimated directly. So the Equation (6) can be rewritten as:

Qπ(st, at) ≈ rt + Vπ(st+1) (7)

Therefore, it is possible to use only one critic network to estimate A(st, at):

Aπ(st, at) = rt + Vπ(st+1)−Vπ(st) (8)
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2.2. State Representation Learning
2.2.1. Preliminary Knowledge

State representation learning (SRL) aims at learning compact representations from
raw observations without explicit supervision. Many different SRL approaches have been
proposed [11], which plays an important role in deep reinforcement learning. SRL is
utilized to learn a transformation Π from the observation space O to the latent state space
Φ. Then, a policy π, which takes state representation φ ∈ Φ as input and outputs action
a ∈ A, is learned to solve the task:

O Π−−→
SRL

Φ π−→
RL
A (9)

The state representation contains information extracted from states—the description
of the current situation given by the environment. Therefore, a high-quality representation
should only keep the valuable information for the task and reduce the search space, thus
contributing to address two main challenges of RL: instability and sample inefficiency.
It is not only essential to build a robust reinforcement learning agent but also can help
improving learning efficiency. Moreover, a state representation learned for a particular task
may be transferred to related tasks, speeding up learning in multiple tasks’ settings.

Many of the previous works in representation learning for reinforcement learning
focused on designing fixed-basis architectures to achieve desirable properties, such as
orthogonality. Most of these properties are common to the general machine learning setting.
Many approaches either use or search for orthogonal or decorrelated features, such as
orthogonal matching pursuit [23], Bellman-error basis functions [24], Fourier basis [25] and
tile coding [26,27]. Prototypical input matching methods have been extensively explored,
as in kernel methods [28], radial basis functions [26].

In contrast, the idea behind DRL is that the agent designer should not encode repre-
sentational properties, but rather that the data stream should determine the properties of
the representation—excellent representations will arise via appropriate training schemes,
where a good representation is defined by success on some task. Recent developments in
representation learning explore a different perspective: we should let the training data dic-
tate the properties of the representation through gradient descent. This view is widely held
and is reflected in specifying training regimes, including multi-task training [29], auxiliary
loss constructing (i.e., autoencoding, next observation prediction and pixel control) [3,30],
and training on distribution of problems like meta-learning [31–33].

2.2.2. Auxiliary Tasks

Auxiliary tasks can be added to alter the complexity and the structure of the problem
settings. By means of dividing the last layer of the neural network into several heads, it
is possible to give various tasks to separate heads and then solve them collaboratively.
The purpose of including auxiliary tasks into SRL is to help the learner develop a more
accurate representation of the proeblem at hand. Several studies have shown that certain
auxiliary tasks linked to the primary task are beneficial, such as learning an additional
strategy to alter pixels in the observation maximally or maximally activate each bit in the
representation [3].

Auxiliary tasks such as predicting the future conditioned on the past observations and
actions [3,34–36] are a few representative examples of using auxiliary tasks to improve the
sample-efficiency of model-free RL algorithms. The future prediction is either done in a
pixel space [3] or latent space [35]. The sample-efficiency gains from reconstruction-based
auxiliary losses have been benchmarked in [3,29,37]. Recently, contrastive learning has
been used to extract reward signals in the latent space [38–40]; and study representation
learning on Atari games [41].

In the next parts, we present approaches of SRL that are implemented in this paper.
Each technique is not mutually exclusive and may be used in conjunction with others to
generate new models.
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2.2.3. Forward Model and Inverse Model

One critical element to encode for RL is the controlled agent’s state. It is equivalent
to the robot position in the context of goal-based robotics activities. A straightforward
approach is to use the forward model and inverse model.

A forward model that predicts state st+1 given state st and action at, can be interpreted
as learning dynamics of the world. Constraints may be introduced to the state representa-
tion by limiting the forward model, for example, by requiring the system to follow linear
dynamics [42].

Another approach is to learn an inverse model [43], which predicts the taken action
at given two successive states st and st+1. This requires embedded states to encode in-
formation about the dynamics in order to retrieve the action at, which can make such a
transition. However, the features extracted by an inverse model are not always sufficient:
in our goal-based experiments, they cannot embed the target’s position because the agent
is unable to act on it. For this reason, additional objective functions are required to encode
the target object’s position. Two of them are discussed in the new two sections: minimizing
image reconstruction errors (autoencoder model) and minimizing reward prediction errors
(reward prediction model).

2.2.4. Autoencoder

One intuitive step to get a state representation is to condense the observation into a
low-dimensional embedded state that can be reconstructed. Because this method excludes
potential actions, it does not make use of the robotic environment. We compared three
kinds of autoencoders in this paper, including original Autoencoders [44], Variational
Autoencoders (VAE) [45]—autoencoders that enforce the latent variables to follow a given
distribution, and Denoising Autoencoder (DAE) [46] which could enhance the flexibility of
data stream method in exploiting unlabeled samples.

Autoencoders tend to encode only aspects of the environment that are salient in the
input image. This means they are not task-specific: relevant elements can be ignored, and
distractors (unnecessary information) can be encoded into the state representation. They
usually demand more dimensions in order to encode a scene (e.g., in our experiments, it
requires more than 10 dimensions to encode a 2D position of the mobile robot correctly).

2.2.5. Reward Prediction

The objective of a reward prediction model [34] leads to state representations that are
specially appointed by the goal of the task. This, however, does not imply that the state
space must be disentangled or have any certain structure.

2.2.6. Robotic Prior Knowledge

Robotic prior knowledge about the dynamics or physics of the world may be used to
construct an appropriate representation of states. This kind of knowledge may account
for temporal continuity or causality principles that reflect an agent’s interactions with its
surroundings [47,48].

2.3. Combination SRL Model and Splits SRL Model

There are generally two types of SRL model for learning state representations: the
combination srl model and the splits srl model, which will be introduced briefly:

2.3.1. Combination SRL Model

In SRL Combination model, the combination of different objective functions is done
by averaging the corresponding extracted features on a single embedding.

Combining objectives makes it possible to share the strengths of each model. In our
application example, the previous sections suggest that we should mix objectives to encode
both robot and target positions. The simplest way to combine objectives is to minimize a
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weighted sum of the different loss functions, i.e., reconstruction loss Lreconstruction , inverse
dynamics prediction loss Linverse and reward prediction losses Lreward:

Lcombination =wreconstruction · Lreconstruction + winverse · Linverse

+ wreward · Lreward (10)

Each weight reflects the proportional significance we place on certain objectives. We
selected the weights such that the gradients are comparably important.

2.3.2. Splits SRL Model

Combining objectives into a single embedding is not the only option to have features
that are sufficient to solve the tasks. Stacking representations, which also favors disentan-
glement, is another way of solving the problem. In SRL Splits model, the model described
that combines different objective functions using splits of the state representation. The
intrinsic idea of the SRL Splits model is that the state representations are divided into
several parts, where each part optimizes a fraction of the objectives.

This stacked representation learning model prevents objectives that can be opposed
from cancelling out and allows a more stable optimization. This process is similar to
training several models but with a shared feature extractor, that projects the observations
into the state representation.

3. Environment Description

In this section, we will describe the task environments with incremental difficulty. The
mobile robot navigation environment and the Kuka robot arm environment with OpenAI
Gym [49] interface are adopted, making integration with DRL algorithms easy.

To assure fairness, we execute five experiment trials for each evaluation, each with a
distinct random seed (all experiments use the same set of random seeds). In all cases, we
highlight important results, with complete descriptions of experimental setups, additional
learning curves and statistical tables included in the supplemental materials. Unless
otherwise mentioned, we use default settings whenever possible.

As shown in Figure 3, the robotic tasks proposed in this paper are variations of two
environments: a 2D environment with a mobile robot and a 3D environment with a robotic
arm. Each environment may have a continuous or discrete action space, with sparse or
shaped rewards, enabling us to cover a wide range of scenarios. The ground-truth state
is defined in each scenario: the absolute robot position in static scenarios or the relative
position in moving goal scenarios. The tasks have incremental difficulty: the minimal
number of variables for describing each task (minimal state dimension for solving the task
with RL) is increasing from 2 (mobile robot 1D with random target) to 5 (robotic arm with
random target). The detail description for each task will be introduced in Section 3.

(e) Kuka static button (f) Kuka one random button (g) Kuka moving button (h) Kuka two random button

(a) Mobile robot 1D navigation (b) Mobile robot line target (c) Mobile robot one random target (d) Mobile robot two random targets

Figure 3. The Kuka robot arm tasks and mobile robot tasks adopted in this paper.
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3.1. Mobile Robot Navigation Environment

This setting simulates a navigation task using a small car resembling the task of [47],
with either a cylinder or a horizontal band on the ground as a goal, which can be fixed or
moving from episode to episode.

As it shows in Figure 3, in the mobile robot 1D navigation task, the robot moves
along a straight line, and the target is a yellow cylinder; In the other three tasks of this
environment, the robot moves on a 2D plane. The target in the mobile robot line-target task
is a yellow band. The targets in the mobile robot 1-target task and 2-target task are yellow
cylinder and yellow/red cylinders, respectively.

The action space of the mobile robot in 1D navigation task and 2D navigation tasks
has 2 dimensions (left, right) and 4 dimensions (forward, backward, left, right), respectively
(Table 2). The ground truth states in the 1D task and 2D task are the absolute coordinates
of the robot and the target in static scenarios or the relative position in moving target
scenarios. The reward function is defined as follows:

r =


+1 when the car reaches the target
−1 when the car hits the wall
0 otherwise

(11)

Table 2. The property descriptions of two simulation environments .

Dataset Reward Action Space

Mobile Robot Sparse 4 (2 *), Discrete
(left, right, forward *, backward *)

Robotic Arm Sparse 5, Discrete,
(forward, backward, left, right, down)

* is for mobile robot 1D target task.

3.2. Kuka Robot Arm Environment

This setting simulates a Kuka robotic arm fixed on a table, with the task of pushing a
button that may move or not in between episodes. The arm can be controlled either in the
x, y and z position using inverse kinematics, or directly controlling the joints.The action
space of the Kuka robot arm has 5 dimensions (Table 2). The ground truth state is the
absolute coordinates of the robot and the target(s) in static scenarios or the relative position
in moving target scenarios. The episode will terminate when the arm hits the table. The
reward function is defined as follows:

r =


+1 when the arm pushes the button
−1 when the arm hits the table
0 otherwise

(12)

3.3. State Representation Learning Pipeline

The complete pipeline consisted of (1) training the state representation networks
with different settings; (2) RL performance evaluation on tasks with fixed representations;
(3) SRL influence factors’ property evaluation. We save the learned representation by
saving parameters φ, and then evaluate these fixed representations in terms of properties
for learning performance in SRL and RL.

In each scenario, RGB images from a fixed position are defined as observations for
state representation learning. Note that apart from providing all described environments,
mobile robot 2D navigation datasets use 4 discrete actions (right, left, forward, backward);
robot arms use one more action (down).

4. Evaluation Criteria

In this section, we summarized three evaluation criteria to analyze the representation
learning influence factors and compare their effects on the final performance of reinforce-
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ment learning. The first two kinds of criteria come from the field of pattern recognition.
They do not rely on specific RL algorithms or the policy training process, but only focus
on the intrinsic structures of the learned representations and their relationship with the
ground-truth states. The final criterion is the RL performance applied to the task, which
should be the most convincing evaluation criterion of the extracted state representations.
However, this approach is relatively computational expensive because it can only be
obtained after training the SRL network and RL network.

4.1. K-Nearest Neighbors Evaluation Criterion (KNN)

The K-Nearest Neighbors (KNN) Evaluation Criterion is a criterion for evaluating
embedded representations’ quality based on the Nearest-Neighbours method [50], it can
help us get the nearest neighbors of an image in the latent representation space because
a good representation should exhibit local coherence, which implies that the ground
truth states associated with it should be near. Lesort et al. [51] derives a more typical
metric named KNN-MSE on the basis of KNN. A low KNN-MSE value indicates that a
neighbor in the ground truth state space is still a neighbor in the learned representation
space, preserving local coherence.

For a given state observation o, we begin by finding its associated state’s φ(s) closet
neighbors φ(s)′ in the learned state space Φ by means of KNN. Then we project them into
the ground-truth state space S . After that, in the latter space S , we compute the average
distance to its neighbors:

KNN-MSE (φ(s)) =
1
k ∑

φ(s)′∈KNN(φ(s),k)

∥∥s− s′
∥∥2, (13)

where KNN-MSE (φ(s), k) returns the k nearest neighbors φ(s)′ of φ(s) in the learned state
space Φ, s is the ground-truth state associated to φ(s), and s′ is the one associated to φ(s)′.

4.2. Ground Truth Correlation (GTC)

A Pearson correlation coefficient’s matrix is computed for each dimension pair (s, φ(s)):

ρφ(s),s =
E
[(

φ(s)− µφ(s)

)
(s− µs)

]
σφ(s)σs

(14)

where s is the ground truth state, φ(s) is the learned state. µs and σs are the mean and
standard deviation of state s respectively.

We can visualize the correlation matrix to quantitatively assess the ability of a model
to encode relevant information in the states learned. However, the visualization idea is
impractical when meeting high-dimensional spaces such as those in our experiments. As a
result, Raffin et al. proposed another two metrics: Ground Truth Correlation (GTC) and
the mean of that—GTCmean [52]. They can be used to assess a model’s capacity to encode
important information, measuring the similarity between the state representation φ(s)
and the ground-truth state s. The only difference between GTC and GTCmean is that that
GTCmean just need one scalar value to evaluate the learned state. More specifically, for each
component si of s, GTCi gives the maximum absolute correlation value between si and any
component of the predicted states φ(s):

GTCi = max
j

∣∣∣ρφ(s),s(i, j)
∣∣∣ ∈ [0, 1] (15)

GTCmean = E[GTC] (16)

with i ∈ [0, |s|], j ∈ [0, |φ(s)|], s = [s1; . . . ; sn], and sk being the kth dimension of the ground
truth state vector. Taking the Mobile Robot 2D navigation with one random target task as
an example, the the ground-truth state have a dimension of 4 (|s| = 4), which is made up
of the two-dimensional robot position and the two-dimensional target position.
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4.3. Quantitative Evaluation with Reinforcement Learning

The reinforcement learning performance in the representation space is the most es-
sential criterion for evaluating SRL approaches. In the experiments of this paper, five
DRL algorithms (DQN, A2C, ACKTR, PPO, TRPO) including both value-based and policy-
based methods are implemented and compared. The detail training configurations for each
algorithm can be found in Appendix A.

5. Experimental Analysis

In this section, we pose several questions about the influence factors of SRL. Then we
performed a set of experiments designed to provide insights into these questions. In partic-
ular, we investigate the influence of hyperparameters, embedding network architecture,
embedded state dimension, sample quality, regularization approaches and SRL methods.
In most of these experiments, PPO was chosen as the baseline RL algorithm because it
works well across environments without much hyperparameter tuning.

To evaluate the properties of the embedded state representations, in the experiments
except that in Section 5.4, we collect pixel data offline by doing a 50 episodes exploration,
which generate more than 20,000-step transitions. The datasets that are composed of state
observations (224 × 224@3 pixels) are collected from a random policy. In Section 5.4, the
random policy was substituted by pre-trained PPO policies to analyze the influence of
sample quality.

Each state representation is learned using 20,000 samples. This dataset is separated
into the training set (80%) and validation set (20%). We kept for each method the model
with the lowest validation loss during the 30 training epochs. We used the same network
architecture from [52] for the most of models.

5.1. Hyperparameters

What is the magnitude of the influence that the hyperparameter settings can have on baseline
performance?

Hyperparameters tuning plays an essential role in eliciting the best results from many
algorithms. The choice of hyperparameters is crucial for reproducible end-to-end train-
ing [17]. However, the optimal hyperparameter configuration is often not consistent in re-
lated literature, and the range of values considered is often not reported. Sometimes, a high
level of stochasticity appears due to random seeds [9]. It is dificult to assess the performance
of high-level algorithmic ideas without understanding lower-level choices, as performance
can be heavily influenced by hyperparameters tuning and implementation-level details,
making it hard to attribute progress in representation learning and deep reinforcement
learning. Thus, it slows down further research [53–55]. Furthermore, poor hyperparameter
selection can be detrimental to a fair comparison against baseline algorithms.

In two mobile robot navigation challenges, we investigate three sets of hyperparameter
choices for the kernel number in each convolutional layer and the corresponding pooling
layer of the classic autoencoder neural network. The specific settings are shown in Figure 4,
the total number of neural network hyperparameters in these three configurations are
1.8k+, 87.9k and 789.0k, respectively.

Results: The evaluation criteria such as GTC, GTCmean, KNN-MSE and average total
reward can been seen in Table 3. The related learning performance of DQN and PPO
methods is shown in Figure 5. The experiment results show that the effects of neural
network hyperparameters are not consistent across algorithms or environments. How-
ever, the neural network hyperparameters do significantly affect learning performance,
especially in the early stage of training. The performance of learnt latent feature represen-
tations is also related to the selected DRL algorithm. Usually, neural networks with more
hyperparameters and deeper layers can show better function approximation and feature
extraction ability. However, the vanishing gradients problem, exploding gradients problem
and overfitting problem are easier to be encountered [56].
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Figure 4. Three sets of hyperparameter configurations of the encoding network with increasing
trainable parameters. The input image is encoded using the pre-trained encoder to obtain the latent
representation, which the RL agent then uses to output the actions.

(a)  RL performance based on DQN algorithm..

(b) RL performance based on PPO algorithm.

Figure 5. The influence of the SRL network configurations in mobile robot 2D navigation task.
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Table 3. The influence of the network configuration in mobile robot navigation task.

Task Network
Configuration

Correlation
KNN-MSE

Average Total Reward

Max Correlation Matrix Mean PPO (1e6 Timesteps)

1D-Nav.
Config 1 (1.8 k*) 0.7821 2.9816e-15 None None 0.3910 0 238.41 ± 3.72
Config 2 (87.9 k) 0.8563 3.2195e-15 None None 0.4282 0 238.35 ± 4.68
Config 3 (789 k) 0.5612 2.3240e-15 None None 0.2806 0 238.21 ± 3.76

2D-Nav.
Config 1 (1.8 k*) 0.4797 0.5046 0.9999 0.9999 0.7461 0.00063 229.04 ± 4.90
Config 2 (87.9 k) 0.3303 0.4587 0.9999 0.9999 0.6973 0.00066 227.30 ± 5.38
Config 3 (789 k) 0.2176 0.3834 0.9999 0.9999 0.6503 0.00064 227.05 ± 6.09

5.2. Network Architecture

How can the choice of network architecture for the SRL encoders affect results?
In this section, we utilized three different autoencoder methods to compare the in-

fluence of encoding network architecture, including original autoencoder, variational
autoencoder (VAE) [45] and denoising autoencoder (DAE) [46]. Traditional autoencoder
accepts and compresses input, then recreates the original input. This is an unsupervised
technique because all you need is the original data, without any labels of known, correct
results; A variational autoencoder assumes that the source data has some underlying
probability distribution (such as Gaussian) and then attempts to find the parameters of
the distribution; Denoising autoencoders are an example of deep architectures that are
designed to recover noisy data, trying to achieve a good representation by changing the
reconstruction criterion.

Results: Figure 6 shows how significantly learning performance can be affected by
simple changes to the embedding network architecture. The autoencoder has mixed
results: it solves all environments, yet it sometimes under-performs navigation tasks.
When we explored the latent space using the S-RL Toolbox visualization tools [52], we
noticed that one state space dimension can act on both robot and target positions in the
reconstructed image. In addition, this approach does not use additional information that
the environment provides, such as actions and rewards, leading to a latent space that may
lack informative structure.

(a) RL performance based on DQN algorithm.
Figure 6. Performance (mean and standard error) on mobile robot 2D navigation task with different
autoencoder methods using PPO algorithm.

5.3. Embedded State Dimension

How to choose the embedded dimension of the SRL model?
To assess how the choice of embedded dimension can affect the RL algorithm perfor-

mance, we use our aforementioned default set of hyperparameters except of the embedded
dimension across an extended suite of discrete robotic tasks and study how well the RL
algorithms perform across the different embedded states.
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The following two tasks with OpenAI Gym interface are utilized for the experiments:
mobile robot 1D navigation task and mobile robot 2D navigation with random-target
task. The dimensions of the ground-truth state space (i.e., robot and target positions) in
these two tasks are 2 and 4 separately. The dimensions of the action space are 2 and 4,
respectively. The complexity of the image observations also increases, which makes the
state representation learning process gradually difficult.

Results: Table 4 shows the GTC, GTCmean, KNN-MSE and associate mean reward
performance of RL methods (DQN and PPO) per episode (average on 100 episodes) after
1e6 steps for the mobile robot navigation tasks. When the environment and the task are
simple, as shown in Figures 7 and 8, a small state dimension could help the RL agent
learn faster generally; however, when the agent interacts with a complicated environment
in which the task is relatively difficult, the state dimension for the SRL model must be
large enough to solve the task efficiently. Increasing the state dimension above a certain
threshold, on the other hand, has no effect (positively or negatively) on RL performance.

(a) RL performance based on DQN algorithm.

(b) RL performance based on PPO algorithm.

Figure 7. Performance (mean and standard error for 5 runs) of DQN and PPO algorithms with state
representations learned from different embedded dimension in mobile robot 1D navigation environment.
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(a) RL performance based on DQN algorithm.

(b) RL performance based on PPO algorithm.

Figure 8. Performance (mean and standard error for 5 runs) of DQN and PPO algorithms with state
representations learned from different embedded dimension in mobile robot 2D navigation environment.

Table 4. The influence of the embedded dimension in Mobile Robot environment. The average total reward is calculated
among the last 100 episodes of 106 training timesteps.

Task Embedded
Dimension

Ground Truth Correlation (GTC)
KNN-MSE

Average Total Reward

Max Correlation Matrix Mean DQN PPO

1D-Nav.

1 0.6304 2.4059e-15 None None 0.3152 4e-05 137.45 ± 75.10 238.95 ± 4.29
2 0.7808 1.7720e-15 None None 0.3904 0 201.39 ± 50.51 239.06 ± 4.31
3 0.8609 3.6633e-15 None None 0.4304 0 238.29 ± 4.83 237.54 ± 5.02
4 0.5340 2.8306e-15 None None 0.2670 0 237.18 ± 8.39 214.43 ± 42.96
10 0.4186 2.5974e-15 None None 0.2074 0 237.43 ± 5.66 230.76 ± 26.32
20 0.5624 2.0297e-15 None None 0.2812 0 235.12 ± 16.97 238.51 ± 4.60
50 0.6885 2.2200e-15 None None 0.3443 0 235.85 ± 12.09 238.69 ± 4.62

100 0.8709 2.3983e-15 None None 0.4355 0 225.80 ± 12.51 237.97 ± 5.23
200 0.8563 3.2195e-15 None None 0.4282 0 213.4 ± 40.65 238.35 ± 4.68

1000 0.7564 4.0314e-15 None None 0.3782 0 227.10 ± 25.33 222.80 ± 34.69

2D-Nav.

1 0.2332 0.2354 0.9999 0.9999 0.6172 2.0640 −68.63 ± 43.05 8.91 ± 15.14
2 0.0410 0.8035 0.9999 0.9999 0.7111 0.0683 9.68 ± 26.49 121.25 ± 60.75
3 0.3574 0.7163 0.9999 0.9999 0.7684 0.0096 125.15 ± 50.85 207.74 ± 32.35
4 0.6639 0.6878 0.9999 0.9999 0.8379 0.0007 221.73 ± 22.02 207.0 5 ± 54.74

10 0.1448 0.1485 0.9999 0.9999 0.5733 0.00063 224.31 ± 13.85 207.15 ± 26.38
50 0.2263 0.1990 0.9999 0.9999 0.6063 0.00064 220.05±18.82 213.31 ± 21.43
100 0.2062 0.2997 0.9999 0.9999 0.6265 0.00062 217.76 ± 20.79 226.95 ± 5.66
200 0.3303 0.4587 0.9999 0.9999 0.6973 0.00066 217.43 ± 22.76 227.30 ± 5.38

1000 0.4258 0.4311 0.9999 0.9999 0.7142 0.00086 212.72±21.68 225.87 ± 8.01
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5.4. Sample Quality

How does the sample quality affect RL algorithm performance?
The quality of samples used for SRL plays an important role in state representation

especially in the visual-based RL. We usually need to do a trade-off between the computa-
tion complexity and the state representation accuracy, because visual-based RL demands
more computation resource to process pixel-based data in order to learn effective state
representation and policy, and a limited numbers of samples cannot cover the whole
state space.

In this part, we generated five pixel datasets for mobile robot 1D navigation task and
mobile robot one-random-target task separately, which were created by random policy,
pre-trained PPO policy after 1000 (1e3) steps, pre-trained PPO policy after 10,000 (1e4)
steps, pre-trained PPO policy after 100,000 (1e5) steps and pre-trained PPO policy after
1,000,000 (1e6) steps respectively. We used 10,000 samples from each kind of datasets to
learn state representations. Reward is sparse (as illustrated in Table 2) and actions are
discrete (encoded as integers) for all datasets.

Results: Table 5 gives the GTC metrics, KNN-MSE metrics for several approaches and
the associated RL performance using PPO algorithm. The corresponding RL performance
curves are shown in Figure 9. We find that in the two mobile robot navigation tasks,
the effects of sample quality are not consistent across environments. Datasets generated
from random policy, on the other hand shows a relatively stable performance because the
random policy allows the agent to explore more state and action space, effectively covering
the huge policy search space.

(a) Learning performance in mobile robot 1D navigation task.

(b) Learning performance in mobile robot 2D navigation task.

Figure 9. The influence of sampling methods in mobile robot navigation tasks based on PPO algorithm.
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Table 5. The influence of sample quality in mobile robot environment.

Task Sampling
Method

Correlation
KNN-MSE

Average Total Reward

Max Correlation Matrix Mean PPO (1e6 Timesteps)

1D-Nav.

Random 0.8563 3.2195e-15 None None 0.4282 0 238.35 ± 4.68
PPO 1e3 0.8635 3.9844e-15 None None 0.4318 0 238.45 ± 3.72
PPO 1e4 0.6170 4.2631e-15 None None 0.3085 1e-05 238.60 ± 4.11
PPO 1e5 0.6170 4.2631e-15 None None 0.3085 0 238.39 ± 3.66
PPO 1e6 0.8110 2.5734e-15 None None 0.4055 0 238.41 ± 4.06

2D-Nav.

Random 0.3303 0.4587 0.9999 0.9999 0.6973 0.00066 227.30 ± 5.38
PPO 1e3 0.7826 0.3982 0.9999 0.9999 0.7952 0.00066 222.52 ± 13.86
PPO 1e4 0.7804 0.3324 0.9999 0.9999 0.7782 0.00058 227.56 ± 5.25
PPO 1e5 0.7804 0.3324 0.9999 0.9999 0.7782 0.00058 227.15 ± 5.96
PPO 1e6 0.7784 0.3052 0.9999 0.9999 0.7704 0.00055 227.27 ± 8.48

5.5. Regularization Method

Is regularization item useful for learning SRL model?
One of the most common problems data science professionals face is to avoid overfit-

ting. Regularization is a technique that makes slight modifications to the learning algorithm
such that the model generalizes better. Thus, it improves the model’s performance on the
unseen data as well.

In this section, we employ the regularized state representation (ell1 norm and ell2
norm regularization terms on SRL neural networks weight) to learn navigation strategies
in the mobile robot navigation with random target task. We contrast the performance of
different regularization methods and analyze the results.

`1 norm and `2 norm are the most common types of regularization. `2 norm is also
known as weight decay as it forces the weights to decay towards zero (but not exactly zero);
In `1 norm, we penalize the absolute value of the weights. Unlike `2, the weights may be
reduced to zero here. Hence, it is very useful when we are trying to compress our model.
Otherwise, we usually prefer `2 over it. These update the general cost function by adding
another term known as the regularization term.

J = L(x, x̂) + λR(w), (17)

where L is the regular loss function, R is the regularization term, and λ is the scaling
parameter in front of the regularization term to adjust the trade-off between the two
objectives.

Due to the addition of this regularization item, the values of weight matrices decrease
because it assumes that a neural network with smaller weight matrices leads to simpler
models. Therefore, it will also reduce overfitting to quite an extent.

Results: In the mobile robot one-random-target task, we test several regularization
scaling parameter λ for `1 norm and `2 norm from 10−1 to 10−6 and choose the best one,
which is 10−6 for `1 norm and 10−3 for `2 norm. As it shows in Figure 10, `2 regularized
SRL is second to ground truth, while `1 is the worst. `1 regularization in SRL can generate
adequate sparsity. In comparison, `2 regularization, which is easily solved by the ridge
regression, is utilized to achieve faster and robust learning. `1 and `2 regularizations have
their contributions for robust sparse representation. `1 regularization is the preferred
choice when having a high number of features as it provides sparse solutions. Although
`1 regularization technique has a computational benefit since zero-coefficient features can
be avoided, it is discovered that `1-norm based SRL is not necessary to produce positive
results as expected.
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(a) RL performance based on DQN algorithm.
Figure 10. Influence of regularization methods on RL performance in mobile robot one-random-target
task (mean and standard error for five runs with PPO algorithm). The coefficients of `1 regularization
and `2 regularization are set as 10−6 and 10−3 respectively.

5.6. State Representation Learning Methods

How can the SRL methods affect the RL algorithm performance?
As illustrated in Section 2.2, here we compare the performance of several SRL methods

on the mobile robot one-random-target task, including forward model, inverse model,
autoencoders, robotic priors, reward prediction, combination model and supervised model
(state representations trained with GT states model).

Results: Figure 11 shows the average reward during the learning of PPO algorithm
based on different SRL models. The effect of the forward model is the worst. The second
last one is the autoencoder and reward prediction. As illustrated in Section 2.3, combining
objectives make it possible to share the strengths of each model. In contrast it should be
noted that the combination SRL model is not the most effective model. This is because that
combing different objectives into a single embedding could sometimes result in the collision
between themself, thus weakening the contribution of each component SRL model.

(a) RL performance based on DQN algorithm.
Figure 11. Performance (mean and standard error for 5 runs) on mobile robot one-random-target
task with PPO algorithm for different SRL mehtods.

5.7. Reinforcement Learning Method

How do the state representations affect different RL algorithms’ performance?
In this section, we contrast several RL algorithms including both value-based algo-

rithms (DQN) and policy-based algorithms (A2C, PPO, TRPO, ACKTR) on both ground
truth state and the learned state.

Results: In the mobile robot navigation with random target task, as illustrated in
Figure 12, RL algorithms converge faster and perform more consistently when they deal
with with ground truth state in general. However, when we replace it with the learned
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state, the agent learns much slower and unstably, where DQN and TRPO perform worst.
We observed that PPO was one of the best RL algorithm for SRL benchmarking. It al-
lows us to obtain good performance and is consistent without needing to change any
hyperparameters.

(a) RL algorithms’ performance using ground truth states.

(b) RL algorithms’ performance using SRL (auto-encoder) states.

Figure 12. Performance (mean and standard error) on RL algorithms using SRL states with mobile
robot one-random-target task.

6. Summary Analysis and Discussion

Given the above results, we try to analyze whether representations show consistent
performance in different environments. Regarding the given property measures, some
representations have consistent performance while others do not. Some measures that do
not have any strong relationship with the RL performance. Below we list major points
summarized from the experiments.

• We found that auxiliary tasks do help with reinforcement learning during our experi-
ments, but not all of them. On the contrary, adding a decoder for reconstructing the
observation image is consistently bad at predicting expert knowledge such as the co-
ordinate of the agent. Although the input-decoder auxiliary task has been empirically
shown effective when it is used to prevent the representation from converging to 0,
adding the decoder forces the agent to include every detail in the observation, even
part of them is useless. Thus, one guess is that such a constraint requires a larger
capacity in the representation than necessary and hurts the representation’s ability to
extract useful information.

• GTCmean is a good indicator of the performance that can be obtained in RL. When
measuring GTCmean, we see that representations with a relatively high GTCmean score
always show a good performance in RL (a higher mean reward).
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• Auxiliary tasks generally improve the representation in terms of complexity reduction
and decorrelation, regardless of whether the RL performance is improved or not.
But there does not appear to be a clear relationship between the measures of these
properties and the RL performance. In short, auxiliary tasks should be designed
according to the task characteristics.

• Learning policies from vision-based DRL is sensitive to hyperparameter changes.
For instance, hyperparameters (such as the embedded dimension) tuning of DQN
is required in order to have decent results from the pixels (Figure 7 and Figure 8).
However, the DRL performance is relatively stable by means of SRL methods. This can
be explained by the reduced search space: the task is simpler to solve when features
are already extracted.

7. Conclusions and Future Work

This work presents the advantages of decoupling feature extraction from policy
learning in vision-based RL, on a set of robotics tasks. This decomposition reduces the
search space, accelerates training, does not degrade final performances and gives more
easily interpretable representations. Various experiments have been conducted to analyze
the effect of several influence factors of the SRL model. We illustrate the variability in the
reported methods and suggest guidelines to make future studies in SRL more reproducible
and stable.

Although we have made conclusions based on plenty of experimental results, there
remain things we would like to investigate further. The first thing is to improve the criterion
and look for better definitions for properties listed in this work. Furthermore, there has
been a substantial effort to characterize transfer, generalization, and overfitting in DRL,
primarily in terms of performance [57–59]. This motivates the need for new domains and
evaluation methodologies in SRL. Last but not least, future work should confirm the results
in this paper by experimenting with real robots in more complex tasks.
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Appendix A. Experimental Settings

In this section, we show detail hyperparameter configurations of the algorithms
adopted in our experiments, including DQN, A2C, TRPO, PPO and ACKTR. Our exper-
iments are done using the available codebase from OpenAI rllab and OpenAI Baselines.
Each of our experiments are performed over five experimental trials with different random
seeds, and results are averaged over all trials. Hyperparameters are as follows unless
explicitly specified as otherwise (such as in hyperparameter modifications where we alter
a hyperparameter under investigation).

Appendix A.1. DQN Algorithm Configurations

- Batch size: 32
- Learning rate: 10−4

- Discount factor: γ = 0.99
- Replay buffer size: 5 × 104
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- Training frequency: 4
- Start learning step: 500
- Target Q network update frequency: 500
- Exploration fraction: 0.1
- Exploration final epsilon: ε = 0.02

Appendix A.2. A2C Algorithm Configurations

- Batch size: 32
- Learning rate: 7 × 10−4

- Discount factor: γ = 0.99
- Replay buffer size: 5 × 104

- Training frequency: 4
- Start learning step: 500
- Target Q network update frequency: 500
- Exploration fraction: 0.1
- Exploration final epsilon: ε = 0.02

Appendix A.3. PPO Algorithm Configurations

- Minibatch size: 32 × 4
- Learning rate: 2.5 × 10−4

- Discount factor: γ = 0.99
- VF coeff. c1: 0.5
- Entropy coeff. c2: 0.01
- Num. epochs: 4
- Clip range: 0.2

Appendix A.4. ACKTR Algorithm Configurations

- Learning rate: 7 × 10−4

- Discount factor: γ = 0.99
- VF coeff. c1: 0.5
- Entropy coeff. c2: 0.01
- VF fisher coeff. c3: 1
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