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Abstract: When vehicles interact with a bridge, a vehicle–bridge interaction (VBI) system is created.
The frequency and modal shape of VBI systems have been widely studied, but the damping of VBI
systems has not been adequately investigated. In recent years, several incidents of abnormal bridge
vibration due to changes in bridge damping have occurred and aroused widespread concern in
society. Damping is an important evaluation index of structural dynamic performance. Knowing
the damping ratio of a VBI system is useful for analyzing the damping changes while a bridge is in
service. This paper presents a method to extract bridge damping values from a VBI system, which
can serve as a guide for bridge damping evaluation. First, a double-beam theoretical model was
used to simplify the VBI system for cases involving uniform traffic flow. The damping ratio equation
for the simplified VBI system was obtained using the extended dynamic stiffness method (EDSM).
A double-beam finite element model and a VBI finite element model were established. The damping
ratios of the two models were separately calculated and then compared with the simplified VBI
model results. The results verified the accuracy of the simplified method. This paper then explains
that bridge damping values can be extracted by estimating the equivalent traffic flow parameters and
using the damping formula for the simplified VBI system. The bridge damping ratios extracted using
this method in an engineering case ranged from 0.75% to 0.78%, which is smaller than the range that
was directly identified using monitoring data (0.83–1.19%). The results show that the method can
effectively extract bridge damping ratios and improve damping ratio identification.

Keywords: vehicle–bridge interaction; double-beam system; extended dynamic stiffness method
(EDSM); bridge damping

1. Introduction

Vehicle–bridge interaction (VBI) has been extensively studied in the field of structural
health monitoring (SHM) [1]. Numerous studies have shown that the dynamic charac-
teristics of VBI systems differ from those of bridges, and this difference often cannot be
ignored [2–5]. Traffic loads, as an important load in bridge operation, cause such differ-
ences in dynamic characteristics that have important impacts on the condition assessment
of bridges.

The influence of the vehicle–bridge coupling effect on bridge frequency has been
extensively studied. Yang [5] used a spring mass model to simulate a vehicle, in which the
closed-form solutions of the VBI system for a vehicle traveling over a bridge were calculated
when the first-order modal of the bridge was considered without damping. Li [6] proposed
a method to extract the frequencies of a VBI system using the synchroextracting transform
technique. Numerical studies have demonstrated the effectiveness of the method, and
the frequency identification results are in general agreement with the theoretical solution
proposed by Yang [5]. Matsuoka [7] used a Bayesian time-frequency analysis method to
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identify the change of frequency when a train crosses a bridge. This method was also
shown to be good at extracting the time-varying frequency characteristics of a VBI system.
Cantero [8] conducted an experiment to measure the evolution of the modal properties
of a bridge as a vehicle drives across it. Vehicle and modal frequency were analyzed at
different bridge locations using a simplified vehicle model with a spring mass. The study
found that the spring mass vehicle model was able to accurately explain the phenomena in
the experiment.

A vehicle suspension system is similar to an additional damper that absorbs and
reduces bridge vibrations [7]. This process causes the damping of a VBI system to be greater
than the damping of the bridge. Therefore, the vehicle–bridge coupling effect has an impact
on the damping identification results of a bridge. In bridge health monitoring, the damping
identified by monitoring data often has a large dispersion problem [9,10]. The presence
of traffic on a bridge usually causes the damping identified using bridge monitoring data
to be that of the VBI system, which is an important reason for the large dispersion of
damping identification results. However, in the field of SHM, a large amount of research
has focused on developing damping identification algorithms to improve the accuracy of
results, and few studies have analyzed the dispersion of damping identification results from
the perspective of vehicle–bridge coupling effects. Sunjoong [11] proposed using a dynamic
displacement reconstruction algorithm to suppress the higher-order modal components and
then using the Natural Excitation Technique combined with the Eigensystem Realization
Algorithm (NExT-ERA) to identify the damping ratio of a reconstructed displacement.
Wang [12] used the random decrement technique (RDT) and wavelet transformation
(WT) to identify the damping ratio of Sutong Bridge during a typhoon. Sunjoong [13]
proposed using an amplitude-modulation function to pre-process the measured data and
then used the operational modal analysis (OMA) method to identify the damping ratio.
Hwang [9] used 2.5 years of bridge monitoring data to analyze the variation pattern of a
damping ratio with a displacement reconstruction algorithm, but the identification results
still showed relatively large fluctuations. Therefore, it is important to study the effect
of the vehicle–bridge coupling effect on bridge damping identification and extract the
bridge damping ratio from a VBI system to improve the accuracy of bridge damping ratio
identification results.

In recent years, there have been reports of abnormal vibrations on two bridges in
China that have attracted widespread attention in society. One of the bridges was the
Humen Bridge in Guangdong. A change in the dynamic characteristics of the bridge is
suspected to be one of the causes of this incident. This bridge experienced vortex-induced
vibrations after a long period of traffic closure. In order to study the effect of traffic on the
dynamic characteristics of bridges, Dan [14] proposed that the double-beam system can be
used to analyze the damping variation law of VBI systems. However, the accuracy of using
the double-beam system to simplify a VBI system was not explored in more depth and
the estimation method of the traffic flow parameters in the model was not given, which
makes it difficult to apply the simplified model to practical engineering. In this paper,
this simplified model was investigated for the damping problem of VBI systems under
uniform traffic flow conditions. It was verified that the simplified VBI model has dynamic
characteristics consistent with the VBI system. An estimation method of equivalent traffic
flow parameters was proposed to achieve the evaluation of bridge damping from the
dynamic characteristics of VBI systems. Finally, the damping ratio was extracted for a real
bridge using the proposed method.

This paper is organized as follows: first, a method to simplify a VBI system using
the double-beam system is provided. Then, the damping ratio calculation method of the
simplified model of a VBI system is derived. The accuracy of using the simplified model
to calculate the damping ratio of a VBI system is verified by a numerical simulation, and
the effect of vehicle damping on the damping ratio of a VBI system is analyzed. Then, the
evaluation method of equivalent traffic flow parameters is proposed, and the evaluation
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process of the bridge damping ratio considering the vehicle–bridge coupling effect is given.
Finally, the method is applied to the damping evaluation of a real bridge.

2. Formulation of the Analytical Theory

This section introduces a method to simplify a VBI system using a double-beam
system, offers the governing differential equations for the simplified model, and uses the
extended dynamic stiffness method (EDSM) to derive the damping ratio formula for the
simplified model.

2.1. Simplification of VBI System

In the VBI problem, the vehicle body and bridge are generally considered to be
connected by a vehicle suspension system. The vehicle model is simplified to a spring
mass model, as shown in Figure 1, such as the 1/2 car or 1/4 car model [15–19]. In this
paper, the 1/4 car model, which ignores the suspension mass in (c), was used. Since the
purpose of this study did not require an accurate VBI system response calculation, model
(c) was convenient and effective for explaining the effect of axle coupling on the damping
of a VBI system.

Figure 1. Simplified plane models of the vehicle: (a) 1/2 car model; (b) 1/4 car model; (c) 1/4 car model without
suspension mass.

Only uniform traffic flow acting on the bridge was considered in this study. Uniform
traffic flow refers to traffic flow in which each vehicle has the same dynamic parameters
(e.g., the distance between vehicles is the same and the traffic flows at the same speed). In
this case, the vehicle suspension system is modeled as uniformly distributed springs and
dampers, and the vehicle body traveling across the bridge is modeled as a Euler beam with
zero flexural stiffness and a zero damping coefficient, effectively reducing a VBI system
into a double-beam system, as shown in Figure 2. The upper girder boundary conditions
are free–free, while the lower girder boundary conditions depend on the bridge. The upper
beam mass, connection layer stiffness, and double-beam system damping coefficient can
be replaced by the equivalent traffic flow parameters, which are defined as follows:

m′ = nmv/L, k′ = nkv/L, c′ = ncv/L (1)

where mv is the average mass of vehicles on the bridge; kv and cv are the average vehicle
stiffness and the average vehicle damping factor, respectively; n is the number of vehicles
on the bridge; and L is the bridge length.
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Figure 2. Simplified schematic of a VBI system.

2.2. Governing Differential Equations of Double-Beam System

The elasticity modulus of the two beams of the double-beam system are E1 and E2,
the cross-sectional moments of inertia are I1 and I2, the masses per unit length are m1 and
m2, and the damping coefficients are c1 and c2. The stiffness and damping coefficients of
the connection layer are k and c, respectively. The governing differential equations (GDE)
of this double-beam system can be expressed as:{

E1 I1
∂4u1
∂x4 + m1

∂2u1
∂t2 + c1

u1
∂t + c ∂(u1−u2)

∂t + k(u1 − u2) = 0

E2 I2
∂4u2
∂x4 + m2

∂2u2
∂t2 + c2

u2
∂t + c ∂(u2−u1)

∂t + k(u2 − u1) = 0
(2)

where u1 and u2 are the displacement values of the two beams.
The variable separation can be performed in the Laplace domain as follows:

u1(x, t) = ϕ1(x)eλt, u2(x, t) = ϕ2(x)eλt (3)

where ϕ1(x) and ϕ2(x) represent the mode shape functions of the two beams and can be
analytically expressed as:

ϕ1(x) = Aeκx, ϕ2(x) = Beκx (4)

where A and B are undetermined coefficients related to the boundary condition. By
substituting Equations (3) and (4) into the double-beam system GDE Equation (2), one can
obtain the following:{

A
(
E1 I1κ4 + k + λ(c1 + c) + m1λ2)− B(k + cλ) = 0

B
(
E2 I2κ4 + k + λ(c2 + c) + m2λ2)− A(k + cλ) = 0

(5)

The matrix form of Equation (5) is:(
E1 I1κ4 + k + λ(c1 + c) + m1λ2 −k− cλ

−k− cλ E2 I2κ4 + k + λ(c2 + c) + m2λ2

)(
A
B

)
=

(
0
0

)
(6)

For this equation to have a non-trivial solution, the value of the coefficient matrix
determinant of A and B is zero. As a result, a characteristic equation for an 8th order
polynomial with respect to κ can be obtained as follows:

η3κ8 + η2κ4 + η1 = 0 (7)

where

η3 = E1 I1E2 I2
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η2 = E1 I1
(
k + λ(c1 + c) + m2λ2)+ E2 I2

(
k + λ(c2 + c) + m1λ2)

η1 =
(
k + λ(c1 + c) + m1λ2)(k + λ(c2 + c) + m2λ2)− (k + cλ)2

The solution of the characteristic equation is ±κ1, ±κ2, ±κ3, ±κ4, and the general
solution of Equation (3) can be expressed as:

ϕ1(x) = A1eκ1x + A2e−κ1x + A3eκ2x + A4e−κ2x + A5eκ3x + A6e−κ3x + A7eκ4x + A8e−κ4x

=
8

∑
j=1

(
A2j−1eκjx + A2je

−κjx
) (8)

ϕ2(x) = B1eκ1x + B2e−κ1x + B3eκ2x + B4e−κ2x + B5eκ3x + B6e−κ3x + B7eκ4x + B8e−κ4x

=
8

∑
j=1

(
B2j−1eκjx + B2je

−κjx
) (9)

The relationship between A and B is given by:

B2j−1 = tj A2j−1, B2j = tj A2j (10)

where tj =
E1 I1κ4

j +k+λ(c1+c)+m1λ2

k+cλ .

2.3. Extended Dynamic Stiffness Method

Han [20,21] proposed a method for solving damped double-beam systems using the
extended dynamic stiffness method (EDSM). According to the uniformity of the dynamic
stiffness matrix between the damped and undamped system, the dynamic stiffness matrix
of the damped system is denoted as K(κ) and the dynamic stiffness matrix of the undamped
system is denoted as K(κ0); for the same order mode there is:

κ0 = κ, |K(κ)| = |K(κ0)| = 0 (11)

Substituting c = c1 = c2 = 0 into Equation (5) results in:{
A
(
E1 I1κ4

0 + k + m1λ2
0
)
− Bk = 0

B
(
E2 I2κ4

0 + k + m2λ2
0
)
− Ak = 0

(12)

According to Equation (11), Equation (13) can be obtained:

λ2 +
2c
(

A− B
)
+
(

Ac1 − Bc2
)(

Am1 − Bm2
)
λ0

λλ0 + λ2
0 = 0 (13)

where λ0 = ω0i, ω0 is the modal frequency corresponding to the undamped double beam
system. The damping ratio of the double beam system is:

ξ =
2c
(

A− B
)
+
(

Ac1 − Bc2
)

2
(

Am1 − Bm2
)
ω0

(14)

The solution of Equation (13) is:

λ = ξλ0i±
√

1 − ξ2λ0 = −ξω0 ±
√

1 − ξ2ω0i (15)

where the imaginary part of the solution is the self-oscillation frequency of the damped
double beam system.

ω =
√

1 − ξ2ω0 (16)

The Wittrick–Williams (W–W) algorithm [22] is a well-known method for calculating
frequency using the dynamic stiffness method. Instead of directly solving the frequency
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equation, the W–W algorithm first determines the upper and lower bounds of any order
frequency and then finds the exact frequency via the dichotomy method or Newton’s
method. Han [23,24] proposed an improved W–W algorithm to conveniently solve the
frequency of an undamped double-beam system. The authors of this study used the
improved W–W algorithm. The mode shape is calculated using the guided Newton
method, and the detailed solution steps of the method can be found in [25,26].

By substituting the damping coefficient c1 = 0 of the upper beam of the double-beam
system into Equation (14), the damping ratio of the VBI system is obtained as:

ξ =
2c
(

A− B
)
− Bc2

2
(

Am1 − Bm2
)
ω0

(17)

As seen in Equation (17), the damping ratio of the vehicle–bridge coupled system is
related to vehicle and bridge amplitudes, vehicle damping coefficient, bridge damping
coefficient, and vehicle and bridge masses, where ω0 is the frequency corresponding to the
undamped VBI system, not the frequency of the bridge.

3. Verification of the Simplified VBI Model

To illustrate the accuracy of the simplified model in the damping calculation of a VBI
system, two models are established in this section: the double-beam finite element model
(FEM) and the VBI finite element model, as shown in Figures 3 and 4. The damping ratios of
the models were separately calculated using the dynamic response of the two models, and
the damping ratio calculation results were compared with the damping ratio calculation
equation of the double-beam system obtained in Section 2.1. The results showed that the
theoretical model of the double-beam system could accurately simulate the damping of a
VBI system. Finally, the variation of VBI system damping corresponding to the bridge was
analyzed under different traffic conditions using the simplified model.

Figure 3. The double−beam finite element model.

Figure 4. The VBI finite element model.

3.1. Description of the Bridge Model and the Vehicle Model

The bridge had the following parameters: bridge length L = 32 m, flexure stiffness
E2 I2 = 11.04 × 1011 Nm2, and bridge mass per unit length m2 = 28, 600 kg/m. The first
order frequency of the bridge was 9.5306 Hz. The damping coefficient of the bridge was set
to c2 = 0 Ns/m to visualize the vehicle damping effect on the VBI system.

The 1/4 vehicle model was used, and the vehicle parameters were as follows: ve-
hicle body mass mv = 20 t and suspension system stiffness kv = 10.14 × 106 N/m.The
undamped self-oscillation frequency of the vehicle was 3.82 Hz. The suspension system
damping factor was cv = 7.64 × 104 ∼ 7.64 × 105 Ns/m. The uniform traffic flow con-
sisted of four vehicles spaced 8 m apart with the same parameters and traveling at the



Appl. Sci. 2021, 11, 10304 7 of 18

same speed. The case study then considered three conditions, as follows: Case 1: uniform
traffic flow with a speed of 20 km/h; Case 2: uniform traffic flow with a speed of 40 km/h;
and Case 3: random traffic flow with an average speed of 40 km/h. The vehicle parameters
and speed of the random traffic in Case 3 were generated using a Gaussian distribution,
where the mean value of each distribution was the same as that of the uniform traffic, with
a standard deviation of 0.2 times the mean value.

The bridge and vehicle parameters described above were simplified to obtain the pa-
rameters of the double-beam finite element model using the method outlined in Section 2.1.
The impact load was applied to the double-beam finite element model, and the acceleration
of the structure was calculated using the Newmark method with a time step of 0.001 s.

The acceleration of the bridge could be obtained by calculating the response of the
VBI system as traffic passes over a bridge. The differential equation of a VBI system can be
expressed as: {

Mv
..
Zv + Cv

.
Zv + KvZv = Fv

Mb
..
Zb + Cb

.
Zb + KbZb = Fb

(18)

where the mass, damping, stiffness, and load matrices of the vehicle are Mv, Cv, Kv, and
Fv, respectively. The mass, damping, stiffness, and load matrices of the bridge are Mb, Cb,
Kb, and Fb, respectively. The axle interaction relationship is constructed through the load
vectors, Fv and Fb, of the two systems.

Fv = KvS + Cv
.
S (19)

Fb = Kv(Zv − S) + Cv

( .
Zv −

.
S
)
+ Gv (20)

where S is the vertical displacement at the location of the contact point between the vehicles
and the bridge and Gv, is the gravitational force on the vehicle.

While there have been many approaches to calculating VBI system response, this
study used the inter-system iterative method (ISI) proposed by Zhang [27]. This method
enables easy calculated, and its convergence is convenient to control, which is suitable for
the VBI calculation problem, especially in cases involving multiple vehicles.

Figure 5 shows the decay response of the double-beam finite element model subjected
to impact loading in the bridge span. The acceleration response of a bridge obtained by
VBI calculations usually had multiple frequency components. To calculate the damping
ratio, the acceleration response needed to be band-pass filtered so that only one frequency
component was included in the acceleration response. Figure 6 shows the acceleration
response of a bridge system in the bridge mid-span after band-pass filtering when the
traffic passed by, the traffic presented a uniform flow, and the speed was 20 km/h. As seen
in Figure 6, when there was traffic on the bridge, even if the bridge damping factor was
zero, the response of the bridge still decayed similar to that shown Figure 5. When the
traffic left the bridge, however, the bridge response became a free vibration without decay.

3.2. Analysis of Results

The damping ratio of the system was calculated for the double-beam finite element
model and the VBI finite element model using the decay responses in Figures 5 and 6. In this
paper, the HHT method [28] was used to calculate the damping ratio. This method could
effectively reduce the identification error of a damping ratio through least square fitting.
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Figure 5. Mid−span acceleration of the double−beam system.

Figure 6. Bridge mid−span acceleration for VBI model (results after bandpass filtering; vehicle speed
was 20 km/h).

For this study, the damping ratios of the two models were calculated. Then, the
formula in Section 2 was used to calculate the damping ratio of the simplified model.
Table 1 shows the damping ratio results obtained for each model.

Table 1. Damping ratio calculation results for each model.

Vehicle Damping
Ratio

Double-Beam
Theory

Double-Beam
FEM

VBI System FEM
(Case 1)

VBI System FEM
(Case 2)

VBI System FEM
(Case 3)

0.085 0.0046 0.0037 0.0040 0.0043 0.0036
0.170 0.0089 0.0073 0.0076 0.0073 0.0066
0.339 0.0155 0.0139 0.0136 0.0134 0.0137
0.509 0.0196 0.0190 0.0185 0.0180 0.0191
0.678 0.0216 0.0225 0.0212 0.0209 0.0223
0.848 0.0220 0.0245 0.0228 0.0213 0.0201

The damping ratio calculation results of the double-beam theory and the double-
beam FEM showed that the double-beam theory could accurately calculate the damping
ratio of the system. The results Case 1 and Case 2, as well as the double-beam theory,
showed that the damping ratios were close to each other, which verified the accuracy of
the simplified VBI system using the double-beam system. The results of Case 1 and Case 2
also showed that the vehicle speed in the VBI model had little influence on the damping
ratio of the system.

The random traffic conditions in Case 3 were set up to illustrate the robustness of the
simplified method proposed in this paper. The variation pattern of the damping ratio in
Case 3 was essentially the same as that in the uniform traffic condition, which indicates
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that the simplified model could still well simulate the damping ratio of the VBI system
under some stochastic conditions.

Table 1 shows that the damping ratio of the vehicle increased as the damping ratio
of the VBI system increased, but there was not a linear relationship between these two
variables. When the vehicle damping ratio increased from 0.678 to 0.848, the damping ratio
of the VBI system changed very little. To understand the relationship between VBI system
damping ratio and the vehicle damping ratio, the simplified model of the VBI system was
used to calculate the damping of the VBI system under different vehicle damping ratios.
The results are shown in Figure 7.

Figure 7. Damping ratio for a VBI system.

The damping ratios of the VBI system are shown in Figure 7 for three traffic conditions:
light traffic (n = 1, 2 ), normal traffic (n = 3 ), and heavy traffic (n = 4 ). As seen in Figure 7,
the damping ratio of the VBI system increased as the traffic volume increased. When the
vehicle damping ratio was relatively small, the damping ratio of the VBI system was
approximately linear with the vehicle damping ratio. After the vehicle damping ratio
was greater than 0.8, however, the damping ratio of the VBI system slightly decreased.
The reason is analyzed as follows: Equation (17) shows that the damping ratio of a VBI
system is related to the bridge and vehicle amplitudes. When the vehicle damping ratio
is large, the relative amplitude of both the vehicle and the bridge decreases. Following
additional damping energy dissipation, the vehicle damping ratio is also reduced, resulting
in a reduction of the damping ratio of the VBI system.

4. Bridge Damping Ratio Extraction Method

The method proposed in this study can be used to extract bridge damping ratios by
removing the vehicle–bridge coupling effect from the dynamic characteristics (frequency
and damping ratio) of a VBI system. In bridge health monitoring, the structure is usually
monitored using a bridge health monitoring system that requires the frequency ω and
damping ratio ξ, which can be calculated using the OMA [29–31] method. Because of
the presence of traffic on the bridge during the monitoring period, we obtained the dy-
namic parameters of the VBI system using the monitoring data rather than the dynamic
parameters of the bridge. The damping ratio of the bridge structure was extracted using
Equation (17) after simplifying the VBI system by calculating the equivalent vehicle flow
parameters using Equation (1) with known information on the mass, stiffness, and the
vehicle damping coefficient.

In general, many bridge health monitoring systems are installed with Weigh-In-Motion
(WIM) systems, which can obtain information on the number and mass of vehicles. Since
vehicle stiffness and damping coefficient usually remain unknown while using WIM
monitoring systems, it is difficult to determine the equivalent traffic flow parameters. The
authors of this study proposed a method to estimate the equivalent traffic flow parameters
and then validated this estimation model using numerical simulations.
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The assumption that the average vehicle stiffness is kv and the average vehicle damp-
ing is cv remain constant over time is acceptable because traffic volumes and vehicle types
in a traffic route usually have a certain statistical pattern. Under this assumption, the
equivalent traffic flow parameters only vary with the known number of vehicles n. As a
result, it is only necessary to determine the constants kv and cv to calculate the equivalent
traffic flow parameters.

4.1. Equivalent Traffic Flow Stiffness

The estimation of the model parameters is an inverse problem compared to the
frequency solution process for the simplified VBI model. The frequency ω and the damping
ratio ξ of a VBI system are known after solving for the undamped VBI simplified model
frequencies ω0 using Equation (16), and then subsequent estimation can be performed in
the corresponding undamped simplified VBI model.

The undamped VBI system frequency ω0 = f (ωb, nkv/L, nmv/L) is a function of
bridge frequency ωb, the number of vehicles n, average vehicle stiffness kv, and mass mv.
Here, the number of vehicles n and the average vehicle mass mv are considered known, and
the frequency of the bridge ωb can be determined when ω0 and kv are given. However, the
function ω0 = f (ωb, nkv/L, nmv/L) does not have an analytic formula, so only numerical
algorithms (such as the optimization methods) can be used to calculate ωb.

Based on the above analysis, when any of the kv, is combined with the ω0 obtained
using the measured response, an estimated bridge frequency ωb can be obtained. Therefore,
in order to obtain an estimate of the bridge frequency as accurate as possible, a suitable
method needs to be selected to determine kv. Since the frequency of a bridge does not vary
with the number of vehicles n, the absolute value of the slope of the line obtained by linear
least squares of ωb and n can be used as the selected evaluation index, as follows:

R =

∣∣∣∣∣∑m
i=1
(
ω̂bi − ω̂b

)
(ni − n)

∑m
i=1(ni − n)2

∣∣∣∣∣ (21)

where m is the number of samples, i.e., the number of samples of bridge frequencies and
damping ratios obtained at different vehicle number n; ω̂bi is the i-th bridge frequency
sample; ω̂b is the bridge frequency average; ni is the i-th vehicle number samples; and n is
the average of the number of vehicle samples.

Using the parametric optimization algorithm, Equation (21) can be used as the objec-
tive function, and the value kv that minimizes the objective function can be selected. Com-
monly used methods for parameter optimization include genetic algorithms (GAs) [32,33]
and particle swarm optimization (PSO) algorithms [34]. The authors of this paper used a
PSO algorithm to optimize the objective function. The algorithm was not the focus of this
study, and the specific details of the algorithm can be found in the related literature.

4.2. Equivalent Traffic Flow Damping and Bridge Damping

According to the relationship of mode shape B = tA, the damping ratio of a VBI
system can be written as:

ξ =
2c(1 − t)− tc2

2(m1 − tm2)ω0
(22)

where t denotes the ratio of bridge vibration to vehicle vibration amplitude. The value of t
can be calculated using the double-beam theory after obtaining an estimate of kv, combining
the undamped frequency ω0 of a VBI system and the damping ratio ξ. According to
Equation (10), four values of ti, i = 1 ∼ 4 can be calculated; for simplified VBI systems
E1 I1 = 0 , ti values are the same, so it is abbreviated here as t. The formula for t is:

t =
k + λc + m1λ2

k + cλ
(23)
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Therefore, the bridge damping factor is:

c2 =
2c(1 − t)− 2(m1 − tm2)ω0ξ

t
(24)

It is also necessary to determine the equivalent traffic damping factor c in order to
obtain an estimate of the bridge damping factor c2. The equivalent traffic flow damping
factor can be selected as follows. When the number of vehicles on the bridge is n, a series of
different test values of cv are used to calculate the equivalent traffic flow coefficient. Then,
a series of different identification values of bridge damping coefficient are obtained using
Equation (24). The curve of bridge damping coefficient identification value is drawn with
cv. When the vehicle number n is different, the obtained curves are also different. Because
the bridge damping coefficient remains unchanged, these curves will intersect at one point.
The horizontal coordinate corresponding to the intersection is the average vehicle damping
coefficient cv, and the vertical coordinate is the estimated value of the bridge damping
coefficient c2.

The process of the bridge damping ratio evaluation method proposed in this paper
can be summarized as follows:

1. The frequency and damping ratio of a VBI system is identified using the OMA method
based on bridge monitoring data. This process considers the number of vehicles and
vehicle masses to be known in the presence of a WIM system.

2. The corresponding undamped frequency of the VBI system is calculated using
Formula (16).

3. The best estimation of average vehicle stiffness is obtained by PSO, taking the absolute
value of the slope of the line obtained by linear least squares between vehicle bridge
system frequency and vehicle number as the objective function. Then, the equivalent
vehicle flow stiffness is calculated.

4. The bridge damping coefficient curves under different vehicle numbers are solved
using a series of average vehicle damping test values.

5. The horizontal coordinate of the intersection of the curves is the estimated value of
the average vehicle damping, and the vertical coordinate is the estimated value of the
bridge damping coefficient.

A flow chart of the proposed bridge damping evaluation method is shown in Figure 8.

Figure 8. Bridge damping ratio evaluation flow chart.
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4.3. Numerical Case Analysis

This case analysis used the bridge model in Section 3, where the bridge damping
factor was set to c2 = 3.42 × 104 Ns/m, which corresponded to a first-order damping ratio
of 1%. The authors of this study assumed that the average vehicle mass was mv = 1000 kg,
the average vehicle stiffness was kv = 5.070 × 105 N/m, and the average damping factor
was cv = 3.82 × 103 Ns/m. The VBI system frequencies and damping ratios for different
number of vehicles were then calculated. The known conditions were the number of
vehicles n, and the vehicle mass mv, as well as the frequency ω and damping ratios ξ of the
VBI system.

The average vehicle stiffness kv was estimated using a PSO algorithm with the pa-
rameters set as follows: the number of populations was 30, the number of iterations was
30, and the range of particles was 1 × 105 ∼ 1 × 106 N/m, which corresponded to the
vehicle self-oscillation frequency range of 1.6~5 Hz.

The optimization value of the objective function is shown in Figure 9. By the 30th it-
eration, the objective function values of all particles were less than 0.5 × 10−3, so the
global optimum had converged. The final estimate of the average vehicle stiffness was
5.072 × 105 N/m, which indicated that this algorithm could accurately estimate the equiv-
alent vehicle stiffness. The estimated equivalent vehicle stiffness was used to calculate the
bridge frequency, and the results are shown in Figure 10. The calculated bridge frequency
was very close to the actual value and did not change with the number of vehicles.

Figure 9. The objective function value of each particle.

Figure 10. Estimation of bridge frequency under different number of vehicles.

After obtaining the equivalent vehicle stiffness estimate of k′, the ratio of bridge
vibration to vehicle vibration amplitude t could be calculated according to Equation (10).
The curve of the identified values of the bridge damping coefficient c2 for different number
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of vehicles was plotted by substituting a series of trial values of c in Equation (24). Here,
the range of the average vehicle damping coefficient was 0~4.5 × 104, corresponding to
the vehicle damping ratio of 0~1. The vertical coordinate corresponding to the intersection
point of the curve was the identification value of the bridge damping coefficient.

Figure 11 shows the bridge damping coefficient identification curve in relation to
different numbers of vehicles. The curves corresponding to different numbers of vehicles
intersect at one point. The intersection point corresponds to the horizontal coordinate of
3.82 × 103, and the vertical coordinate of the intersection point is 3.42 × 104, indicating that
the average vehicle damping coefficient and bridge damping coefficient could be accurately
estimated by this method.

Figure 11. Identification curves of bridge damping coefficients.

5. Application

In this section, a single-tower cable-stayed bridge with a span of 336 m is used as
a case study to assess damping, as shown in Figure 12. The bridge was equipped with
a bridge health monitoring system that monitored the structural response, environment,
and vehicle loads. Using the bridge mid-span acceleration data, the damping ratio of
the vehicle–bridge system was calculated, and the information about the vehicles on the
bridge was obtained through the WIM system. The damping ratio of this bridge was then
extracted using the method proposed in this paper.

Figure 12. The case bridge.

5.1. Simplified Model of the Bridge

To analyze the cable-stayed bridge using the simplified VBI model proposed in this
paper, the bridge needed to be simplified, and the elastic foundation beam model could be
used to simplify the cable-stayed bridge by making the following assumptions:

1. The stiffened beam was simplified to a uniform Euler beam with the same boundary
conditions as the real bridge.
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2. The tension cables were simplified to vertical springs distributed continuously along
the length of the stiffened beam.

3. The axial force of the stiffened beam was uniformly distributed in the beam.

The governing differential equation for the simplified bridge can be written as:

EI
∂4u
∂x4 + m

∂2u
∂t2 + P

∂2u
∂x2 + Kwu = 0 (25)

where P is the axial force of the stiffener beam and Kw is the equivalent spring stiffness.
The case bridge was modeled with the parameters EI = 3.75 × 1011 Nm2,

m = 2.25 × 104 kg/m, Kw = 3 × 105 N/m, and P = 3 × 107 N. The obtained verti-
cal self-oscillation frequencies of the first three orders were basically consistent with
the measured results, as shown in Table 2.

Table 2. First three order frequency of the bridge.

Order Calculated Value (Hz) Measured Value (Hz)

1 0.59 0.55
2 0.78 0.86
3 1.23 1.31

Using Equation (25), the double-beam system could be constructed according to the
method in Section 2 to obtain the damping ratio calculation equation for the simplified axle
coupling system. The expression of the formula is in the same form as Equation (17), and
the specific derivation process can be found in [35]. After obtaining the simplified damping
ratio formula for the axle system, the damping ratio of the bridge could be extracted by
combining the measured data according to the method in Section 4.

5.2. Bridge Damping Ratio Evaluation

Figure 13 shows the mid-span acceleration data from 12:00 to 12:59 on a certain day,
with a sampling frequency of 50 Hz. The data were band-pass filtered to identify the
first order frequency and damping ratio. In the filtered data, the free decay response
was selected as the sample for damping identification, as shown in Figure 14. The self-
oscillation frequency and damping ratio were calculated using the HHT method. The
identification results are shown in Table 3. From the table, it can be seen that when the
number of vehicles on the bridge increased, the identification self-oscillation frequency
decreased and the damping ratio increased. The identified damping ratio ranged from
0.83% to 1.19%, showing a large dispersion.

Figure 13. Mid−span acceleration data from 12:00 to 12:59.
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Figure 14. (a) Acceleration after band−pass filteringl (b) extracted decay response.

Table 3. Modal parameter identification results.

Sample Frequency (Hz) Damping Ratio (%) Number of Vehicles on the
Bridge

Total Mass of Vehicle on
Bridge (kg)

1 0.5402 0.85 5 6153
2 0.5413 0.83 1 2520
3 0.5343 1.19 20 26,515
4 0.5421 0.9 15 17,288
5 0.5426 0.87 6 8278

We considered the results of the table obtained from the monitoring data (In Figure 14)
as the frequency and damping ratio of the VBI system, and we analyzed these data using
the bridge damping ratio evaluation method proposed in Section 4. The equivalent traffic
flow stiffness was first estimated using the PSO algorithm. The result was 8.15 × 103, and
the convergence of each particle is shown in Figure 15.

Figure 15. The objective function value of each particle.

The identification curve of the bridge damping coefficient was obtained as shown in
Figure 16. The damping coefficient identification curves of the bridge did not intersect
completely at one point, and the range of the intersection point was between 1260 and 1315,
corresponding to the first-order damping ratio of the bridge of 0.75%–0.78%. It can be seen
that after extracting the bridge damping using the proposed method, the obtained bridge
damping dispersion was significantly reduced. The reason for this phenomenon was that
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the traffic load was random traffic flow under operating conditions, which was not strictly
consistent with the assumptions of the simplified VBI model proposed in this paper.

Figure 16. Bridge damping identification curve (12:00~12:59).

Sample 2 was calculated with only one vehicle on the bridge, and the damping ratio
was 0.83%. We approximated that 0.83% was the real damping ratio of the bridge. It can
be seen that the bridge damping identification values of 0.75~0.78% were close to the real
values. The above analysis proves that the method proposed in this paper is still valid
in engineering applications and can remove the influence of the vehicle–bridge coupling
effect on bridge damping evaluation.

To illustrate the stability of the algorithm proposed in this paper, the acceleration data
from 13:00 to 13:59 on the same day were selected. The traffic load at this time had some
similarity with that from above, so the equivalent vehicle stiffness obtained earlier was
directly used here for identification. The identification results are shown in Figure 17. The
intersection range was 1368~1380, corresponding to a bridge damping ratio of 0.81~0.82%,
and the results were basically consistent with the previous results.

Figure 17. Bridge damping identification curve (13:00~13:59).

6. Conclusions

The authors of this paper examined bridge damping evaluation in relation to VBI
systems. The damping ratio calculation method was obtained by simplifying a VBI system
into a double-beam system and then solving the simplified model using the extended
dynamic stiffness method. The main results are as follows:

1. Numerical tests showed that the damping ratios of the double-beam finite element
model and the VBI model were basically consistent with the values calculated with
the simplified model. In other words, the simplified method proposed in this paper
can accurately calculate the damping ratio of a VBI system.
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2. The numerical simulation results showed that the equivalent traffic flow stiffness
obtained using the proposed PSO estimation method (5.072 × 105 N/m) was very
close to the real value (5.070 × 105 N/m). The feasibility of the proposed method was
verified by plotting the bridge damping identification curves for different number of
vehicles and obtaining the damping estimates of the bridge and the equivalent traffic
flow from the intersection of the curves.

3. The damping ratios obtained using the proposed method were less discrete compared
to those directly obtained using monitoring data. These results indicated that the
proposed method can be applied to practical engineering projects to extract bridge
damping values, eliminate the influence of the vehicle–bridge coupling effect on
bridge damping identification, and reduce the dispersion of damping identification.
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