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Abstract: This paper presents the employment of a DPA attack on the NIST (National Institute
of Standards and Technology) standardized AES (advance encryption standard) protocol for key
retrieval and prevention. Towards key retrieval, we applied the DPA attack on AES to obtain a
128-bit secret key by measuring the power traces of the computations involved in the algorithm. In
resistance to the DPA attack, we proposed a countermeasure, or a new modified masking scheme,
comprising (i) Boolean and (ii) multiplicative masking, for linear and non-linear operations of AES,
respectively. Furthermore, we improved the complexity involved in Boolean masking by introducing
Rebecca’s approximation. Moreover, we provide a novel solution to tackle the zero mask problem in
multiplicative masking. To evaluate the power traces, we propose our custom correlation technique,
which results in a decrease in the calculation time. The synthesis results for original implementation
(without countermeasure) and inclusion of countermeasure are given on a Zynq 7020 FPGA (Artix-
7 device). It takes 424 FPGA slices when implemented without considering the countermeasure,
whereas 714 slices are required to implement AES with the inclusion of the proposed countermeasure.
Consequently, the implementation results provide the acceptability of this work for area-constrained
applications that require prevention against DPA attacks.

Keywords: AES; block cipher; side-channel attacks; differential power analysis

1. Introduction

Cryptography is one of the ways to secure unprotected data or information against
unauthorized users on the unsecured internet. It comprises two types: (i) symmetric and
(ii) asymmetric. The prior is beneficial to achieve low-area and power designs, whereas the
former is more convenient to acquire high security [1,2]. Several applications are available
in the literature, i.e., the internet of things, wireless sensor networks, radio frequency
identification, and many more, that require low-area and power designs of cryptographic
algorithms [3].

The security strength of symmetric algorithms depends on the structure of the cryp-
tographic algorithm/protocol. For example, NIST (National Institute of Standards and
Technology) defines the AES (advanced encryption standard) as a standard to prevent the
current communications in terms of encryption and decryption from unwanted users [4]. It
has a substitution–permutation structure. The encryption determines the transformation of
plaintext to ciphertext, using a sequence of rules (called an algorithm/protocol). Decryption
is the reverse of encryption. The plaintext is the original information, while a ciphertext is
the transformed plaintext into an unreadable format. The term, i.e., substitution, replaces
plaintext letters or strings of letters with letters, numbers, or symbols [3]. On the other
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hand, permutation uses the plaintext message letters but rearranges them in a sequence
of order.

There are two different approaches, i.e., software and hardware, to implement crypto-
graphic algorithms. The latter is convenient to achieve higher throughputs while the prior
is beneficial to achieve higher flexibility [1,3,5]. Concerning hardware prototyping, a side-
channel attack (SCA) is one of the techniques to expose the security of the targeted crypto
algorithm by analyzing its power consumption. The instantaneous power consumption of
the cryptographic device depends on the data processing and operations. An SCA tries to
extract secrets from a chip or a system by measuring and analyzing these operations and
power consumption [6]. These type of attacks uses the fact that an intermediate value is
processed during the execution of the targeted cryptographic algorithm and the acquired
value is correlated with the power consumption of the device [7].

Many side-channel analysis techniques have proven successful in cracking an algo-
rithmically resistant cryptographic operation and retrieving the secret key, posing a severe
threat to modules that incorporate cryptographic systems. To achieve this, the number
of attacks can be classified into three different types, i.e., (i) invasive, (ii) non-invasive,
and (iii) semi-invasive [8]. Invasive attacks involve the alteration of the physical attributes
of a chip in an irreversible way. The non-invasive attacks do not necessitate any initial
device preparations and do not physically affect the device under evaluation. The attacker
can either tap into the device’s cables or connect it to a test circuit for analysis [9]. In the
case of semi-invasive attacks, UV light, X-rays, and other forms of ionizing radiation,
lasers, and electromagnetic fields could all be used to carry out the attack. Moreover,
semi-invasive attacks are more difficult to implement than non-invasive ones, as they
involve chip depackaging.

It is important to note that we have targeted a differential power analysis (DPA) attack,
as this is non-invasive. Furthermore, the non-invasive attacks do not alter the device or
its components. Moreover, attackers mostly exploit this method to retrieve information
from cryptographic devices (as it is an inexpensive method). Based on this observation, we
have also used a DPA method (in this paper) to retrieve the security key of the selected
AES algorithm.

1.1. Existing Solutions with Respect to Side-Channel Attacks and Their Countermeasures

Solutions described only the SCA attacks. In [10], a wireless interceptive SCA is
performed to break the AES-128 key. They analyzed the correlation electromagnetic
analysis (CEMA) of the cryptographic device for the SCA attack and successfully revealed
the encryption key in 20,000 electromagnetic traces.

The solutions, published in [11–13], perform a correlation power analysis (CPA) attack
on AES by analyzing the power leakage of the device during the execution of the encryption
process, and successfully retrieve the entire secret key. Generally, the CPA is an attack
that allows attackers to perceive a secret encryption key that is stored on a victim device.
The solutions described in [14–17] perform different orders of the DPA attack to find the
encryption key. They use the CPA method to reduce the processing time for successful
DPA attacks. In [18], a CEMA based attack is performed based on the correlation of
energy traces and intermediate data in the AES implemented on the SAKURA-G FPGA
(field-programmable gate array). Recently, a deep-learning SCA was performed in [19].
It recovers the secret key using a combination of different convolutional neural network
(CNN) classifiers with different attack points, which reduce the number of power traces
required to recover the key. In [20], a fault analysis attack on the FPGA implementation of
AES is performed. Moreover, the temporal and spatial analyses of the rounds impacted by
the fault injection process are analyzed.

A DPA attack using flash-based FPGA technology on AES is performed in [15]. For FP-
GAs, a lightweight AES architecture is presented in [21], which uses a partial separated
dynamic differential logic (partial-SDDL) technique. In [22], a new method is presented
that follows the sbox-reuse concept to secure the sbox of a block cipher. They first turned
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the multi-sbox into 4 × 4 permutations, then utilized permutations with more than one
algebraic degree to create a special reusable sbox, and then numbered the 4× 4 permutation
as input again.

Solutions provide the SCA attacks with their countermeasures. The power con-
sumption of the target device depends on the data it processes and the operation it per-
forms (it exposes the algorithm to SCA). To prevent this situation, several countermeasures
have been developed/proposed in the literature to reduce the possibility of an attack on
the cryptography algorithm.

A DPA attack on FPGA implementation of AES is given in [23]. Additionally, two
different countermeasures, i.e., (i) register swapping, and (ii) random recharging, which
increases the complexity of the attack, were provided. The solution published in [24]
proposed a new countermeasure based on the phase-locked loop (PLL) technique. In this
method, they placed a PLL in the power path of an AES, which suppresses the power
characteristics of the encryption operation. In [25], a SPA attack on AES is performed to
obtain the secret key. Moreover, a countermeasure based on adiabatic logic (implemented
in the AddRoundKey block of AES) is provided. This breaks the dependency between the
power consumption of the device and the secret key. Concerning the solution given in [26],
the CPA and DPA attacks on AES are presented using Arduino devices. It is analyzed that
both forms of the attack are feasible on the Arduino. The RTL (register transfer level) based
countermeasures are designed in [27].

In [28], various on-chip voltage converters as a countermeasure against DPA attacks
are described. Moreover, a comparison with the security strength of the proposed on-chip
converter-reshuffling (CoRe) regulator to the security of conventional on-chip voltage
regulators is provided. Similarly in [15], the authors check the vulnerability of AES against
first order and second-order DPA attacks. They specify some principles to demonstrate the
weak positions of AES which are vulnerable to DPA attack. In [29], researchers develop
techniques at the logic level. The method employs logic gates with power consump-
tion, which is independent of the data signals, and therefore, the technique removes the
foundation for DPA.

Additional security issues with respect to commercial devices. Cryptography de-
vices are extremely vulnerable when it comes to industrial applications. DPA attacks could
lead toward monetary losses, data integrity and sensitive data leakage. These security
threats have a great impact on the national or community level if we consider the broad
spectrum of users. We present two different case studies that express the true need for
the countermeasure and it leads toward the shortcoming as described in the forthcoming
section. Case-study#1: In [30], P. Kocher first provided the hardware demonstration of DPA
attacks on a smart card. He analyzed the power traces of the smart card and then revealed
the key of encrypted data. This attack embarked on a new career of security threats, which
led to different countermeasures. Case-study#2 is a recent example of the side-channel
attack on AMD (advanced micro devices) processors. The side-channel attack provides
access to a malicious application on the attacked system to exploit the hidden flaws inside
the CPU (central processing unit). Their attack makes use of memory associated with apps
(means applications) to obtain sensitive information, e.g., encryption keys, and passwords.
They leverage power and timing measurements of prefetch instructions. Their analysis
highlights the greater leakage of AMD processors as compared to a prefetch-based attack
on Intel processors [31].

1.2. Limitations

Section 1.1 reveals that simple hiding and masking techniques are extensively used in
the literature to mitigate the DPA attack on the cryptographic algorithm(s) [10–13]. Therefore,
these techniques are not power efficient and increase the hardware resources (area). In other
words, hardware-based countermeasures increased the implementation cost, which is not
preferred in most cases (for area limited applications, i.e., radio-frequency identification,
wireless sensor networks, and many more). Countermeasures based on hiding can easily
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be exposed to higher-order DPA because of the dependency of higher-order on first order
equations [15]. In many papers, the AddRoundKey block of AES is altered into a logic-
based design [25,27,29]. It breaks the dependency of the power trace during the execution
of the encryption process (which is adequate). On the other hand, it alters the characteristics
of the AES algorithm, making it vulnerable to cryptanalysis attacks. Subsequently, there is
a need for area-efficient designs in light of countermeasures to mitigate the DPA attacks
over cryptographic algorithm(s).

1.3. Our Contributions

To apply the DPA attack, we have selected an open-source core of AES from Open-
cores [32]. Therefore, the contributions to this work are given as follows:

• Setting to apply DPA attack. To execute the DPA attack on modern low-power FPGA
devices, a large number of power traces are required. This results in an increase in the
correlation calculation time. Therefore, to reduce this calculation time, we proposed
our custom correlation technique (details are given in Section 3.1).

• Secret key identification using DPA attack. We applied the DPA attack (our cus-
tom correlation technique) on our FPGA implementation to obtain the secret key by
measuring the power traces of the computations involved in the AES algorithm.

• Countermeasure to mitigate the DPA attacks. To provide resistance against DPA
attacks, we provided a countermeasure using Boolean and multiplicative masking for
the linear (i.e., ShiftRows, MixColumns, and AddRoundkey) and non-linear functions
(i.e., SubBytes) of the AES, respectively. The descriptions are given in Section 3.2.

We synthesized two different Verilog implemented designs, i.e., (i) without counter-
measure (we termed this as DESIGN-I), and (ii) the inclusion of countermeasure (we named
this as DESIGN-II), using the Vivado IDE tool. The implementation results for DESIGN-I
and DESIGN-II are given on a Zynq 7020 FPGA device. Our DESIGN-I utilizes only the
424 FPGA slices. On the other hand, our DESIGN-II takes 714 FPGA slices. Subtraction of
FPGA slices of DESIGN-I from DESIGN-II determines the FPGA slices (i.e., 290) required
for the implementation of additional logic (i.e., our proposed countermeasure). With the
utilization of these hardware resources, we have shown the extraction and prevention of a
128-bit secret key of AES. Consequently, our DESIGN-II provides the acceptability of this
work for applications that require prevention against DPA attacks.

This paper is organized as follows: Section 2 provides the required mathematical
background about the implementation of AES. Section 3 describes the proposed method
to provide resistance against the DPA attack on FPGA. The implementation results are
described in Section 4. Finally, this work is concluded in Section 6.

2. Preliminaries

The fundamental working of the AES is shown in Figure 1. It takes a 128-bit key
(for a variant of AES-128) and plaintext as input and results in a 128-bit ciphertext as an
output. We refer interested readers to [33] for the complete mathematical descriptions
and formulations.

A variant of AES, named AES-128, encryption starts from the initial round followed
with an additional ten rounds. Each round consists of the following four operations [34]:

• SubBytes splits the input data into bytes and then passes the input byte by byte
through the substitution box (S-box). It is a non-linear substitution.

• ShiftRows determines each row of the 128-bit internal state of the cipher shifted by
the fixed amount.

• MixColumns provides diffusion to the AES. It performs linear transformation, which
makes AES secure against many attacks.

• AddRoundKey is responsible for performing a bitwise exclusive-OR (XOR) operation
in each round.
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Figure 1. Structure of the AES algorithm.

In the last round, the MixColumns operation can be avoided. The ciphertext, at the
end of the last round, presents the value of the StateWord Register [35]. It is important to
note that this is the place where the DPA attack can be performed by inverting ShiftRows
and the SubBytes operations on the selected byte. Despite these essential operations
(SubBytes, ShiftRows, MixColumns, and AddRoundKey), a key expansion is responsible
for generating a distinct key for each round during the execution of the AES protocol.
AddRoundKey of AES completely transform the nature of the data, as it performs an
XOR operation in each round. The attacker exploits the power consumption, as it solely
depends on the processed data. The attacker records a large number of power tracks with
the fact that the complexity of data processing is linear to the power consumption [36].
Moreover, the attacker already knows the working of the AES algorithm, and therefore,
he/she targets the intermediate stage, e.g., AddRoundKey, which completely changes the
nature of the data [37]. The attacker can also exploit the linearity property of ShiftRows
and MixColumns. This vulnerability enables an attacker to build a hypothetical model to
extract the secret key.

3. DPA Attack and Our Proposed Countermeasure

This section describes the perspectives to apply the DPA attack in Section 3.1. The
mathematical model of our proposed countermeasure to mitigate the DPA attack on FPGA
implementation of AES is presented in Section 3.2.

3.1. DPA Attack

The DPA attack is most popular attack based on power analysis. The interesting fact
about DPA is that it does not require information about the attacked device. It requires a
large number of power traces along with software computation to reveal the secret key of
a cryptographic device. DPA exploits power consumption at a specified instant of time,
as then it used power traces as a function of processed data. To apply the DPA attack,
the initial step is to collect the power samples during the computation of the operations
involved in the selected algorithm or protocol (AES in our case). The method to accumulate
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the power traces is described later in Section 4.1. Therefore, the subsequent steps are
described in the text given below.

Step 1: Selection of the intermediate values inside the algorithm. The first step of a
DPA attack is to choose an intermediate result from the cryptographic algorithm running
on a cryptographic device. Then, the intermediate results can be used to reveal the part of a
secret key. The function f (d, k) is used as the intermediate result. The value of d determines
either the plain text or ciphered text, while k is a selected part of the key.

Step 2: Measuring the power consumption. In the second stage, we monitor the power
traces of the cryptographic device during the execution of the operations associated with
it. When performing encryption or decryption operations, the attacker must know the
relevant data value d (this is required in the calculation of intermediate results, as described
in step 1). For DPA attacks, it is crucial that the measured traces are aligned appropriately.

Step 3: Calculating intermediate values of hypothetical model. The next stage in the
attack is to compute a hypothetical intermediate value for each conceivable k value. Using
Equation (1), an attacker may simply compute the hypothetical intermediate values f (d, k)
for all encryption runs (we denote with D) and key hypotheses (we termed with K) on
given data vector d and key hypothesis k.

vi,j = f (di, k j) (1)

In Equation (1), i moves from 1, . . . , D and j moves from 1, . . . , K. This means that the
result stored in a matrix v is of size D× K.

Step 4: Mapping intermediate values to estimate the power consumption. The DPA
attack proceeds by mapping the hypothetical intermediate values v to a matrix H of hypo-
thetical power consumption values. The power consumption of the device is simulated
using the Hamming-distance and Hamming-weight model approaches for each hypotheti-
cal intermediate value Vi,j in order to generate a hypothetical power consumption value
hi,j. The Hamming-distance and Hamming-weight models are the most widely utilized
power models for mapping v to H.

Step 5: Comparing the hypothetical model with the measured power traces. The final
step of DPA is to compare each key hypothesis with the recorded traces, using correlation.
The result after comparison is stored to matrix R (size is K× T (this matrix contains the mea-
sured values of power traces from the attacked device)) after the comparison/correlation
between matrix H and matrix T. This comparison is based on the Pearson correlation.

3.1.1. Pearson Correlation

As described in the previous section, the key guess is accomplished using the correla-
tion coefficient between each sample and a predicted power leakage. To achieve this, the
Pearson correlation coefficient method is one of the approach(es), as (it is assumed that)
there is a linear dependence between the measured variables and the leakage. Therefore,
the Pearson correlation coefficient between two random variables, i.e., X, and Y, can be
calculated using Equation (2).

ρX,Y =
cov(X, Y)

σXσY
(2)

In Equation (2), cov(X, Y) is the covariance between two variables, i.e., X, and Y.
The σX and σY determines the standard deviations of the variables X and Y, respectively.
The statistical sample (or the normalized measurement of a covariance such that the resul-
tant value always lies between the range −1 and 1) of the Pearson correlation coefficient
can be calculated using Equation (3).

ρX,Y =
cov(X, Y)√

E
[
(X− µX)

2
]√

E
[
(Y− µY)

2
] =

E[(X− µX)(Y− µY)]√
E
[
(X− µX)

2
]√

E
[
(Y− µY)

2
] (3)
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In Equation (3), the values for µX and µY determine the mean of variables X and Y,
respectively. Furthermore, E shows the expectation or expected value. It is important
to provide that the Pearson correlation is not much efficient (as it performs correlation
in a sequence of rows one after the another) and is challenging to extract the correlation
coefficient between two sets of stochastic variables (i.e., X, and Y), due to the presence of
excessive noise. Additionally, this results in an increase in the correlation calculation time.
Therefore, we have described our custom Pearson correlation function (in the succeeding
Section 3.1.2) that optimizes the computation based on the statistical implementation.
Moreover, it also reduces the calculation time.

3.1.2. Our Proposed Custom Correlation Algorithm

The sequence of instructions for our proposed custom correlation function is given in
Algorithm 1. It takes the power traces (i.e., a) and a hypothetical model (i.e., b) as an input.
It results in the correlation of a and b as an output (i.e., C). At the start, the algorithm first
creates two variables for hypothetical values (a) and power traces (b) with their matrix
size. Then, function REPEAT_MEAN removes mean values from the original matrices of
hypothetical values and power traces (receptive process). Then, it multiplies the matrices
as calculated in the previous function to obtain the dot product. Finally, the resultant of
the product is divided with another product of the variance and square root to obtain
the correlation.

Algorithm 1: Proposed custom correlation algorithm.
Input: a (power traces), b (hopothetical model)
Output: C ← custom_corr(a, b)

1 [Xr, Xc]← SIZE(a)
2 [Yr, Yc]← SIZE(b)
3 a← a - REPEAT_MEAN(a, Xr)
4 b← b - REPEAT_MEAN(b, Yr)
5 C ← a′ ∗ b
6 C← C/ SQUARE_SUM(a, Yc)
7 C← C/ SQUARE_SUM(b, Xc)

The Algorithm 1 is much faster than the correlation function, provided in Equation (3).
This is due to the correlation comparison performed in a matrix representation rather than
correlating row by row (as used in Equation (3)). Our proposed custom correlation function
is also faster than the corrcoef (this is a built-in function of MATLAB to correlate two
vectors based on Pearson correlation) as it is based on the matrix comparison. On the other
hand, the MATLAB function, i.e., corrcoef, executes correlation similarly to Equation (3)
(row by row). In terms of computation time, the proposed Algorithm 1 is 16.24 times (ratio
of 9.26 to 0.57) faster as compared to corrcoef. The time required to execute one byte for
the correlation is 9.26 (for corrcoef ) and 0.57 (for Algorithm 1), respectively.

3.2. Our Proposed Countermeasure

To mitigate the DPA attacks, we have proposed our countermeasure using the masking
technique. As mentioned earlier in Section 2, AES consists of four functions (i.e., ShiftRows,
MixColumns, AddRoundkey and SubBytes). The ShiftRows, MixColumns, and AddRound-
key functions are linear, while a SubBytes function of AES is non-linear. The attack could
be employed on both linear and non-linear functions of the AES. We propose a countermea-
sure for both linear and non-linear functions. Therefore, Boolean masking can be applied
easily to the linear functions. The problem arises in the case of a non-linear function, where
Boolean masking could not be applied. According to [23,29], the SubBytes function would
be easy to mask through multiplicative masking. Consequently, we employed Boolean
masking over the linear functions of AES (ShiftRows, MixColumns, and AddRoundkey),
while multiplicative masking is applied to the non-linear function (SubBytes).



Appl. Sci. 2021, 11, 10314 8 of 16

3.2.1. Multiplicative Masking

Original concept. In masking, the intention is to protect sensitive information while
providing a functional alternative when real information is not needed. Generally, masking
is the different representation of real information. It can distinguish using the splitting of
a function (i.e., f (x)) into n + 1 shares, as shown in Equation (4). The Boolean sharing is
computed using a bit multiplication operation over the split shares.

x = (q0
x, ...., qd

x)⇐⇒ x =
d⊗

i=0

qi
x (4)

In Equation (4), we use qi
x to present Boolean shares of a function defined in terms of

x. The q0
x . . . qd

x are the n + 1 Boolean shares of x, where n is the natural number.
Zero value problem. Initially, the significant security flaw of multiplicative mask-

ing was highlighted in [38]. It does not mask the value 0. The mean power consump-
tion of a single share qi

x reveals whether the underlying secret is zero or non-zero since
E[qi

x|x = 0] = E[qi
x|x 6= 0] for any share index i [39]. This means that for any number of

shares, the original multiplicative masking scheme is vulnerable to first-order DPA.
Solution. Our proposed solution to avoid the zero value problem is illustrated in

Figure 2. It realizes the fact that if we invert zero, we obtain zero, while if we invert one,
we obtain one. To achieve this, we used only the Kronecker delta function (see δ(x) in
Figure 2). The corresponding mathematical formulations are shown in Equations (5)–(7),
respectively.

x−1 = x for x ∈ {0, 1} (5)

δ(x) =
{

1 if x = 0
0 if x 6= 0

(6)

x−1 = (x⊕ δ(x))−1 ⊕ δ(x) (7)

GF inversion

δ (x)

0 1 1 0

Figure 2. Our proposed solution to avoid the zero value problem in multiplicative masking.

For any bit value (0 or 1), Equation (5) determines the inverse of a Boolean share.
The Kronecker delta function is provided in Equation (6). Finally, Equation (7) reflects the
implementation of Figure 2. It is obtained with the substitution of Equations (5) and (6).

3.2.2. Boolean Masking

Original concept. In Boolean masking, the variable sharing splits into d + 1 random
shares (i.e., s0, s1, s2 . . . sd). The resultant Boolean share is computed using the exclusive-OR
operation over split random shares (s0 ⊕ · · · ⊕ sd−1 ⊕ s). It shows that every share of si is
statistically independent of s and uniformly distributed.

Problem implementing Boolean masking. When implementing circuits considering
the concepts related to Boolean masking over application-specific integrated circuits (ASICs)
or FPGA devices, the use of different wires with different length results in masking being
less appropriate. The reason is that glitches may arise when especially the combinational
logic for design implementation/modeling is used. The term “glitch” determines the
unnecessary signal transitions without functionality.

Solution. To avoid glitches (useless transitions) in our design implementation, we
used the Fourier expansion (in general, the Fourier expansion or series is a periodic function,
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which is composed of harmonically related sinusoids, combined by a weighted summation.
For complete mathematical descriptions and formulations, we refer readers to [40]) along
with the REBECCA’s approximation. The Fourier expansion of a Boolean function derives
the correlation sets. Moreover, the Fourier expansion represents the Boolean functions as a
polynomial over the real domain {1,¬1}, as shown in Equation (8). REBECCA considers
glitches by demonstrating the stable and transient relationship of gates. To verify the
resultant correlation as an output, it requires a correlation set as an input.

{>,⊥} → {−1,+1}
(x⊕ y)→ (xy)
(x ∧ y)→

(
1
2 + 1

2 x + 1
2 y− 1

2 xy
) (8)

4. Implementation Results

The experimental setup to implement our proposed DESIGN-I and DESIGN-II is
provided in Section 4.1. The area and timing results are given in Section 4.2. The secret key
identification and prevention against DPA attack are described in Section 4.3.

4.1. Experimental Setup

We have implemented two designs (DESIGN-I (without countermeasure) and DESIGN-
II (inclusion of countermeasure)) in Verilog HDL on Digilent ZYBO development board.
It contains a Zynq 7020 FPGA device for logic implementation. To apply the SCA attack
on the selected board, certain alterations are required, i.e., (i) removal of the decoupling
capacitors (C179, C180, C224 and C225), and (ii) replacement of a shunt resistance, i.e., R265,
with a value 0.1 Ω [41]. This will sink the total current of the board through this resistance
(0.1 Ω). The purpose of using a 0.1 Ω resistor is to reduce the static power, as Zynq SoC
(with both FPGA logic and dual-core processor) has much larger static power consumption.

Implementation parameters. We have implemented a 128-bit variant of AES block
cipher. It means our designs contain a 16-byte key, having values (0xA1, 0x78, 0x5B, 0x77,
0x2D, 0xCD, 0xD4, 0x1F, 0x9E, 0x55, 0xA3, 0x45, 0x7C, 0x8B, 0x26, 0xEC). All these values
are in hexadecimal representation.

Capturing power traces. As shown in Figure 3, the probes of the oscilloscope are
connected across the shunt resistance that we replace to 0.1 Ω. We captured the power
traces as the AES performed encryption over the data (so the attack will have the highest
probability of success). An external trigger signal is generated from FPGA to inform the
oscilloscope when it will start to capture the data and vice versa. To set and reset the
external trigger, we used pin 8 of port 2. The trigger is activated during the computation of
the AddRoundKey and SubBytes functions. These two functions are executed 10 times
for each plaintext value and the average value of 1000 power traces is captured by the
oscilloscope. Note that the AddRoundKey function is simply the exclusive-OR of each byte
of data with the key. So, it does not consume too much power. The SubBytes results in a
leakage of information, as the cryptographic device uses too much power (because Sbox is
looking for the bytes obtained after the computation of an exclusive-OR operation). This
enables us to attack and perform such power analysis. After capturing the power traces,
we developed a MATLAB script to perform the DPA attack, using Pearson correlation.
Recall again that we also introduced a custom correlation algorithm to speed up the attack
process (see Section 3.1.2).
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Figure 3. Hardware setup to collect power traces.

4.2. Area and Timing Results

The area and timing results (in terms of clock cycles) are given in Table 1. Column
one provides the implemented design. The achieved clock frequency (freq. in MHz) is
provided in column two. The area information in terms of slices, look-up-tables (LUTs) and
flip-flops (FFs) are shown in columns three to five, respectively. The timing information
in terms of required clock cycles to execute encryption (ENC) and decryption operations
(DEC) is presented in columns six to seven, respectively.

Table 1. Area and clock cycles information on a Zynq 7020 SoC (Artix-7 device).

Designs Freq.
Utilized Area Clock Cycles

Slices LUTs FFs ENC DEC

DESIGN-I 250 424 1314 538 12 12

DESIGN-II 205
(−18%) 714 (+68%) 2110

(+60%)
1089

(+102%) 12 12

DESIGN-I is without the countermeasure. DESIGN-II is with the inclusion of countermeasure.

As shown in Table 1, DESIGN-I achieves 1.21 times higher clock frequency as com-
pared to DESIGN-II. When considering the hardware utilization for comparison, DESIGN-II
utilizes 1.68, 1.60 and 2.02 times higher slices, LUTs and FFs, respectively. This is due to
the required additional logic for the implementation of our proposed countermeasure and
Algorithm 1. Subtraction of FPGA slices of DESIGN-I from DESIGN-II determines the
FPGA slices (i.e., 290) required for the implementation of additional logic. The percent
increase in (when comparing DESIGN-II with DESIGN-I) slices, LUTs and FFs is also
given in Table 1. The clock cycles required for the execution of encryption and decryption
operations are identical in DESIGN-I and DESIGN-II (i.e., 12). Concerning the computa-
tional complexity (in terms of time required to perform one encryption and decryption
operations) of our DESIGN-I, each encryption/decryption operation require 0.048 ms (ratio
of 12 over 250). Similarly, the computational complexity of our DESIGN-II is 0.058 ms (ratio
of 12 over 205). With the utilization of lower hardware resources, presented in Table 1,
we believe our DESIGN-II is more beneficial for the applications that require prevention
against DPA attacks.

It is important to note that the additional FPGA slices (290) to implement our proposed
countermeasure is 68% of our DESIGN-I (where the achieved slices value is 424). It reveals
that the proposed countermeasure is not suitable for the lightweight implementations of
AES. However, it is preferred to use in applications that demand high-speed AES imple-
mentations. For example, in 2019, a high-speed area-efficient implementation of AES on
Xilinx Artix-7 (XC7A100T-1CSG324C) FPGA is reported in [42]. Their architecture utilizes
15,850 slices. Our proposed countermeasure has more meaning in such an implementation
because it has 54.6 times the hardware resources of [42].
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4.3. Secret Key Identification and Prevention against DPA Attacks

Once after the collection of power traces (as described previously in Section 4.1), we
used the MATLAB script along with Algorithm 1 (implemented in MATLAB) to predict
the key-bit values. Moreover, for each power trace, the prediction was made on the highest
correlations calculated and plotted for the average square of the total amplitude of the
differentials on each keybyte separately. The predicted bit values or correlation plot for the
first-byte of the 128-bit secret key (in decimal form) are shown in Figure 4. Furthermore,
the corresponding correlated values for each key byte are given in Table 2. For a first-byte
of a 128-bit secret key, the power traces of DPA attack with the inclusion of our proposed
countermeasure is shown in Figure 5.

Figure 4. Retrieval of first-byte of a 128-bit secret key obtained after the execution of a DPA attack on
DESIGN-I (AES without our proposed countermeasure).

Figure 5. An erroneous retrieval of the first-byte of a 128-bit secret key obtained after the execution
of a DPA attack on DESIGN-II (AES with inclusion of our proposed countermeasure).
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Table 2. The achieved correlated values for 16 bytes of AES-128 key.

# of KeyBytes
Key Values (In Different Representations)

Correlation
(In Decimal) (In Hexadecimal)

KeyByte 1 161 A1 0.445
KeyByte 2 120 78 0.493
KeyByte 3 91 5B 0.502
KeyByte 4 119 77 0.45
KeyByte 5 45 2D 0.525
KeyByte 6 205 CD 0.356
KeyByte 7 212 D4 0.481
KeyByte 8 31 1F 0.478
KeyByte 9 158 9E 0.505

KeyByte 10 85 55 0.293
KeyByte 11 163 A3 0.481
KeyByte 12 69 45 0.45
KeyByte 13 124 7C 0.513
KeyByte 14 139 8B 0.41
KeyByte 15 38 26 0.512
KeyByte 16 236 EC 0.447

The achieved values after correlation, presented in the last column (i.e., column four)
of Table 2 reveals that we have successfully applied the DPA attack on the selected AES
algorithm. Moreover, it passes the Pearson correlation test, as all these values (see last
column of Table 1) are in the range −1 to 1. A larger peak in Figure 4 determines the
identification of the first-byte (161 in a decimal) of a secret key. Including the first-byte,
the identification of the remaining bytes of a 128-bit secret key is presented in Appendix A.

Figure 5 reveals that there are “ghost” peaks, which lead to wrong keys corresponding
to the target Sbox. We also test the attack by increasing the power traces up to 5000, but still
it leads to a wrong key guess. Including the first byte, the prevention against the remaining
bytes of a 128-bit secret key is shown in Appendix A. As a result, we believe that our
proposed countermeasure over AES resists the DPA attack.

5. Limitations of This Work

The state-of-the-art solutions guard the AES block cipher against DPA attacks. How-
ever, these solutions have a few limitations, such as area, security of linear and non-linear
functions simultaneously, instantaneous power, etc. The techniques proposed in [36,37,43]
tackle the DPA attack and its vulnerabilities. In contrast with our technique, we focused on
area and security, simultaneously. The proposed security method protects both linear and
non-linear functions of the AES algorithm. Moreover, the power leakage is approximately
small as compared to the aforementioned solutions. Concerning our solution, our design
could be implemented on FPGA and it could also be implemented as an embedded design,
e.g., SoC (system on chip). This could be implemented on any SoC device, such as Zybo,
Zedboard, Intel Arria, etc. This requires a C/C++ code, which will be executed on the
processor to a special register inside the FPGA. The real-time control of the cipher/decipher
is possible, which is controlled from a PC. However, this requires an external module
that is integrated into the design for serializing the transmission, e.g., UART (universal
asynchronous receiver–transmitter). These two limitations are user oriented, and we will
address them in our future work for RFID (radio frequency identification)–based appli-
cations. Moreover, we mainly focused on the security side of the AES, which was also a
primary goal of this work.

6. Conclusions

This paper presents the employment of a DPA attack on the NIST standardized AES
algorithm for key retrieval and prevention. To retrieve the secret key, we have applied
the DPA attack on AES to obtain a 128-bit secret key by measuring the power traces of
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the computations involved in the algorithm. To provide resistance against the DPA attack,
we have proposed a countermeasure based on the masking scheme: (i) Boolean and (ii)
multiplicative. Moreover, we improved the complexity involved in the Boolean masking by
introducing Rebecca’s approximation. Additionally, we provided a novel solution to tackle
the zero mask problem in multiplicative masking. We proposed our custom correlation
technique, which resulted in a decrease in the calculation time. The synthesis results for
DESIGN-I (an open-source core selected from GitHub) and DESIGN-II (inclusion of our
countermeasure) are provided on a Zynq 7020 FPGA device. DESIGN-I takes 424 FPGA
slices and achieves a clock frequency of 250 MHz. DESIGN-II requires 714 slices and
achieves 205 MHz clock frequency. For both implementations (DESIGN-I and DESIGN-II),
12 clock cycles are required to execute one encryption and decryption operation, respec-
tively. Therefore, the implementation results for our DESIGN-II provide the acceptability
of this work for area-constrained applications that require prevention against DPA attacks.
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Appendix A. Retrieval and Prevention of a 128-Bit Secret Key

The identification and prevention of an entire 128-bit secret key of AES is shown in
Figures A1 and A2, respectively. There are 16 snippets in these figures (Figures A1 and A2).
Each snippet determines one byte of a 128-bit key. The original selected values (also shown
in a decimal representation in column two of Table 2) for the secret key are 161, 120, 91, 119,
45, 205, 212, 31, 158, 85, 163, 69, 124, 139, 38 and 236. Figure A1 reveals that the key byte
values (shown in top on each snippet) are identical to the values provided in column two
of Table 2. This means that we successfully obtain the 128-bit secret key of the selected AES
algorithm. For the case of implemented countermeasure, the achieved values (given on
top of each snippet in Figure A2) in decimal are 246, 129, 91, 3, 175, 113, 70, 137, 153, 71,
105, 103, 45, 223, 38 and 244. It can be seen that these values are distinct from the values
reported in column two of Table 2. Subsequently, our proposed countermeasure provides
resistance against DPA attacks (which was the persistence of this work).
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Figure A1. DPA attack on AES without the countermeasure.

Figure A2. DPA attack on AES with the inclusion of our proposed countermeasure.
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