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Abstract: The intelligent recognition of formed elements in microscopic images is a research hotspot.
Whether the microscopic image is clear or blurred is the key factor affecting the recognition ac-
curacy. Microscopic images of human feces contain numerous items, such as undigested food,
epithelium, bacteria and other formed elements, leading to a complex image composition. Conse-
quently, traditional image quality assessment (IQA) methods cannot accurately assess the quality of
fecal microscopic images or even identify the clearest image in the autofocus process. In response to
this difficulty, we propose a blind IQA method based on a deep convolutional neural network (CNN),
namely GMANet. The gradient information of the microscopic image is introduced into a low-level
convolutional layer of the CNN as a mask attention mechanism to force high-level features to pay
more attention to sharp regions. Experimental results show that the proposed network has good
consistency with human visual properties and can accurately identify the clearest microscopic image
in the autofocus process. Our proposed model, trained on fecal microscopic images, can be directly
applied to the autofocus process of leucorrhea and blood samples without additional transfer learning.
Our study is valuable for the autofocus task of microscopic images with complex compositions.

Keywords: blind image quality assessment; deep convolutional neural network; human fecal micro-
scopic image; gradient mask attention

1. Introduction

Routine stool evaluation is an important means of pathological screening in hospitals.
Doctors diagnose whether there is inflammation in the digestive system of a patient
by analyzing the compositions of their stool samples via microscopy. With the rapid
development of hardware technology and deep learning, the intelligent recognition of
formed elements in microscopic images has gradually become a research hotspot [1–3].
However, the quality of the microscopic image seriously affects the recognition accuracy.
Blurred images can cause inaccurate cell counts. Therefore, this work mainly focuses on
human fecal microscopic image quality assessment, and the ultimate goal is to select the
clearest image from a group of microscopic images captured in the autofocus process.
Furthermore, we hope that the proposed image quality assessment (IQA) method has good
consistency with human visual properties and can be applied not only to human fecal
microscopic images, but also to human leucorrhea and blood microscopic images.

IQA methods are mainly categorized as full-reference (FR) IQA methods, reduced-
reference (RR) IQA methods, and no-reference (NR) IQA methods. FR-IQA methods such
as SSIM [4], FSIM [5], and VIF [6] need to utilize pristine images when evaluating the
quality of distorted images. Although the image quality scores predicted by these methods
are generally consistent with the human visual system (HVS), pristine images are not
available in most practical applications, especially for microscopic images. Moreover, NR-
IQA methods without reference images are widely used and studied. Traditional NR-IQA
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methods normally use image information such as gradient [7], entropy [8], edge [9], and
phase [10] as a measure. A single category of information is only applicable to a specific
degeneration and scene; consequently, some researchers have designed feature extractors
that contain multiple types of image information and use machine learning methods to train
regression models [11]. With the continuous advancement of deep learning, convolutional
neural networks (CNNs) have been applied successfully in the IQA task [12]. The features
extracted by a CNN have stronger image representation ability than handcrafted features;
therefore, a CNN is more sensitive to image degradation.

Existing IQA research mainly focuses on how to make algorithm response values
more relevant to HVS. The Spearman rank-order correlation coefficient (SROCC) is the
most commonly used indicator to evaluate the performance of IQA methods. To verify the
effectiveness of a proposed algorithm, many researchers conduct experiments on public
databases such as LIVE [13] and TID2013 [14]. The distorted images in these databases
are synthetically generated and the degree of degradation is the same everywhere in each
distorted image. Compared with public databases, the situations in fecal microscopic
images are more complex. On the one hand, the change in fog level is more continuous,
and the clarity rating needs to be more refined. On the other hand, human feces contain
numerous items, such as undigested food residues, epithelium, and bacteria, and the
concentration of substances in different sample solutions is various. Shown in Figure 1a,b
are clear microscopic images from a sample solution with low and high concentrations,
respectively. Only a small amount of fungal spores is shown in (a), but (b) contains a large
amount of particulate matter.

Figure 1. Complex image composition of fecal microscopic images. (a,b) are clear microscopic images from different feces
sample solutions with low and high concentrations, respectively.

A complex image composition leads to clear and blurred areas existing simultaneously
in the same fecal microscopic image. During the autofocus process, the response values
of captured images rise or fall in oscillation for most traditional IQA methods, yielding
multiple extreme points in the response curve. Consequently, it is difficult to assess the
quality of a fecal microscopic image or even to identify the clearest image in the autofocus
process. In response to the above problems, we proposed a blind IQA method based
on a CNN, namely GMANet. Considering that the gradient value of the clear region is
greater than that of the blurred region, we introduced the gradient information of the
microscopic image into a low-level convolutional layer of the CNN as a mask attention
(MA) mechanism to force the high-level features to pay more attention to sharp regions.
Our contributions can be summarized as follows:

• We designed a CNN architecture, namely GMANet, which uses gradient information
extracted by the local maximum gradient method as an MA mechanism.

• We adopted a feature aggregation module to fuse two low-level feature maps with a
high-level feature map and used them to predict quality scores. In the training process,
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two auxiliary outputs and losses were introduced, which reduces over-fitting and
enhances model generality.

• Experimental results show that the GMANet has good consistency with human visual
properties and the model trained on fecal microscopic images can be directly applied
to the autofocus process of leucorrhea and blood samples without additional transfer
learning.

The structure of this paper is as follows: Section 2 introduces some state-of-the-art
NR-IQA methods related to this work. The details of the proposed CNN architecture are
described in Section 3. Section 4 introduces the materials that we used and the experimental
results. Section 5 presents the discussion. Conclusions are provided in Section 6.

2. Related Works

In recent years, deep learning has gradually become a research hotspot among NR-
IQA methods. Kang et al. [12] first used a CNN to solve the quality assessment task.
In order to meet the need for a large number of training samples for a CNN, they used
non-overlapping 32 × 32 patches taken from large images as input and assigned each
patch a quality score the same as its source image. The image slicing method has inspired
follow-up researchers.

Low-level image information such as gradient is commonly used in traditional IQA
methods and can reflect the degree of image distortion. Thus, introducing traditional
image information into a CNN can make the predicted score more consistent with HVS.
Yan et al. [15] proposed a two-stream convolutional network whose original image and
gradient image are input into the network from two branches, respectively. In order to
further imitate the operation mode of HVS, some researchers introduced a saliency map
into the CNN [16]. Considering that HVS mainly focuses on textured regions rather than
flat regions, some researchers studied screening methods for image patches [17,18].

The performance of FR-IQA methods for evaluating image quality is better when
comparing the difference between a degraded image and a pristine image. However,
pristine images are not available in most practical applications. Thus, some researchers
pay attention to how to restore a distorted image to a pristine image by using a generative
adversarial network (GAN) [19,20]. Although slicing an image into patches increases the
number of training samples, it is easy for a CNN to over-fit on the training dataset due to
the small number of pristine images. Therefore, some researchers focus on how to extend
the training dataset without additional human labeling work. Liu et al. [21] proposed a
Rank-IQA approach that learns from rankings. They used two large public image databases,
Waterloo [22] and Places2 [23], and generated synthetic distorted images that were ranked
according to their image quality. A pre-trained network was obtained by learning the rank
relationship between images in ranked datasets, and then it was fine-tuned on a public
IQA database. Guan et al. [24] also used the Waterloo database, and the synthetic distorted
images were generated by adding particular levels of distortion to salient and non-salient
regions.

For fecal microscopic images, the hypothesis that the quality score of each image
patch is the same as its source image is not tenable, as there are both blurred and clear
areas in the same image. Considering this, we used a large image patch as the network
input and utilized gradient information as the MA mechanism to guide the CNN to pay
more attention to clear regions, which is different from other CNN-based IQA methods.
In addition, there is no pristine image for a fecal microscopic image; thus, GAN-based
IQA methods cannot be used. As the task of this research was to find the clearest image
from a group of fecal microscopic images, the theory of learning from rankings used in the
Rank-IQA [21] method was adopted in our study.

The goal of existing research is to accurately assess the image quality, but the goal of
our paper was to find the clearest image from a group of microscopic images captured in
the autofocus process.
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3. Method

In this section, we describe the proposed GMANet. The details of the local maximum
gradient method is used to extract gradient information are introduced in Section 3.1. The
network structure is presented in Section 3.2. Section 3.3 presents the loss function that we
used. The training and inference details are provided in Section 3.4.

3.1. Local Maximum Gradient

Xu et al. [25] proposed a deep CNN with an MA mechanism for the classification
of COVID-19 from chest X-ray images. They used a segmentation model to predict lung
region masks, which were used as a spatial attention map to adjust the features of the
classification model. This attention mechanism can suppress the feature value of the
background region and improve the classification accuracy. Inspired by this method, we
decided to use gradient information as a spatial attention map to suppress the influence of
blurred areas. Different from [25], the gradient image was extracted by local maximum
gradient method, described below, instead of the segmentation result of a deep CNN.

As low-level image information, gradient is often used in IQA methods, which can
effectively reflect whether the region is blurred or sharp. Inspired by local total variation
research [26], we proposed a local maximum gradient method to measure image quality.
The specific algorithm is as follows.

Firstly, we define a 2× 2 image patch as ξ and calculate the average gradient value
g(ξ) of the upper left and lower right pixels in ξ, as shown in Equations (1)–(5):

g1 = | f (x + 1, y)− f (x, y)| (1)

g2 = | f (x, y + 1)− f (x, y)| (2)

g3 = | f (x + 1, y + 1)− f (x, y + 1)| (3)

g4 = | f (x + 1, y + 1)− f (x + 1, y)| (4)

g(ξ) = (g1 + g2 + g3 + g4)/4 (5)

where f (x, y) is the gray value; x and y represent pixel coordinates in the horizontal and
vertical directions, respectively; g1 and g2 are the horizontal and vertical gradient of the
upper left pixel in ξ; g3 and g4 are the horizontal and vertical gradient of the lower right
pixel in ξ.

Then, we define the h× w image patch as Block ϕ. As shown in Figure 2c, the Block ϕ
is divided into overlapping ξ with the stride size 1 in the horizontal and vertical directions.
g(ξ) is computed for each ξ in Block ϕ. Let g(ϕ) denote the maximum value of all g(ξ)
in Block ϕ, and it can be given by Equation (6). We consider g(ϕ) as the local maximum
gradient of Block ϕ.

g(ϕ) = max
ξ∈ϕ

g(ξ) (6)

Finally, the image is divided into overlapping ϕ with stride of sh and sv in the hor-
izontal and vertical directions. By calculating g(ϕ) of each Block ϕ, the feature map of
the local maximum gradient is obtained. Shown in Figure 2a is a fecal microscopic image
with fungal spores, and (b) is a local enlargement image of a fungal spore in (a). The local
maximum gradient image of (a) and (b) is shown in (d) and (e), respectively. (f) is the
gradient map of (b) calculated by the Tenengrad method [7]. The internal region of a sharp
fungal spore is a flat area with high brightness, and it has a high gradient value in the local
maximum gradient image. However, its gradient value is low in the Tenengrad gradient
image and is close to the background response. Comparing (e) and (f), the Tenengrad
method focuses on sharp edges but the local maximum gradient method focuses on sharp
objects. Using Figure 2e as the gradient attention mechanism can force the CNN to focus
on clear objects.
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Figure 2. The calculation process of local maximum gradient method. (a) is a fecal microscopic image with fungal spores.
(b) is a local enlargement image of a fungal spore in (a). (c) is a 8 × 8 image patch, which is defined as block ϕ. (d,e) is the
feature image of (a,b) calculated by local maximum gradient method with sh and sv equal to 1. (f) is the feature map of (b)
calculated by Tenengrad method. (d–f) are visual images after normalizing image pixel value to 0–255.

In the Supplementary Materials, we demonstrate the prediction accuracy of the local
maximum gradient method used as a gradient-based IQA method on finding the clearest
human fecal microscopic image in the autofocus process.

3.2. Network Architecture

The structure of the proposed GMANet is shown in Figure 3a and the framework
is based on the VGG16 [27] architecture. Through comparative experiments, we found
that the performance of VGG16 is similar to that of other backbones, such as resnet50.
Considering the simplification of the model, VGG16 was used as the backbone. The
gradient image extracted by the local maximum gradient method was introduced into the
CNN as an attention map, and Figure 3b shows the specific structure of the convolution
block with MA, namely the GMA block.

The input of the GMA block is a 3-D input feature map Ii and its corresponding
2-D spatial attention map Mi, where i represents the i-th convolution block. Firstly, the
operation of convolution and batch normalization is performed on input Ii to obtain
I′i ; secondly, the operation of average pooling (the pooling parameter is same as the
convolution on Ii) is performed on input Mi to obtain M′i ; thirdly, the features of I′i are
adjusted by attention map M′i through element-wise multiplication, obtaining adjusted
feature map I ′′i . Finally, I ′′i and I′i are added together and the operation of Leaky Relu is
performed on the addition result, obtaining feature map Îi. Îi and M′i are the input of the
next GMA block. The MA mechanism does not change the network structure or increase
the training parameters, but it enhances the feature values in high-gradient regions. The
calculation process can be summarized as:

Îi = lrelu
((

1 + M′i
)
·BN(Conv(Ii))

)
(7)
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Figure 3. (a) The structure of the proposed GMANet. (b) The structure of the GMA block. (c) The structure of the pooling
block. (d) The structure of the feature aggregation module.
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The specific structure of the pooling block is shown in Figure 3c. When the feature
matrix performs the max pooling operation, the corresponding spatial attention map
performs the same operation. The feature aggregation module is shown in Figure 3d. Two
low-level feature maps named Deconv3 and Deconv4 are obtained by feature aggregation,
and the size of them are 128 × 192 × 512 and 64 × 96 × 512.

Most deep-learning-based IQA methods use a small patch as network input, and
connect fully connected layers at the end of the feature extraction layer to predict the score
of the current patch. These patch-based IQA methods only consider the local information
while ignoring the global information. Furthermore, the local quality of a small image
patch is not equal to the real score of the whole image. In order to solve the above problem,
a large image patch with a fixed size of 512 × 768 × 3 was used. At the end of the feature
extraction layer (Layer5, size: 32 × 48 × 512), every feature vector with a size of 1 × 1
× 512 is regarded as an independent patch sample feature. After connecting them with
two convolutional layers, the predicted score map is obtained with a size of 32 × 48 × 1.
The final prediction score, Output1, is calculated by the improved global average pooling,
which computes the average of non-zero values in the predicted score map. To speed up
training and reduce over-fitting, we used low-level feature maps Deconv3 and Deconv4 to
generate auxiliary outputs (Output2 and Output3). The loss weights of Output1 to Output3
were 1.0, 0.8, and 0.6. Output2 and Output3 were used to assist network training, and only
Output1 was calculated in the inference phase.

In order to eliminate the influence of image brightness and contrast, the gray mi-
croscopic image is normalized by z-score normalization before calculating the gradient.
We only introduced MA in Layer1, and the ablation experiments of introducing MA into
Layer2 are discussed in Section 4. In the Supplementary Materials, we analyze the interfer-
ence effect of blurred regions on finding the clearest fecal microscopic images by traditional
IQA methods, which proves the effectiveness of the gradient mask attention mechanism in
this regard.

3.3. Loss

The loss function that we used includes two types of losses:

L = Lscore + α·Ldi f f (8)

where L is the total loss of one iteration; Lscore is the score loss between the predicted score
and annotated score; Ldi f f is the rank loss between the clearest image and distorted images.
α is a Boolean value to control L.

The score loss makes the predicted score closer to the annotated score, which is defined
as:

Lscore =
1
M

M

∑
i=1

smoothL1(ŝi − si) (9)

smoothL1 =

{
0.5x2 i f x < 1
|x| − 0.5 otherwise

(10)

where M is the batch size used in the training process; smoothL1 is the smooth L1 loss; ŝ is
the predicted score, and s is the annotated score.

The Rank-IQA [21] method has proven that the ranking information between distorted
images is useful to make a CNN model more consistent with HVS. We decided to use an
improved rank loss [28] and it is defined as:

Ldi f f =
1

M− 1

M−1

∑
d=1

smoothL1((ŝc − ŝd)− (sc − sd)) (11)

where ŝc and sc represent the predicted and annotated score of the clearest image in one
group of microscopic images; ŝd and sd represent the predicted and annotated score of the
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distorted image in the same group of microscopic images. The improved rank loss contains
the information of score loss. When the rank order is correct in one iteration (ŝc ≥ ∀ŝd),
score loss is calculated twice, which is not conducive to model training. Therefore, we used
a Boolean value α to control the total loss L, and it is defined as:

α =

 0
(

M−1
∑

d=1
max(ŝd − ŝc, 0)

)
= 0

1 else
(12)

3.4. Training and Inference

The specific parameters and settings during training were as follows: batch size was
7 and Adam [29] was selected as the optimizer. Learning rate was set to 10−5 and decay
rate was 5 × 10−5. When the training process reached the 32nd epoch, the learning rate
decayed to approximately 1/2 of the original. We set ϕ to 32 × 32 to calculate the local
maximum gradient. The size of formed elements such as fungal spores, red blood cells, and
white blood cells in fecal microscopic images is approximately 30 × 30 to 90 × 90. Taking
the maximum gradient in a 32 × 32 region as the response value can ensure that the region
of a clear object in the gradient map has a high gradient value. The size of fecal microscopic
images was rescaled to 1024 × 1536 with bilinear interpolation (the origin image size was
1200 × 1600). The color and gray image were normalized by z-score normalization, and
then the gradient image of the local maximum gradient was computed. Regions of a fixed
size of 512× 768 were randomly cropped in the color and gradient image. This large image
patch can ensure that the GMANet fully learns the global information of the image. In
addition, when the patch is large enough, we can assume that its annotated score is equal to
that of the whole image. We divided the training process into two stages. Firstly, we trained
the network without MA for 70 epochs, and the optimal model L0 with minimum Ldi f f on
the validation set was selected. Then, the MA was introduced into Layer1. L0 was used
as a pre-trained model for transfer learning. After training 40 epochs, the optimal model
L1 with minimum Lscore on the validation set was the final score model. For model L0, the
backbone VGG16 of GMANet used the pre-training parameters trained on ImageNet and
other network parameters were initialized by the Xavier method. For model L1, all the
network parameters were initialized by the optimal model L0.

The inference process is shown in Figure 4. By scaling and normalization the same as
introduced in the training process, the color image with a size of 1024 × 1536 × 3 and the
gradient image with a size of 1024 × 1536 × 1 could be obtained. A patch of fixed size of
512 × 768 was cropped in the color and gradient image with a step of 256 in the horizontal
and vertical direction. The cropping step enables the object at the patch boundary to be
located around the central area in the next patch, ensuring that GMANet can evaluate
all objects in the image. The predicted quality of the whole image can be obtained by
calculating the average of the predicted scores of all large patches.

Figure 4. The inference process of proposed network.
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4. Experimental Results and Dataset
4.1. Dataset

The feces dataset used in this paper contains 1036 groups of fecal microscopic images,
with a total of 15,645 images. Each image group is captured in the autofocus process.
For each field of view, the microscope platform is continuously moved along the z-axis
and a microscope camera takes pictures simultaneously. The start position of microscope
platform in the z-axis is the defocusing position and the end position is the defocusing
position at the other end; thus, the image composition changes from blurred to clear and
then to blurred. For example, one group of images is shown in Figure 5a. The image with
red highlights on the edges is the clearest image in this group and it is shown in Figure 5b.

Figure 5. (a) One group of fecal microscopic images captured in autofocus process; some images are omitted for ease of
interpretation. (b) The clearest image of the image group in (a).

We annotated the feces dataset with the help of specialists in laboratory medicine,
and each image was marked with a score based on human perception. Comparing the
clarity between two images captured from different autofocus processes is difficult; thus,
the annotated score was a relative value in each image group. The specific scoring rules in
each image group were as follows: (1) the score of clearest image was 100, and remaining
clear images were assigned from 95 to 99; (2) with regard to blurred images, the scores
were assigned from 94 to 0 according to the degree of blur relative to the clearest image.
Figure 6 shows the annotated score curve of the image group in Figure 5a. The image size
of the fecal microscopic image is 1200 × 1600 × 3.

Figure 6. Annotated score curve of the image group displayed in Figure 5a. The abscissa is the image
capture order in the autofocus process, and the 5th image is the clearest image. The ordinate is the
annotated score value.
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For the training phase, we randomly divided the feces dataset into a training, valida-
tion, and test set according to the ratio of 0.6:0.2:0.2. Because of the use of rank loss, the
dataset was divided according to image groups instead of randomly shuffling all images,
obtaining 621 image groups in the training set, 207 image groups in the validation set, and
208 image groups in the test set. In each iteration, one image group was selected from the
training set, and then the clearest image was picked and batch-1 images were randomly
chosen.

In order to assess the generality of the proposed method, GMANet trained on the
feces dataset was verified on additional leucorrhea and blood datasets without transfer
learning. The process of image acquisition of these two datasets was the same as that of
the feces dataset. The leucorrhea dataset contained 699 groups of leucorrhea microscopic
images, with a total of 23,319 images. The blood dataset contained 130 groups of blood
microscopic images, with a total of 6116 images. Due to the heavy workload of scoring
each image in the two datasets, we only annotated the image capture order of the clearest
image in each group. The image sizes of the leucorrhea and blood microscopic images
were 1200 × 1920 × 3 and 1200 × 1600 × 3, respectively.

We used a Motic B1Digital microscope with a 40× objective lens (Numerical Aperture
(NA): 0.65, Material Distance: 0.6 mm) to capture fecal and blood microscopic images. The
leucorrhea microscopic images were captured by a Motic CX31 biological microscope with
a 40× objective lens (NA: 0.65, Material Distance: 0.6 mm) and a Motic EXCCD01400KMA
CCD camera. The study was conducted according to the guidelines of the Declaration of
Helsinki, and approved by the Institutional Review Board of the University of Electronic
Science and Technology of China (protocol code: 106142021030903).

4.2. Performance Metric

In order to evaluate the performance of the IQA methods, two performance metrics
were adopted: SROCC and prediction accuracy.

4.2.1. Spearman Rank-Order Correlation Coefficient

SROCC is a commonly used metric that has the ability to measure the correlation be-
tween predicted scores and annotated scores. A value close to 1 indicates high performance
of the IQA method. It can be computed as follows:

SROCC =
1− 6∑n

i=1 d2
i

n(n2 − 1)
(13)

where di is the difference between the i-th image ranks in annotated scores and predicted
scores; n is the number of images in the evaluation dataset. As the annotated score was a
relative value in each group of images, we calculated the SROCC value of each evaluation
image group and finally calculated the average value of them.

4.2.2. Prediction Accuracy

The goal of our research was to identify the clearest image in a group of images,
so the accuracy of judging the clearest image was an important evaluation indicator. In
each image group, we defined the capture order of each image in the autofocus process
as i(i ∈ [1, n]), where n is the number of images in this group. Furthermore, we defined
the capture order of the image with the maximum predicted score as ip, and the capture
order of the image with the maximum annotated score as im. When ip is equal to im, the
prediction of the IQA method is consistent with HVS in this image group, and we defined
the corresponding group as type “top-0”. When ip is not equal to im but the absolute
difference between them is 1, the prediction of the IQA method is slightly different from
HVS, and we defined the corresponding image group as type “top-1”. In [3], we proposed a
super depth of field (SDoF) network to detect cells by an SDoF feature aggregation module.
The inputs of SDoF-Net are three microscopic images (the clearest image and its preceding
and succeeding image), which are captured in one autofocus process. Therefore, image
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groups with type “top-0” and “top-1” are acceptable for our research. We defined t0 and
t1 to represent the number of image groups with type “top-0” and “top-1”, respectively.
Furthermore, we defined “acc” to represent the proportion of the sum of t0 and t1 in the
number of evaluation image groups.

4.3. Experimental Results

In order to eliminate the performance bias of the proposed method, we repeated the
whole training process five times, and the corresponding results on the test set, leucorrhea
dataset, and blood dataset are shown in Table 1. “srocc” represents the average SROCC
value in the evaluation image group. The selection of optimal models on the validation set
is described in Section 3.4. To prevent under-fitting or over-fitting, the L0 model should
also meet the following conditions: “acc” should be higher than 98% and lower than 99%;
t0 should be between 120 and 129. The L1 model only needs to meet the requirement that
“acc” is higher than 98%. Blood and leucorrhea microscopic images were rescaled to the
size of 1024 × 1536 and 768 × 1152. The same normalization method was adopted and the
patch cropping step was 256 and 384 in the horizontal and vertical direction for them. The
size of ϕ was set to 32 × 32 for the blood microscopic image and 8 × 8 for the leucorrhea
microscopic image. We used the tensorflow2 framework to build our algorithm and ran it
on a RTX 3090 GPU.

Table 1. The model performance on test set, leucorrhea dataset, and blood dataset.

Test Set Leucorrhea Dataset Blood Dataset

Model t0 t1 Acc Srocc t0 t1 Acc t0 t1 Acc

Round 1
L0 128 71 95.673% 0.8984 325 312 91.130% 97 32 99.231%
L1 130 74 96.154% 0.8925 399 278 96.853% 90 39 99.231%

Round 2
L0 124 73 94.712% 0.8774 404 233 91.130% 77 52 99.231%
L1 134 66 96.154% 0.8942 399 255 93.562% 83 47 100%

Round 3
L0 133 66 95.673% 0.9038 362 300 94.707% 93 36 99.231%
L1 134 71 98.558% 0.8884 389 276 95.136% 85 42 97.692%

Round 4
L0 139 58 94.712% 0.9039 307 348 93.705% 82 46 98.462%
L1 140 63 97.596% 0.9030 314 346 94.421% 107 23 100%

Round 5
L0 126 75 96.635% 0.8958 306 271 82.546% 80 49 99.231%
L1 136 67 97.596% 0.8997 387 258 92.275% 64 65 99.231%

It can be seen from Table 1 that: L0 can easily over-fit on the validation set, and its
prediction accuracy on the test set is unstable; the L0 in Round 5 over-fits on the feces
dataset and cannot be used for the leucorrhea dataset; L1 achieves good prediction accuracy
on the feces dataset and it is more consistent with HVS (t0 on test set is higher); L1 can
improve the prediction accuracy on the leucorrhea dataset better than L0, especially the L0
in Round 5; for the blood dataset with simple compositions, both L0 and L1 can achieve
excellent results.

In the training process, we also tried to use the model with the largest average SROCC
value as the optimal model, but the model prediction accuracy was unstable. As shown in
Figure 7, for one fecal microscopic image group in the test set, the blue and green curve
represent the predicted score curve calculated by model L1 (Round 3) and the annotated
score curve, respectively. Although the image capture order ip is equal to im in this image
group, the predictions of blurred image scores are inaccurate, leading to a low SROCC
value, which is 0.5016. Considering that our goal was to find the clearest image, we only
regarded the SROCC value as a reference, not as an evaluation metric for model selection.
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Figure 7. Score curve of one fecal microscopic image group in test set. The abscissa is the image
capture order in the autofocus process, and the 5th image is the clearest image. The ordinate is the
score value. The blue and green curve represent annotated and predicted score curve, respectively.
The SROCC value of this image group is 0.5016.

Some formed elements in leucorrhea are similar to those in feces, such as white blood
cells, fungal spores, and red blood cells, and the cell morphology is comparable. Similarly,
blood samples also contain red blood cells and white blood cells. Although the models were
trained on the feces dataset, some L0 could achieve acceptable results on the leucorrhea and
blood datasets, with poor robustness of model performance. To show the availability of
MA, we plotted the attention heat maps visualized by Grad-CAM++ [30]. Figure 8 presents
the attentions in the output of Layer5 of L0 and L1. It can be seen that the attentions
of model L0 are mainly distributed around the regions of fungal spores and impurities.
After applying MA, the attentions in blurred regions or the background are suppressed.
This indicates that the introduction of MA causes the network to pay more attention to
sharp regions.

Figure 8. The attention heat maps of fecal microscopic image visualized by Grad-CAM++. (a,b) presents the attentions in
the output of Layer5 of L0 and L1, respectively.

The performance of GMANet based on backbone resnet50 is shown in the Supplemen-
tary Materials.

5. Discussion
5.1. Ablation Study
5.1.1. The Influence of Introduction Depth of MA

In this part of the experiment, we introduced MA into Layer2 to verify whether the
model performance could be promoted. Similarly, L1 was used as a pre-trained model
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for transfer learning. After training 40 epochs, the optimal model with minimum Lscore
on the validation set was defined as L2. In addition, we further verified the effect of
two-stage training. We directly trained the network with MA into Layer1 and the optimal
model with minimum Lscore on the validation set was defined as L∗1 . L2 and L∗1 need to
meet the requirement that “acc” is higher than 98%. Similarly, we repeated the whole
training process five times for model L2 and L∗1 . The comparisons between L1, L∗1 and L2
are shown in Figure 9. To simplify the process of comparing, we only demonstrated the
average “acc” of three models. It can be seen that further introducing MA into Layer2 can
slightly improve the performance on the test set but greatly reduces the performance on
the leucorrhea dataset. Both L2 and L∗1 over-fit on the feces dataset. As a result, directly
training the network with MA is less effective than two-stage training.

Figure 9. The effectiveness of introducing MA into the network with different depths.

5.1.2. The Influence of Using Different Gradient Methods to Compute Attention Map

To verify the effectiveness of the local maximum gradient method, we adopted the
frequently used Tenengrad [7] method to compute a gradient image as an attention map.
We retrained L1 based on the L0 in Section 4.3, and the same training process and optimal
model selection criterion were used. The comparison of average “acc” on the test set,
leucorrhea dataset, and blood dataset is shown in Figure 10. It can be seen that using
Tenengrad to compute the attention map could lead to over-fitting on the feces dataset. The
local maximum gradient method, which concentrates on local regions rather than edges, is
more suitable for microscopic image quality evaluation.

Figure 10. The influence on model performance of using Tenengrad method to compute atten-
tion map.
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5.1.3. The Effectiveness of Using Auxiliary Outputs in Training Process

To prove the availability of using auxiliary outputs in the training process, we only
used Output1 to compute the loss and train the network for another five rounds. The
network without MA was trained for 100 epochs, and other settings and parameters were
unchanged. The corresponding results on the test set, leucorrhea dataset, and blood dataset
are shown in Table 2.

Table 2. The performance of model trained without auxiliary outputs.

Test Set Leucorrhea Dataset Blood Dataset

Model t0 t1 Acc Srocc t0 t1 Acc t0 t1 Acc

Round 1
L0 137 64 96.635% 0.8958 289 341 90.129% 87 41 98.462%
L1 135 69 98.077% 0.9075 314 332 92.418% 77 53 100.00%

Round 2
L0 129 71 96.154% 0.8811 305 320 89.413% 97 32 99.231%
L1 133 67 96.154% 0.8974 346 308 93.562% 76 54 100.00%

Round 3
L0 119 80 95.673% 0.8673 310 270 82.976% 85 45 100.00%
L1 130 74 98.077% 0.9182 362 247 87.124% 88 39 97.692%

Round 4
L0 134 65 95.673% 0.9012 116 270 55.222% 53 74 97.692%
L1 137 66 97.596% 0.8943 254 371 89.413% 85 45 100.00%

Round 5
L0 138 63 96.635% 0.8844 303 345 92.704% 99 29 98.462%
L1 130 69 95.673% 0.9049 288 354 91.845% 84 63 97.692%

It can be seen that in the absence of auxiliary outputs, the average “acc” of L0 on the
test set is increased but it easily over-fits on the feces dataset, resulting in poor performance
on the leucorrhea dataset. The over-fitting can even lead to a performance degradation in
L1, such as the model in Round 5. The performance of L1 in Round 1 to Round 4 further
proves the effectiveness of the gradient MA mechanism.

5.2. Comparison with Deep-Learning-Based IQA Methods

In this part of the experiment, we compared the proposed model with two deep-
learning-based methods: TwostreamIQA [15] and WaDIQaM-FR [31]. TwostreamIQA
uses the gradient image as the features to be learned. WaDIQaM-FR adds a patch weight
estimate module at the end of the feature extraction layers, and the predicted score of each
image is the weighted sum of all patch scores. WaDIQaM-FR is a kind of FR-IQA method
that needs a reference image. We used the assumption in [32]—that is, the clearer the image
is, the greater the difference between its Gaussian blurred image and the original image is.
A Gaussian blur operation with a kernel size of 21 and sigma value of 3.5 was performed
on all datasets, and then the original images and corresponding Gaussian blurred images
were used as reference images and distorted images, respectively. We repeated the training
process five times and adopted a similar optimal model selection method. The comparison
of average “acc” on the test set, leucorrhea dataset, and blood dataset is shown in Figure 11.
We also tested the WaDIQaM-NR [31] method, but its prediction accuracy on the validation
set was lower than 97%.

From the results, we can see that the proposed model outperformed the other two
deep-learning-based IQA methods. Both the TwostreamIQA and WaDIQaM-FR methods
achieved excellent prediction accuracy on the feces dataset, and their average “acc” on
the test set was 96.539% and 97.885%, respectively. However, they could not achieve valid
results on the leucorrhea dataset. Although we normalized the gradient images in advance
so that the gradient features of different images were at the same magnitude, the gradient
distribution of images in different datasets was still different. Therefore, the deep model
trained on the feces dataset by the TwostreamIQA method was only applicable for the feces
dataset. The patch score and weight in WaDIQaM-FR are trainable parameters, which were
trained on the feces dataset. As a result, the predicted score and weight in the feces dataset
were exact but they were inaccurate in the leucorrhea dataset.
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Figure 11. Comparison with two deep-learning-based NR-IQA methods.

In order to further prove the effectiveness of GMANet, in the Supplementary Materials,
we demonstrate the performance of 37 types of traditional IQA methods on finding the
clearest human fecal microscopic image in the autofocus process. Furthermore, we analyze
the reasons for the poor performance of traditional IQA methods.

5.3. Limitations and Future Work
5.3.1. Limitation on Real-Time Detection

The average calculation time of quality assessment for one fecal microscopic image is
shown in Table 3. A fecal microscopic image can be divided into 12 image patches with a
fixed size of 512 × 768. These patches can be concatenated along the batch channel and
be detected in one single inference. The total average calculation time reaches 248 ms per
image. In general, an image group captured in the autofocus process contains 10 to 30
images; that is, it takes 2 to 7 s to find the clearest image. Therefore, the proposed model
still has a limitation regarding real-time detection.

Table 3. The average calculation time of predicting the quality of one fecal microscopic image.

Gradient Image
Calculation Slicing Image Inference Total

Running times 15 ms 1 ms 210 ms 248 ms

5.3.2. Limitation on Applying to Leucorrhea Dataset

There are still differences between the prediction of the proposed model and the
perception of HVS. If leucorrhea microscopic images contain epithelial cells with a large
size, the model will predict the clear image of epithelial cells as the clearest. Shown in
Figure 12a is the annotated clearest image in one image group, and (b) is the predicted
clearest image. The white blood cells and fungal spores in (a) are clear, and the epithelial
cells are defocused but still can be recognized; the situation in (b) is the opposite and
the white blood cells or fungal spores cannot be identified. If (b) is input into the object
detection algorithm, the qualitative judgment result may be inaccurate. Furthermore, the
rescaled size of 768 × 1152 and the 8 × 8 size of ϕ are the optimal parameters selected after
multiple tests. As the sizes of ϕ and the image increase, the “acc” value on the leucorrhea
dataset gradually decreases. When the image size is 1024 × 1536 and the size of ϕ is 32 ×
32, the “acc” value drops below 70%.
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Figure 12. The influence of epithelial cells with large size on prediction results. (a,b) are the annotated and predicted
clearest image in one image group, respectively.

5.3.3. Future Work

The above limitations restrict the efficiency and generality of our proposed GMANet.
In future work, we will simplify the network structure to accelerate the computing speed
and improve the generality of the deep model. Furthermore, we will verify whether other
shallow features, such as edge, phase, and contrast, used in traditional NR-IQA methods,
can be introduced as an MA map.

In our previous work, we fused clear image patches in different locations and the
corresponding experimental results are described in [33]. In order to verify the performance
of GMANet on assessing the clarity of objects, we used the image fusion method to stitch
the clearest image patches together. Details are described in the Supplementary Materials.
Using a deep learning method to fuse the microscopic images captured in the autofocus
process into one clear microscopic image is our next research direction.

6. Conclusions

In this paper, we proposed a blind IQA method based on a deep CNN to solve
the difficulty of finding the clearest image in a microscopic image group captured in
the autofocus process, namely GMANet. We introduced the gradient information into a
low-level convolution block as spatial attention to make the high-level features pay more
attention to sharp regions. Experimental results show that the proposed network has
good consistency with human visual properties. As gradient images are not features to be
learned, the deep model trained on the feces dataset is universal, and can be applied to
leucorrhea and blood microscopic image quality assessment without additional transfer
learning. Our study has value for addressing the autofocus task for microscopic images
with complex composition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112110293/s1, Experiment 1: Using traditional IQA methods to find clearest fecal micro-
scopic image, Experiment 2: Using resnet50 as GMANet backbone, Experiment 3: The performance
of GMANet on assessing the clarity of objects.
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