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Abstract: Vertical deflection of a frame beam is an important indicator in the limit-state analysis of
frame structures, particularly for steel–concrete composite beams, which are usually designed with
large spans and heavy loads. In this study, the equivalent flexural stiffness of composite frame beams
is analysed to evaluate their vertical deflection. A theoretical beam model with a spring constraint
boundary and varied stiffness segments is established to consider the influence of both the rotation
restraint stiffness at the beam ends and the cracked section in the negative moment region, such
that the inelastic bending deformation of the composite beams can be elaborately described. By an
extensive parametric analysis, a fitting formula for evaluating the equivalent flexural stiffness of
the composite beams, including the effects of the rotational constraint and the concrete cracking,
is obtained. The validity of the proposed formula is demonstrated by comparing its calculation
accuracy with those of existing design formulas for analysing the equivalent flexural stiffness of
the composite beam members. Moreover, its utility is further verified by conducting non-linear
finite element simulations of structural systems to examine the serviceability limit state and the
entire process evolution of beam deflections under vertical loading. Finally, to facilitate the practical
application of the proposed formula in engineering design, a simplified method to calculate the
deflection of composite beams, which utilises the internal force distribution of elastic analysis, is
presented based on the concept of equivalent flexural stiffness.

Keywords: equivalent flexural stiffness; rotation constraint; composite beam; negative moment
area; deflection

1. Introduction

Composite frame structural systems have been widely employed in high-rise build-
ings, girder bridges, and other structures with large span and heavy loads, because of their
favourable structural performance and economic benefit [1–5]. Compared with simply
supported beams, the continuous steel–concrete frame beams can obtain a significant
increase in structural stiffness, such that they have the advantages of higher span ratio, less
deflection, and fundamental frequency of vibration. However, for a continuous composite
beam in frame structures, the concrete slab over the intermediate supports suffers a tension
condition and may be cracked when in service. Due to the cracking of the concrete slab
under negative bending, the sectional flexural stiffness values of the continuous composite
beams in the positive and negative moment areas are different. The varied sectional flexural
stiffness along the member length induces a remarkable reduction in the integral rigidity
of the composite frame beams and should be considered in their limit-state analysis [6].
To date, many researchers have focused on the deflection analysis and design method of
the composite beams with full and partial interactions [7–10]. Moreover, for a frame beam
under vertical loads, the distribution of the bending moment and the cracking region are
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closely related to the deformation capacity of the beams and the columns connected to it,
i.e., the rotational constraint condition at the frame beam end. This complex boundary
condition increases the difficulty in evaluating the flexural stiffness of the continuous
composite beam.

The mechanism behaviour of steel–concrete composite beams has been investigated
in previous researches [11–13]. Moreover, in order to facilitate the design of the com-
posite frame structures, extensive experimental and numerical researches have also been
conducted to focus on the flexural behaviour of the steel–concrete composite beams. New-
mark [14] was the first to develop an elastic analysis theory of composite beams, including
the slip that occurs in the concrete slab–steel beam interface. The basic equilibrium and
compatibility equations for a beam element were established to calculate the deflection and
analyse the stresses distribution of composite beams. Considering the slip effect at the steel
beam–concrete slab interface, analytical models and design formulae were presented by
Lawson et al. [15] to predict the effective stiffness of composite beams. Ding et al. [16] and
Liu et al. [17,18] investigated the flexure behaviour of composite beams through experi-
mental and numerical studies on simply supported composite beams under the condition
of both positive and negative bending, and also verified the calculation method proposed
by Tao and Nie [19] to estimate the flexural capacity of composite beams. Based on the
realistic discrete shear force distribution, Zhang et al. [20] modelled the shear studs of
composite beams by using a set of nonlinear springs, such that the interaction between
the steel beam and concrete slab could be elaborately simulated. Lou et al. [21] worked
on the long-term behaviour of the composite beam and carried out a numerical study
to predict long-term deformation, which focused on the effects of concrete creep and
shrinkage. Fragiacomo et al. [22] proposed a formulation for the evaluation of composite
beam response under varied monotonic load levels, including both short- and long-term
loading. To improve the bending capacity and anti-slip performance of composite beams,
Wang et al. [23] proposed new assembled monolithic steel-prestressed concrete composite
beams and demonstrated their superiority in flexure capacity by experimental investiga-
tions. With a growing demand in engineering applications of composite beam systems,
researches on performance of composite beams with varied types of configurations—such
as high-strength steel concrete composite beams [24], composite beams with different slab
materials and shear transfer mechanisms [25], prefabricated composite beams with bolt
shear connectors [26], among others—also have been conducted.

Despite the success of the foregoing studies in the prediction of the flexural behaviour
of composite beams by incorporating various factors, such as interlayer slip, cracked
concrete, material nonlinearity, loading conditions, and member configurations, most of the
aforementioned methods focus on the independent composite beam without considering
the realistic boundary conditions at the beams ends. In the calculation of the flexure stiffness
for composite frame beams, the exiting methods generally take the boundary constraints
of the beam component as fixed ends, and thereby lead to an inaccurate evaluation of
the cracking effect in the negative moment region. For example, when the stiffness ratio
of a frame beam to the adjacent beam and column is relatively small, particularly for
composite beams employed under large-span and heavy loading conditions as discussed
by Nie et al. [27], the cracking area of the concrete slab and its influence on the flexural
stiffness would be overestimated.

As for the consideration of the flexural stiffness reduction in the negative moment
region for a composite beam, two methods are frequently adopted in the structural design
procedure. One of the most commonly used methods is dividing the entire continuous
composite beam into several segments with different section stiffness. Specifically, these
are negative moment segments with reduced section stiffness (EI−) at the beam ends and
a positive moment segment with normal section stiffness (EI+) in the middle. However,
the division into beam segments is subjective, and the ranges of positive and negative
moment regions are determined roughly. For example, considering the Chinese Code [28]
and Eurocode 4 [29], at each end, 15% of the length of a beam is suggested as one of
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the negative moment segments, and the remainder of the span is defined as the positive
moment segment. Another simplified method to evaluate the equivalent flexural stiffness
of a continuous composite beam is employing the weighted average of EI+ and EI−, which
is calculated using Equation (1):

EIeq = βEI− + (1− β)EI+, (1)

where β is the weight factor, which is not greater than 1. In American codes ANSI/AISC [30],
β is recommended as 0.4 for a composite frame beam under vertical loads. Liew et al. [31]
showed that the elastic behaviour of a composite frame beam can be simulated well when
β = 0.6.

Both of the above methods are based on a fundamental assumption that the length
ratio of the negative moment region and the entire continuous composite beam is constant.
However, this assumption evidently does not hold when considering the actual boundary
constraint conditions of the continuous beams in a practical composite frame structural
system. As shown in Figure 1, the distribution of the internal force and the cracking region
of a composite beam are closely related to the deformation capacity of the beams and
columns connected to it, i.e., the rotational constraint condition at the frame beam end. If
the rotational restraint stiffness at the beam ends is sufficiently strong, the frame beam can
be considered similar to a fixed beam, and thus, the cracking region of the concrete slab
is relatively large. Conversely, when the rotational restraint stiffness is relatively weak,
such as in the case of composite beams designed with large stiffness for large-span and
heavy loading conditions, the frame beam can be considered as a simply supported beam.
Consequently, the cracking region of the concrete slab is small.

Figure 1. Bending mechanism of the composite frame beam in a structural system. ((a) Composite frame structural system;
(b) Composite frame beam; (c) Deformation and bending moment diagram of composite frame beam).

In this study, a theoretical beam model with a spring constraint boundary and varied
stiffness segments is established to describe the inelastic bending deformation of composite
frame beams. The effects of the rotation restraint stiffness at the beam boundaries as well
as the concrete slab cracking in the negative moment region are evaluated by a parametric
analysis. By identifying the key factors affecting the flexural stiffness of composite beams,
a design formula for calculating the equivalent flexural stiffness of a frame beam and a
simplified method to analyse its deflection under vertical loads in engineering practice
are proposed. The accuracy of the proposed design method is verified by comparing its
calculated results with those obtained using existing design formulas and finite element
(FE) analysis.
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2. Theoretical Analysis

After the concrete slab cracking in the negative moment area, the effective flexural
stiffness reduces and the composite beam performs an inelastic deformation. To discuss the
inelastic bending deformation of composite frame beams, a theoretical model is established
for a composite beam subject to a uniformly distributed vertical load. As shown in Figure 2,
the composite beam is divided into three segments with different section flexural stiffness
depending on the cracking of its concrete slab. For the middle segment of the beam, the
concrete slab remains intact under a positive moment, and the section stiffness is defined as
the normal value (EI+). However, the segments at the two ends of the beam suffer cracking
in the concrete slab, and hence, the reduced section stiffness (EI−) is chosen. The spring
constraint boundaries are also included in the proposed model to simulate in detail the
rotation constraint imposed by the adjacent beams and columns in the frame structural
system. As the full shear connection is assumed for all composite beams discussed in this
study, the slip effect at the steel–concrete interfaces is neglected in the theoretical model
as well as in the numerical model discussed in the following sections. This simplified
treatment in modelling is validated to be reasonable by previous studies [3,32], especially
when considering the slip constraint provided by the beam–column joints.

Figure 2. Theoretical model of the composite frame beam under uniform vertical loads. ((a) Boundary constraints and
deformation; (b) Moment and section stiffness distribution).

First, the internal force distribution of the composite beam is derived by the theoretical
model. The reaction force at the left support is obtained from the equilibrium condition as

F1 =
1
2

ql + (k1θ1 + k2θ2)/l, (2)

where q is the uniformly distributed vertical load applied on the composite beam; l is the
length of the beam span; k1 and k2 represent the rotation restraint stiffness of the spring
boundaries at the left and right ends of the beam, respectively; and θ1 and θ2 are the
rotation angles at the two ends of the composite beam under the vertical load, respectively.

The moment distribution, M(x), of the composite beam can be expressed by the
following equation:

M(x) = F1x− k1θ1 −
1
2

qx2, (3)

where x is the distance of the calculated point to the left end support.
Based on the theory of material mechanics, the bending moment and vertical deflection

of the composite beam satisfy the following relationship:

EIi
d2wi(x)

dx2 = −M(x), (4)

where subscript i denotes the three segments of the composite beam, which are numbered
from left to right as 1, 2, and 3, respectively; wi(x) represents the distribution of the vertical
deflection for the corresponding beam segment; and EIi is the bending stiffness of the ith
beam segment, being EI− or EI+ depending on the segment. The contribution of reinforced
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steel rebars in the concrete slab is assumed to be negligible [3], and is thereby ignored in
the calculation of EI− and EI+.

The rotation angle distribution of the composite beam can be derived by integrating
Equation (4) as follows:

EIiθi(x) = −
∫

M(x)dx = −1
2

F1x2 + k1θ1x +
1
6

qx3 + C1i (5)

where θi(x) is the rotation angle distribution function of the corresponding beam segment;
and C1i is the integration constant, which is determined by the boundary conditions of the
composite beam.

The distribution function of the vertical deflection can be further derived by integrating
Equation (5) as follows:

EIiwi(x) =
∫

θi(x)dx = −1
6

F1x3 +
1
2

k1θ1x2 +
1

24
qx4 + C1ix + C2i, (6)

where C2i is the integration constant, which is determined by the boundary conditions of
the composite beam.

The boundary conditions of the composite beam in the frame structural system are
as follows: 

M(x1) = M(x2) = M0
θ1(0) = θ1
θ3(l) = θ2
w1(0) = 0
w3(l) = 0

θ1(x1) = θ2(x1)
θ2(x2) = θ3(x2)

w1(x1) = w2(x1)
w2(x2) = w3(x2)

, (7)

where x1 and x2 represent the coordinates positions where the bending moments reach the
value of cracking moment M0 on the left and right sides of the composite beam, respectively.

Using the first boundary condition function expressed in Equation (7), the rotation
angles at the beam ends—θ1 and θ2—can be expressed as follows: θ1 = −qx1x2+2M0

2k1

θ2 = −l2q+lqx1+lqx2−qx1x2+2M0
2k2

. (8)

By substituting Equation (7) into Equations (5) and (6), all the integration constants
(C1i and C2i, i = 1, 2, 3) can be eliminated, and thus, a non-linear equation system of x1 and
x2 is obtained.

k2

[
6EI− I+qx1x2 + I−k1q(x 3

1 − 3x2
1x2)+I+k1q

(
−x3

1 + 3x2
1x2
)
+ 12M0

(
−EI− I+ + I−k1x1 − I+k1x1

)]
= k1

[
6EI− I+q(l − x1)(x2 − l) + I−k2q(x 3

2 − 3x1x2
2)+I+k2q

(
−x3

2 + 3x1x2
2 − 6lx1x2 + 3l2(x1 + x2)− 2l3)+

12M0
(
EI− I+ + I−k2x2 + I−k2l − I+k2x2

) ]
k2x2

1
(

I−qx2
1 − 2I−qx1x2 − I+qx2

1 + 2I+qx1x2 + 12I−M0 − 12I+M0
)

= 12EI− I+lq(l − x1)(x2 − l) + I−k2q
(

x4
2 − 2x1x3

2
)
+ I+k2q

(
−x4

2 + 2x1x3
2 − 6l2x1x2 + 4l3(x1 + x2)− 3l4)+

12M0
(
2EI− I+l + I−k2x2

2 + I+k2l2 − I+k2x2
2
)

(9)

The non-linear system of equations can be solved using the Levenberg–Marquardt
method; thus, all the parameters in Equation (9) can be determined by the given boundary
conditions in practical cases. When the values of x1 and x2 are determined, the vertical
deflection distribution as well as the equivalent flexural stiffness can be calculated by the
following steps:
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1. x1 and x2 are substituted into Equation (7), and the rotation angles at the beam ends
(θ1 and θ2) are solved;

2. θ1 and θ2 are substituted into Equations (2) and (3) to solve the bending moment
distribution function, M(x);

3. M(x) is integrated using Equations (5) and (6), and the boundary condition functions
(Equation (7)) are used to determine the integration constants (C1i and C2i, i = 1, 2, 3).
Therefore, the vertical deflection distributions of each beam segment (wi(x)) and the
entire composite beam (w(x)) can be obtained.

3. Parameter Analysis
3.1. Rotation Constraints at Beam Ends

For a composite beam in a frame structural system, the rotation constraints at the
beam ends are closely related to the surrounding beams and columns connected to it. In
the theoretical model of the composite beam established above, the rotation constraints at
the beam ends are simulated by spring constraint boundaries. To accurately evaluate the
restraint stiffness at the beam ends, an equal-span composite frame structural system was
selected to study the calculation method of parameter ki (i = 1, 2).

For the planar beam–column joint shown in Figure 3, the rotation restraint stiffness at
the beam end (kb) and column end (kc) can be calculated using Equation (10):{

kb = kcu + kbl + kcb

kc = kbl + kcb + kbr
, (10)

where kcu, kbl, kcb, and kbr represent the rotation restraint stiffness provided by the sur-
rounding beams and columns.

Figure 3. Composition of end rotation constraints stiffness of the beams and columns in the frame. ((a) Rotation constraints
at beam ends; (b) Rotation constraints at column ends).

According to the mechanical principle of frame structure systems, the rotation restraint
stiffness provided by a structural member to its adjacent members can be defined as a
multiple of its linear stiffness:

k = ci = c
EI
l

, (11)

where c is the coefficient determined by the constraint condition at the other end; i is the
linear stiffness of the member; EI is the flexural stiffness of the member; and l is the length
of the member.

To simplify the calculation, all the beams and columns are assumed to have the same
linear stiffness, i.e., kcu = kcb and kbl = kbr. Thus, in the equal-span frame structural system,
the rotation restraint stiffness at the ends of any beam or column member are the same,
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except for the case in which the beam or column member is located in the side span or top
story. Thus, Equation (10) can be rewritten as Equation (12):{

kb = c1ib + 2c2ic
kc = 2c1ib + c2ic

, (12)

where ib and ic are the linear stiffness of an adjacent beam and column, respectively, and c1
and c2 are the undetermined parameters that need to be calibrated by constraint stiffness
kb and kc.

For a certain frame structural system with the given values of ib and ic, the values of
c1 and c2 can be calculated by iteration. The calculation results indicate that the values
of c1 and c2 are mainly related to the linear stiffness ratio of the beam and column (δ), as
illustrated in Figure 4. In general, the value of δ varies from 0.1 to 5 and remains not greater
than 1 for a composite frame structural system [28]. Within this parameter range, typically
c1 decreases with the increase in δ, whereas c2 increases. However, it is noted from the
figure that the values of c1 and c2 vary very little with δ in the given interval. Therefore,
the average values of c1 and c2 (c1 = 3.85, c2 = 3.60) are used in Equation (12) and, thus, the
rotation restraint stiffness at the composite beam ends can be approximately calculated
using Equation (13):

ki = 3.85nib + 3.60mic, (13)

where n and m are, respectively, the numbers of beams and columns connected to the
investigated composite beam.

Figure 4. Variation in c1 and c2 with beam-to-column line stiffness ratio. ((a) Relationship between c1 and δ; (b) Relationship
between c2 and δ).

Based on the displacement method in structural mechanics, the rotation constraint
provided by a fixed supported beam to a far end is four times the linear stiffness of the
member, whereas that by a hinged supported beam is thrice the linear stiffness. As the
real boundary condition of a composite frame beam is between those of perfect fixed and
hinged supports, the range of the rotation constraint coefficient should be from 3 to 4. This
is consistent with the theoretical analysis of coefficients ib and ic, as previously discussed.

3.2. Identification of Critical Parameters

Using the theoretical model described in Section 2, an extensive parametric analysis
was first conducted for the composite beam with equal rotation constraints at both ends, i.e.,
for the case of k1 = k2 (the unequal constraint case will be discussed in a subsequent section).
The vertical deflection of the composite beam was proved to be primarily related to only
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three key parameters: (1) the linear stiffness of the composite beam before the concrete
slab cracking (denoted as i+ = EI+/l); (2) the linear stiffness of the composite beam after the
concrete slab cracking (denoted as i+ = EI+/l); and (3) the rotation constraint stiffness of the
composite beam at both ends (denoted as k = k1 = k2). In addition, it was observed that,
when these three factors change proportionally, i.e., increase or decrease simultaneously
by the same multiple, the structural responses—vertical deflection, internal force, and
equivalent flexural stiffness—of the concerned composite frame beam remained invariant.
Therefore, two dimensionless parameters were identified as the dominant factors for the
vertical deformation of composite beams. These are (1) the ratio of the rotation restraint
stiffness and the linear stiffness of the composite beam after the concrete slab cracking
(denoted as K = k/i−), and (2) the ratio of the linear stiffness of the composite beam before
and after the concrete slab cracking (denoted as α = i+/i−).

To facilitate the detailed parameter analysis of the equivalent flexural stiffness of
composite beams, the regular ranges of critical parameters K and α were determined based
on the engineering practice. Parameter K represents the effect of the rotation constraints
at the beam ends on the calculation of the equivalent flexural stiffness. This is discussed
for two scenarios: common frame structures designed with equal-span arrangements and
composite beams designed with large spans and heavy loads. For the case of common
frame structures, the linear stiffness ratio of the composite beam and the column should
range from 0.2 to 1, and thus, the range of parameter K was calculated to be 10–40 using
Equation (13). For the case of composite beams designed with large spans and heavy loads,
the range of parameter K was 4–10 based on relevant practical engineering examples [27].

Parameter α reflects the effect of the concrete slab cracking on the equivalent flexural
stiffness of a composite beam, and it is also referred to as the stiffness amplification
coefficient in structure design codes. According to the JGJ 138-2016 Chinese Code for
Design of Composite Structure [33], the stiffness amplification coefficient, α, is calculated
using Equation (14),

α =
2.2

(Is/Ic)
0.3 − 0.5

+ 1, (14)

where Ic is the equivalent moment of inertia of the concrete slab section and Is is the
moment of inertia for a pure steel beam section.

Nie and co-workers [34,35] have completed numerous numerical studies on composite
beams that considered the cracking effect of the concrete slab. Based on their analysis
results, the value of parameter α is found to range from 1.1 to 7, which covers most
engineering application cases of composite beams.

3.3. Consideration of Unequal Rotation Constraints at Beam Ends

For the case in which the rotation restraint stiffness at the left and right ends of a
composite beam are unequal, the rotation constraints at both the need to be calculated
independently. Two additional variables—total restraint stiffness (ktot) and distribution
coefficient (s)—are introduced to express the rotation restraint stiffness at the left and right
ends of the composite beam as follows:

k1 = sktot, (15)

k2 = (1− s)ktot. (16)

Generally, the values of s range from 0.3 to 0.7 in engineering practices. When variable
s = 0.5, the constraint stiffness at both the beam ends are the same, and, when it deviates
from 0.5, the difference between them increases. By keeping parameters α and ktot constant,
the theoretical calculation results of the equivalent flexural stiffness of the composite beam
are obtained, as shown in Figure 5. In the figure, the vertical coordinate axis represents
the stiffness ratio of the composite beam to the steel beam, EIeq/EI−, and the horizontal
coordinate axis represents the variation in s.
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Figure 5. Influence of end rotational constraint stiffness distribution on the equivalent flexural stiffness of the composite
beam. ((a)α = 2, ktot = 10; (b) α = 2, ktot = 100; (c) α = 4, ktot = 10; (d) α = 4, ktot = 50; (e) α = 4, ktot = 100; (f) α = 6, ktot = 10;
(g) α = 6, ktot = 50; (h) α = 6, ktot = 100).

This indicates that, when parameter ktot is relatively small, EIeq/EI− decreases as
variable s deviates from 0.5. Conversely, when variable ktot is relatively large, EIeq/ EI−

increases when variable s deviates from 0.5. Compared with the case when variable s = 0.5,
the fluctuation range of EIeq/EI− does not exceed 3%. Therefore, the case in which the
rotation restraint stiffness values are unequal at the two beam ends can be simplified as
the equal rotation constraint case using an average value of the rotation restraint stiffness
calculated by

k = (k1 + k2)/2 (17)

3.4. Length of the Negative Moment Region

The length of the negative moment region is an important indicator in the design of
composite frame beams. As shown in Figure 6, the length of the negative moment region is
closely related to critical parameters K and α. Generally, the length of the negative moment
region increases with the increase in parameter K. When parameter K, indicating the
constraint stiffness at the ends of the composite beam, is zero, the frame beam degenerates
to a simply supported beam, and thus, there is no negative moment region in the composite
beam. As parameter K increases from 0 to 10, the length of the negative moment region
increases rapidly, whereas when K exceeds 10, it keeps increasing, but at a relatively
lower rate.
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Figure 6. Variation in the length of the negative moment region with critical parameters K and α.

As discussed in Section 3.2, parameter K in the range of 0 to 10 represents composite
beams designed with large spans and heavy loading conditions. In this case, the length of
the negative moment region is sensitive to the constraint stiffness at the beam ends; thus,
parameter K significantly affects the cracking of the concrete slab and the flexural stiffness
distribution of the composite beam. However, in the traditional method for evaluating
the effective flexural stiffness of a composite beam, the length of the negative moment
region is generally taken as a constant without considering the boundary conditions. For
example, GB 50017-2017 [28] and Eurocode 4 [29] define the negative moment regions
as the segments with a 15% length of the span at both the beam ends and assign EI−

as the section flexural stiffness of the negative moment segments. The horizontal line
representing the ratio of the length of the negative moment region to the beam span at 15%
is also plotted in Figure 6. It indicates that a fixed value of 0.15 overestimates the length of
the negative moment region, and overstating the cracking effect of the concrete slab results
in a relatively smaller calculated value of the flexural stiffness of the composite beam.

When parameter K is fixed, the length of the negative moment region decreases with
the increase in parameter α, i.e., the ratio of the linear stiffness of the composite beam
before and after the concrete slab cracking. This is because, for a composite beam with a
large sectional flexural stiffness in the non-cracked area, a large proportion of the internal
force is shared by the positive moment region, and consequently, the cracking area, i.e., the
length of the negative moment region, decreases.

3.5. Equivalent Flexural Stiffness

For the convenience of structural design in engineering applications, an equivalent
flexural stiffness represented by the weighted average of EI+ and EI− is frequently used to
evaluate the integral stiffness of a composite beam. The weight factor of the equivalent
stiffness—parameter β in Equation (1)—can be calculated using the theoretical model
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presented in Section 2. The relationship between the weight factor and the rotational
constraint stiffness (described by parameters K and α) is presented in Figure 7.

Figure 7. Variation in the weight factor of equivalent stiffness with end rotational restraint stiffness.

It can be seen that the computed value of β increases as parameter K increases, which
indicates that a strong rotational constraint results in a small equivalent flexural stiffness.
In addition, factor β initially increases rapidly when K is relatively small and subsequently
changes gradually, approaching saturation. When parameter K is fixed, weight factor β
increases as parameter α reduces, and the difference in the equivalent flexural stiffness is
larger when K ranges from 10 to 20. In Figure 7, the calculated results of weight factor
β are also compared with the recommended values of ANSI/AISC and Liew et al. It
can be concluded that the fixed value of weight factor β cannot accurately describe the
equivalent flexural stiffness of the composite beam because the effects of the boundary
rotation constraints and the concrete slab cracking are not elaborately considered in most
cases. In particular, for the composite beams designed with a large span and heavy loading,
the rotation constraints at the beam ends are relatively weak and parameter K is small
(e.g., 4–10) [27]. Fixed weight factor β, suggested by the previously mentioned studies,
significantly underestimate the integral rigidity of the composite beam. For the commonly
used frame structural system arranged with equal spans, parameter K varies within the
values of 10–40 and parameter α is approximately 0.4. In this case, the recommended value
of β provided in ANSI/AISC can reasonably describe the deformation mechanism and
flexural stiffness of the composite beams. In comparison, the value of 0.6 suggested by
Liew et al. leads to a remarkable difference from the theoretical results of β for both the
large- and common-span beams.

Based on the parameter analysis, as prescribed, the rotational constraint condition is
proved to have the dominant effect on the equivalent flexural stiffness of the composite
beam. To consider the critical parameters of the rotational constraint—K and α—in evaluat-
ing the equivalent flexural stiffness, a simplified formula for calculating weight factor β is
proposed by curve fitting, as expressed in Equation (18):

β =
(0.02α + 0.49)K1.9

K1.9 + 5.7α2 + 21.7α + 35.6
. (18)

In Figure 7, the change in weight factor β calculated using Equation (18) is represented
by solid lines. It can be seen that the calculated results of weight factor β agree well
with those obtained from the theoretical model. Taking parameter K = 0 as an example,
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coefficient β is calculated to be 0 using Equation (18), and the equivalent flexural stiffness
is EI+, which is in agreement with the theoretical results of a simply supported beam
without the cracking effect. In addition, when parameter K approaches infinity, the limit
of β is 0.02α + 0.49 and corresponds to the stiffness amplification coefficient, which is
also in good agreement with the theoretical tendency of composite beams with a fixed
support boundary.

4. Validation

To validate the accuracy of the proposed formula for evaluating the equivalent flexural
stiffness of a composite frame beam, the calculated results were compared with those
obtained from other design formulas as well as the simulation results of refined FE models.

4.1. Comparison with Existing Design Formulas

First, for conducting a parameter analysis, numerous design cases were selected
from practical engineering. As shown in Figure 8, the analysed examples consisted of
180 composite beams with different cross-sections, in which the span length, L, ranges
from 6 to 20 m. The effective slab width was calculated using the stiffness amplification
coefficient, α, and the slab thickness ranged from 100 to 150 mm. The span-to-steel beam
height ratio, L/hs, ranged from 15 to 25, and the steel beam flange width to height ratio,
bf/hs, ranged from 0.4 to 1.0. In addition, the steel beam flange thickness, tf, and the web
thickness, tw, were also designed to satisfy the requirement of a compact section.

Figure 8. Numerical examples of the composite frame beam.

Subsequently, the analysed cases were divided into two groups based on the constraint
boundary at the beam ends. In one group, parameter K ranged from 4 to 10, which
represents the composite beams designed with large spans and heavy loads. In the other
group, it ranged from 12 to 36, which represents the common composite frame beams
arranged with equal spans. The calculated results of the proposed formula in this paper
were compared with those obtained from the existing method, including the recommended
methods of ANSI/AISC, Eurocode 8 [36], and Liew et al., as shown in Figure 9. Note
that the related regulations in ANSI/AISC and Eurocode 8 are similar; thus, the results
calculated by both methods are plotted as one. Compared with the theoretical methods
of the equivalent flexural stiffness calculation, the formula proposed in this paper had a
margin of error of less than 1%. In comparison, the average errors of the methods suggested
by ANSI/AISC and Liew et al. were more than 10%, which is because of ignoring the
constraint boundary condition at the beam ends.
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Figure 9. Comparison of the equivalent flexural stiffness calculated by the formula proposed in this paper and other existing
methods. ((a) Comparison of EIeq calculation results in large-span heavy-loading design conditions; (b) Comparison of EIeq

calculation results in commonly arranged frame design conditions).

4.2. Comparison with FE Analysis of Frame Structures

To consider the bearing mechanism of a composite beam in a frame structural system,
the equivalent flexural stiffness calculated by the proposed formula was further validated
by conducting an FE analysis of the entire process deformation of a frame structure. The
numerical model was built based on a four-story and five-span plane frame, whose detailed
design parameters are provided in Figure 10. As the main variable parameter, the spans
of the composite beams adopted the values of 6, 9.5, 13, 16.5, and 20 m in the numerical
examples. The effective width of the concrete slab in the composite beams was calculated
using stiffness amplification coefficient α according to JGJ 138-2016 [33]. In addition, the
sectional dimensions of the composite beams were divided into two groups. In one group,
the concrete slab thickness, hc, was 120 mm; the span-to-steel beam height ratio, L/hs, was
20; and the steel bam flange width to height ratio, bf/hs, was 0.6. In the other group, the
concrete slab thickness, hc, was 150 mm; the span-to-steel beam height ratio, L/hs, was
15, and the steel bam flange width to height ratio, bf/hs, is 1.0. For all the FE models, the
parameters of steel beam flange thickness, tf, and web thickness, tw, were designed to
satisfy the requirements of width-thickness ratios specified in GB 50017-2017. Based on
the principle of ‘strong column–weak beam’ in structural design, the sectional sizes of the
columns changed with the span of the frame beam, and the axial compression ratio of each
column was set as approximately 0.4 to ensure that the columns do not yield before the
beam achieves the ultimate limit state.

The FE models of the investigated frame structures were established using a modified
fibre beam–column element proposed by the Tao and Nie teams [19], which was developed
using the subroutine package, COMPONA-MARC, based on the general FE analysis
software, MSC Marc. The accuracy of the modified fibre beam–column element in the
non-linear analysis of composite frame systems was considerably validated [19,37]. Based
on previous research on modelling strategies [32], the length of the fibre beam–column
element was suggested to be as, approximately, the depth of the cross-section. In each
cross-section of the beam elements, the concrete slab was divided into 5 × 5 fibres, i.e.,
25 fibres in total; the beam flange was divided into 10 fibres; and the web plate was
divided into 20 fibres. In each cross-section of the column elements, the flange and web
plates were divided into 10 and 20 fibres, respectively. The constitutive law, suggested by
Rüsch [38], was adopted for the uniaxial stress–strain skeleton curve of the concrete, and
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the constitutive relationship suggested by Esmaeilly et al. [39] was adopted for that of steel.
The detailed parameters of the material constitutive model are shown in Figure 11.

Figure 10. Finite element model of the composite frame example.

Figure 11. Skeleton curve of the stress–strain constitutive law used for steel and concrete. ((a) Stress−strain relation of steel;
(b) Stress−strain relation of concrete).

A uniformly distributed load in the vertical direction was applied to the middle
and side spans of the composite frame beams located in the first and fourth stories. The
applied loads started at zero and continued to increase until the frame beams completely
entered the plastic stage; thus, the entire evolution process of the deflection can be traced
for the considered beams. The simulated load–deflection curves of some typical frame
beams are presented in Figure 12a,b. By defining the point when the applied load achieves
half of the ultimate stage as the normal service stage, the corresponding deflection at the
middle of the span was compared with the results calculated by the proposed formula. The
comparison suggests that the simplified formula expressed in Equation (18) can predict
well the flexural stiffness of the composite beams in the service stage. For the 40 numerical
examples of composite beams shown in Figure 12c, the vertical deformations calculated by
the recommended formula agree well with the FE analysis results. The calculation errors
of the investigated cases are all within 10%, which demonstrates that the proposed formula
has good accuracy for evaluating the equivalent flexural stiffness of the composite beams.
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Figure 12. Comparison between the calculation results of the proposed formula and the FE analysis. ((a) Load−deflection
curve of 6-m-span frame at middle span in 1st story; (b) Load−deflection curve of 6-m-span frame at side span in 4th story;
(c) Comparison of deflection results between proposed formula and FE models).

5. Simplified Design Method

As discussed above, the rotation restraint stiffness at each beam end is the dominant
factor in calculating the equivalent flexural stiffness of the composite frame beams. In
the proposed formula, the rotation restraint stiffness of the frame beam is represented by
parameter K, which needs to be determined in advance. However, the calculation of the
rotation restraint stiffness—the value of parameter K—requires the calibration of the line
stiffness for the adjacent structural members, such as the beams and columns connected
to the considered frame beam. Thus, it is still complex to use the proposed formula to
evaluate the equivalent flexural stiffness of a frame beam. To overcome this drawback in
practical design, a simplified method for calculating the rotation constraints at the beam
ends and a design formula for evaluating the vertical deflection of the frame beam are
proposed in Sections 5.1 and 5.2, respectively.

5.1. Simplified Method for Calculating Rotation Constraint Stiffness

The stiffness of the rotation constraints at the beam ends can be directly reflected
by the bending moment distribution on the composite beam. As a rule, strong rotation
constraints at the beam ends lead to large negative moment regions on the composite frame
beam. Therefore, the rotation constraint stiffness can be represented by the length of the
negative moment region by identifying the distribution trend of the internal force.

For a composite beam with a uniform flexural stiffness distribution and no concrete
slab cracking, the reaction force at the beam support and the distributions of the bending
moments, rotations, and vertical deflections on the composite beam can be derived using
the theoretical model described in Section 2. These are expressed as follows:

F1 =
1
2

ql +
k1θ1 + k2θ2

l
, (19)
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M(x) = F1x− k1θ1 −
1
2

qx2, (20)

EI+θ(x) = −
∫

M(x)dx = −1
2

F1x2 + k1θ1x +
1
6

qx3 + C1, and (21)

EI+w(x) =
∫

θ(x)dx = −1
6

F1x3 +
1
2

k1θ1x2 +
1

24
qx4 + C1x + C2, (22)

where the definitions of the notations are consistent with those specified in Section 2.
For frame beams with constant sectional stiffness, the boundary condition functions

at the beam ends can be expressed as
θ(0) = θ1
θ(l) = θ2
w(0) = 0
θ(l) = 0

. (23)

By substituting the boundary condition functions into Equations (21) and (22), θ1 and
θ2 can be expressed as 

θ1 =
ql3(6EI++k2l)

12[12(EI+)2+4EI+(k1+k2)l+k1k2l2]

θ1 = − ql3(6EI++k1l)
12[12(EI+)2+4EI+(k1+k2)l+k1k2l2]

. (24)

Subsequently, the internal force distribution functions listed in Equations (20)–(23)
can be solved.

To build the relationship between the rotation constraint stiffness and the bending
moment distribution, two additional parameters αcr and lcr are introduced to describe the
length of a negative moment region, which are defined as follows:{

αcr =
lcr1 + lcr2

l

lcr = lcr1 + lcr2 = αcrl
, (25)

where lcr1 and lcr2 are the lengths of the negative moment regions located on the composite
beam at the left and right ends, respectively; lcr is the total length of the negative moment
region; and l is the length of the composite beam span.

Based on the definitions of lcr1 and lcr2, the following relationship should be satisfied:

M(lcr1) = M(l − lcr2) = 0 (26)

Thus, the rotation restraint stiffness can be expressed as k1 = 12EI+ lcr1(l−lcr2)
l(l2−2llcr2−4llcr1+6lcr1lcr2)

k2 = 12EI+(l−lcr1)lcr2
l(l2−2llcr1−4llcr2+6lcr1lcr2)

. (27)

If the rotation restraint stiffness at both the ends of the beam are equal (k1 = k2), the
lengths of the negative moment regions at the beam ends are equal, and the following
results can be obtained:

lcr1 = lcr2 =
1
2

αcrl, (28)

k1 = k2 =
6EI+

(
2αcr − αcr

2)
l(2− 6αcr + 3αcr2)

. (29)

For the case in which the rotation restraint stiffness at the two ends of the beam are
unequal, the lengths of the negative moment regions at the beam ends are different. The
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unequal distribution of the negative moment regions is described by the total length of the
negative moment regions (lcr) and the distribution coefficient (s), as defined in Equation (30):

s =
lcr1

lcr
= 1− lcr2

lcr
. (30)

Based on the theoretical model, the equivalent flexural stiffness (EIeq) is calculated
from the varied values of lcr and s, and the results are presented in the normalized form of
the stiffness ratio, EIeq/EI−, as shown in Figure 13. It can be seen that, when distribution
coefficient s deviates from 0.5, EIeq/EI− decreases. However, compared with the calculation
results when s = 0.5, the fluctuation range of EIeq/EI− does not exceed 4% when s varies
within 0.3–0.7, which covers the range of interest in practice engineering. Therefore, for
the case in which the lengths of the negative moment regions are unequal at the two beam
ends, i.e., s 6= 0.5, it is acceptable to simplify the calculation of the rotation restraint stiffness
using the average value of lcr1 and lcr2.

Figure 13. Effects of the unequal distribution of the negative moment regions on the equivalent flexural stiffness. ((a) α = 2,
αcr = 0.2;(b) α = 2, αcr = 0.3;(c) α = 2, αcr = 0.4;(d) α = 4, αcr = 0.12; (e) α = 4, αcr = 0.25; (f) α = 4, αcr = 0.35; (g) α = 6, αcr = 0.1;
(h) α = 6, αcr = 0.2; (i) α = 6, αcr = 0.32).

5.2. Simplified Design Formula for Calculating Vertical Deflection

To utilize Equation (18) to calculate the vertical deflection of a composite beam, two
critical parameters, i.e., K and α, need to be calibrated first. By substituting Equation (29)
into the definition formula of K, the ratio of the rotation restraint stiffness and the linear
stiffness of the composite beam after the concrete slab cracking can be easily obtained as

K =
k

i−
=

6α
(
2αcr − αcr

2)
(2− 6αcr + 3αcr2)

. (31)

Figure 14 illustrates the relationship between parameter K and negative moment
region factor αcr for different values of parameter α. Generally, when α is fixed, parameter
K increases as the negative moment region increases. Note that when αcr = 0, the composite
frame beam degenerates to a simply supported beam and parameter K = zero. When αcr is
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close to its theoretical maximum value of 1−
√

3/3, parameter K approaches infinity. For
the case when αcr is fixed, parameter K increases as the stiffness amplification coefficient α
becomes larger, which indicates that a large flexure stiffness of the composite beam leads
to strong rotation constraints at the beam ends.

Figure 14. Relationship between parameter K and negative moment region factor αcr.

In practical design, critical parameter K can be calculated using coefficients α and αcr in
Equation (31). The weight factor of the equivalent stiffness, β, can also be calculated using
this simplified method, and the relationship between parameters β and αcr is presented in
Figure 15.

Figure 15. Variation in equivalent stiffness weight coefficient β with parameters α and αcr.

To facilitate the utilization of this simplified method, a vertical deflection correction
factor α∆ is introduced and defined as follows:

α∆ =
∆co

∆
(32)
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where ∆co is the vertical deflection of the composite frame beam considering the effect of
the concrete slab cracking and ∆ is the vertical deflection of the composite beam neglecting
the effect of the concrete slab cracking.

Based on the relationship between the flexural stiffness and the vertical deflection
of the composite beam during the elastic stage, the definition of the vertical deflection
correction factor, α∆, can be rewritten as

α∆ =
EI+

EIeq
=

α

β + (1− β)α
(33)

For composite frame beams with different cross-section properties and rotation con-
straints, the theoretical value of α∆ can be calculated using Equation (33). Figure 16
illustrates the relationship of α∆ with the negative moment region factor, αcr, for different
values of the stiffness amplification coefficient, α. As expressed in Equation (33), α∆ is
determined using the equivalent flexural stiffness weight coefficient, β, and the stiffness
amplification coefficient, α, where β is determined by critical parameters K and α. In
addition, if the elastic analysis results of the internal force of a frame structure are available,
parameter K can be further expressed using α and αcr. Therefore, it is reasonable to use the
stiffness amplification coefficient, α, and the negative moment region factor, αcr, as inde-
pendent variables when determining the vertical deflection correction factor, α∆. Based on
the theoretical analysis results of α∆ shown in Figure 16, a piecewise function is proposed
as the simplified design formula for calculating the vertical deflection correction factor, α∆:

α∆ =


1, αcr ≤ 0.1

(ξ1−1)αcr+(0.25−0.1ξ1)
0.15 , 0.1 < αcr ≤ 0.25

(ξ2−ξ1)αcr+(0.43ξ1−0.25ξ2)
0.18 , αcr > 0.25

, (34)

where ξ1 and ξ2 are the calculated values of the vertical deflection correction factor when
αcr = 0.25 and 0.43, respectively, which can be calibrated by the following equations:

ξ1 = 0.06α + 0.96, αcr = 0.25, (35)

ξ2 = −0.03α2 + 0.466α + 0.61, αcr = 0.43 (36)

Figure 16. Variation in vertical deflection correction factor α∆ with parameters α and αcr.

As shown in Figure 16, there is a good agreement between the calculation results
of the simplified design formula and the theoretical model. It is demonstrated that, by
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elaborately considering the rotation constraints at the beam ends and the cracking effect
in the concrete slab, the proposed design formula can accurately describe the equivalent
flexural stiffness of the composite beams. The vertical deflection correction factor, α∆, is
observed to increase with the increase in the negative moment region factor, αcr, or the
stiffness amplification coefficient, α, which is consistent with the theoretical analysis results
as previously discussed. For the particular case of αcr = 0, correction factor α∆ = 1, as
calculated using Equation (34), indicates that the simply supported composite beam does
not need to adjust the calculated vertical deflection of the elastic analysis.

In summary, using the proposed design formula, as described in the following steps,
the vertical deflection of composite frame beams can be easily calculated:

1. Based on the elastic analysis results of a structural design software, the lengths of
the negative moment regions, lcr1 and lcr2, can be obtained from the internal force
distributions. Subsequently, the negative moment region factor, αcr, can be calculated
using Equation (25);

2. By substituting parameter αcr and stiffness amplification coefficient α into Equation (34),
the vertical deflection correction factor, α∆, can be obtained;

3. Utilizing the deformation results of the elastic analysis, the design value of the vertical
deflection of the composite frame beam is determined using the proposed formula in
Equation (32).

6. Conclusions

Based on the concept of equivalent flexural stiffness, a simplified design method is
proposed to calculate the vertical deflection of a composite frame beam. To identify the
influence of the rotation restraint stiffness at the beam ends and the cracked section in
the negative moment regions, a theoretical beam model is established. By conducting an
extensive parameter analysis of different frame beams, a fitting formula for evaluating
the equivalent flexural stiffness as well as a simplified design formula for calculating the
vertical deflection are proposed. The main conclusions are summarized as follows:

1. For a composite frame beam under uniform vertical loading, the rotation restraint
stiffness at the two beam ends has a significant effect on its vertical deflection and
internal force distribution, which should be elaborately considered when calculating
its equivalent flexural stiffness;

2. By considering the boundary constraint conditions at the beam ends, the proposed
formula for calculating the equivalent flexural stiffness can reasonably describe the
deformation mechanism of a composite frame beam, presenting a higher calculation
accuracy than those of the recommended formulas in ANSI/AICS and by Liew et al.;

3. By comparing with the non-linear FE analysis results of multiple entire frame struc-
tures, the accuracy and reliability of the proposed formula is further validated. The
vertical deflections in the service stage calculated using the proposed formula agree
well with those obtained from the entire process load–displacement curves in the
FE analysis;

4. Utilising the internal force distribution of a frame beam by elastic analysis, a simplified,
but effective design method is proposed to calculate the vertical deflection. The design
procedure is based on the deflection correction of the non-cracking analysis results,
which is demonstrated to capture the influence of the complex boundary conditions
and can be easily used in the practical design of composite frame beams.
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