
applied
sciences

Article

A Novel Intrusion Detection Approach Using Machine
Learning Ensemble for IoT Environments

Parag Verma 1 , Ankur Dumka 2, Rajesh Singh 3 , Alaknanda Ashok 4, Anita Gehlot 3, Praveen Kumar Malik 3 ,
Gurjot Singh Gaba 5,* and Mustapha Hedabou 5

����������
�������

Citation: Verma, P.; Dumka, A.;

Singh, R.; Ashok, A.; Gehlot, A.;

Malik, P.K.; Gaba, G.S.; Hedabou, M.

A Novel Intrusion Detection

Approach Using Machine Learning

Ensemble for IoT Environments. Appl.

Sci. 2021, 11, 10268. https://doi.org/

10.3390/app112110268

Academic Editor: Donato Cascio

Received: 10 September 2021

Accepted: 14 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chitkara University Institute of Engineering and Technology, Chitkara University Punjab,
Rajpura 140401, India; parag_verma@yahoo.com

2 Women Institute of Technology, Dehradun 248007, India; ankurdumka2@gmail.com
3 School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144411, India;

rajesh.23402@lpu.co.in (R.S.); anita.23401@lpu.co.in (A.G.); praveen.23314@lpu.co.in (P.K.M.)
4 Computer Science & Engineering, College of Technology, G.B. Pant University of Agriculture and Technology,

Pantnagar 263145, India; alakn@rediff.com
5 School of Computer Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco;

mustapha.hedabou@um6p.ma
* Correspondence: gurjot.singh@um6p.ma

Abstract: The Internet of Things (IoT) has gained significant importance due to its applicability in
diverse environments. Another reason for the influence of the IoT is its use of a flexible and scalable
framework. The extensive and diversified use of the IoT in the past few years has attracted cyber-
criminals. They exploit the vulnerabilities of the open-source IoT framework due to the absentia of
robust and standard security protocols, hence discouraging existing and potential stakeholders. The
authors propose a binary classifier approach developed from a machine learning ensemble method
to filter and dump malicious traffic to prevent malicious actors from accessing the IoT network
and its peripherals. The gradient boosting machine (GBM) ensemble approach is used to train the
binary classifier using pre-processed recorded data packets to detect the anomaly and prevent the
IoT networks from zero-day attacks. The positive class performance metrics of the model resulted in
an accuracy of 98.27%, a precision of 96.40%, and a recall of 95.70%. The simulation results prove
the effectiveness of the proposed model against cyber threats, thus making it suitable for critical
applications for the IoT.

Keywords: machine learning; intrusion detection system; network anomaly detection; Internet of
Things; gradient boosting machine (GBM)

1. Introduction

The security of networks is very important as they are widely used to provide commu-
nication and information-sharing among individuals, industries, and other parts of society.
Various strategies in the form of firewall protection policies and antivirus software have
been put into practice for maintaining client security and the protection of their sensitive
data [1].

The industry protected intrusion detection system (IDS) recognizes threats or suspi-
cious activities on the network flows by analyzing network traffic or a specific perceived
environment. One type of anomaly in a network is an intrusion or threat. Interlopers
exploit network vulnerabilities by misusing network faults that bring about a breach of
network security and software bugs such as overflowing of the buffer. Interlopers target
low privilege clients and expect to find additional access power or programmers that are
common web-based clients to hack or damage sensitive data [2].

Although several industry protected IDS algorithms have been proposed by network
researchers, most of them are based on traditional mechanisms such as encryption and

Appl. Sci. 2021, 11, 10268. https://doi.org/10.3390/app112110268 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3201-4285
https://orcid.org/0000-0002-3164-8905
https://orcid.org/0000-0003-3433-8248
https://doi.org/10.3390/app112110268
https://doi.org/10.3390/app112110268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110268
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110268?type=check_update&version=2

Appl. Sci. 2021, 11, 10268 2 of 21

authentication procedures to protect wireless sensor units and are insufficient. Hence, the
existing IDS needs a lot of progressive work to achieve high-performance authentication
and security. The increased use of the artificial intelligence–machine learning ensemble
technique in industries to classify multi-pattern data was the motivation for this research
work to help in the recognition of traffic patterns and the methods of anomaly detection
over internet-enabled wireless sensors. There is a growing use of the ensemble techniques
of machine learning, a branch of artificial intelligence, and their ability to classify multi-
pattern data across industries applications. Accordingly, this research has also applied
machine learning ensemble techniques to IDS, so this work is focused on traffic pattern
recognition and anomaly detection on Internet-enabled wireless sensors.

To detect novel attacks, the proposed intrusion detection system handles the recently
recorded benign information in data packets and analyzes the network traffic for anomalous
data flows.

Intrusion detection techniques are categorized into two types: signature-based and
anomaly-based. In signature-based intrusion detection techniques, the system monitors
the flow of packets within the network and compares the value obtained with previously
identified values which are configured as the signature of known attacks. The anomaly-
based method detects attacks by capturing user parameters that show deviation from the
legitimate user parameters [3].

The major contributions of this research paper are as follows:

• A focus on mobile network appliances such as IoT-enabled platforms for IDSs.
• A machine learning-based binary classifier for identifying network traffic as benign or

malicious to provide network security.
• Training, validating, and testing of the model using the random forest and gradient

boosting machine (GBM) ensemble approach with a hyperparameter optimizer using
the ‘CSE-CIC-IDS2018-V2’ dataset and demonstrating the performance test with attack
categories like infiltration, SQL injection, etc.

This paper consists of six sections. In Section 2, the focus is on the background of the
present research and its challenges. Section 3 covers the system architecture of the proposed
work. Section 4 summarizes the dataset used for training, validating, and testing of the
model to build a binary classifier for IDS. Section 5 of this paper includes the demonstration
of the methodology and its results. Section 5 presents the conclusions derived from the
proposed work.

2. Literature Review

Communication-based technologies such as the Internet of Things (IoT), mobile net-
works, and wireless sensor-enabled networks bring a lot of attention to network security.
The motivation behind this section is a detailed overview of recent trends in IoT devices
and a focus on advancements in machine learning-based solutions for IDSs as a single
intrusion has the potential to damage the entire network.

2.1. Machine Learning Enabled Intrusion Detection for IoT Appliances
2.1.1. Intrusion Detection System

An intrusion detection system (IDS) determines the blockage by reviewing the network
against violation activities [4]. This model was identified [5] in the 1980s and it can be
divided into a set of two classes. The initial two classes are based on the network and host
separately, where the behavior of intrusion can be noted. Monitoring the network and
analyzing the network traffic are the focused activities in a network-based IDS to serve
network security. The host-based IDS monitors the malicious activities happening in the
processes and the system events in the software-based environment [6,7].

Another category of IDS relies on the approach of data analytics, which has been
used in all types of intrusions such as signature, anomaly, and hybrid-based intrusion.
The signature-based approach searches for information from network packets or a specific
system (for example, logs) to detect signatures or a similar pattern that support charac-

Appl. Sci. 2021, 11, 10268 3 of 21

teristics of behavior for intrusive activity. Such a strategy is essentially more feasible as
it uses recently named information from the dataset. Although it is described as a basic
and effective technique, it cannot see ambiguous attacks and requires constant information
base updates [3,7–9].

An approach based on anomaly intrusion examines the information to look for ir-
regular situations that differ from the general network behavior and system practices.
This capability can rely on the recently given information which was used to produce
specific algorithms. The strategy depicted is promising as it can enable the search for
zero-day attacks. Moreover, it includes a more vigorous adaption to a specific system or
network. In such cases, a very significant downside is that these methods are more prone
to false-positive alerts that contain a higher level of information, as they are not based
on uniquely named information. Recently, some new instructions have been issued for
their dependencies, which will search for the given information according to the terms of
data discrepancies. However, this information is not enough to detect network security
attacks [6–8,10].

The hybrid technique combines both signature and anomaly detection techniques.
This kind of strategy was designed by Buczak and Guven to limit the consequences of
bogus precautions and further increase recognition for attacks that are known [7].

Liao et al. conducted a comprehensive survey that marked some additional techniques
similar to the wireless-based analysis of network behavior, hybrid IDSs, and the analysis
of the existing key protocols. Wireless-based IDSs closely resemble the network-based
schemes which are capable of capturing wireless traffic flows. A system for analyzing the
network behaviors is based on network traffic to search for malicious attacks along with
expected flows of network traffic. Hybrid IDSs consolidate various advances to provide
more intensive and accurate interrupt detections, while the stateful IDS protocol dissects
the explicit conditions of the specific network so that examples of contraceptive harm can
be searched [8] (Table 1).

Table 1. Summary of some of IDS types.

Intrusion detection prone area

Based on dedicated host
Based on dedicated network
Based on remote accessibility

Based on analytics of network behavior

Methodologies of intrusion detection
Based on authorized signature values

Based on data pattern irregularity or anomaly
Based on analytics of stateful protocols

For modeling the IDS, other categories of machine learning and soft computing were
introduced by Camastra et al. [6]. Four different groups of mechanisms based on machine
learning and soft computing were depicted: supervised learning, unsupervised learning,
statistical modeling, and ensemble-based approaches [11]. The dominant approach is used
to identify the unique behavior intrusions, while single strategies work for novel intrusions.
The statistical modeling-based approach is used to evaluate the behaviors of users and
assess whether it is characterized as ‘normal’, while the ensemble-based approach joins
some models to improve proficiency and accuracy.

2.1.2. CSE-CIC-IDS2018-V2 Dataset

The dataset has a huge impact on the performance evaluation of a machine learning
algorithm [12]. A review of the literature suggests that most of the intrusion detection
methods that are based on machine learning have been trained by the DAROA 98/991 and
KDD CUP 992 datasets. However, the method of intrusion detection using these datasets is
not very effective, and many researchers [13–17] are against the recommendation of their
use. This is why a new dataset, CSE-CIC-IDS 2018 (https://registry.opendata.aws/CS
E-CIC-IDS2018-V2/, accessed on 15 March 2021), collected by the Canadian Institute of

https://registry.opendata.aws/CSE-CIC-IDS2018-V2/
https://registry.opendata.aws/CSE-CIC-IDS2018-V2/

Appl. Sci. 2021, 11, 10268 4 of 21

Cyberspace (CIC) on Amazon’s AWS LAN network, was used in our research work [18].
This dataset is also termed as CIC-AWS-2018. This dataset provides TCP/IP level traffic
data details like IP address, port number, detection of CIC-AWS dataset, and statistical
data of traffic based on the flow of data in the network. A network flow generator and
analyzer, CICFlowMeter, was used to calculate the statistical data.

The dataset includes six types of infiltration conditions: DoS attack, Brute Force attack,
botnet attack, DDoS attack, web attack, and infiltration, which are within the network,
along with 14 different types of intrusions: FTP-Brute Force, Brute Force-Web, botnet, SSH
Brute Force, DDoS-HOIC attacks, DDoS-LOIC-UDP attacks, DDoS-LOIC-HTTP attacks,
SQL injections, Brute Force-XSS, DoS GoldenEye attacks, DoS Hulk attacks, DoS slow
HTTP test attacks, infiltration, and DoS Slowloris attacks. The data is labeled according to
three criteria, namely, the number of transmitted packets, data flow duration, and counts
of certain flags. The CIC-AWS-2018 datasets also contain the records of network traffic and
event logs.

However, considerable research work has been done on CIC-IDS-2017, an older ver-
sion of the CIC-AWS-2018 dataset. Some researchers [19] have implemented a classifier
based on unsupervised learning. Sharafaldin et.al, the creator of the CIC-IDS-2017 dataset,
used the random forest regression model, developed by CIC, to select only the top four
features that are fully capable of detecting intrusion derived from machine learning tech-
niques [20]. In our analysis, we used the CSE-CIC-IDS 2018 because it is more recent than
the other datasets like CIDDS-001 (CIDDS-001 dataset. https://www.hs-coburg.de/forsc
hungkooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-
intrusion-detectiondata-sets.html, accessed on 20 April 2021), UNSW-NB15 (UNSW-NB15
dataset. https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersec
urity/ADFA-NB15-Datasets/, accessed on 20 April 2021), and NSLKDD (NSL-KDD dataset.
http://nsl.cs.unb.ca/nsl-kdd/, accessed on 20 April 2021). In addition, this dataset has the
latest information about traffic attacks that supports building IDSs to detect novel attacks.

2.1.3. IoT-Enabled Networks

For secure communications to transmit data over IoT-enabled networks, various
studies have been carried out that define the vulnerabilities in IoT systems. This section
explores the contributions of many researchers suggesting different methods for defending
the IoT against malicious attacks.

Misra et al. [21] suggested an IDS based on the specification for learning automata
to prevent DoS attacks against the IoT. In this proposed system, an IoT center product
layer is used instead of a specific tool and is helpful in the decision-making process. This
system sets an edge for the number of solvents a middleware layer can support. When the
number of convulsions exceeds the set limit, an attack is recognized. Kasinathan et al. [12]
proposed a signature-based intrusion detection system that consists of monitoring and
recognizing the modules. In that study, the module was coordinated with the European
Union (EU) FP7 enterprise project’s network system, called ‘ebbits’, to ensure that networks
were subject to DoS attacks. A DoS assurance administrator and IDS were included in the
proposed network. An IDS was used to catch and inspect the sniffing packets from IDS
testing centers and spread them across the networks. The estimation results indicated that
the proposed system exhibits true positive and false-positive rates.

Suricata [13] put forward an Open Source IDS that provided the functionality of
matching patterns and detecting attacks in the network. A test node was used to sniff all
packet transmissions in the network and the transmission of the data to IDS for additional
analysis. The performance of the proposed IDS was tested by penetration testing tools
called scape. No simulation-based studies were conducted in favor of IDS performance
and its convenience. Additionally, the authors did not refer to any information about the
signature database management.

Lee et al. [14] came up with a novel IDS to spot DoS attacks. The main idea behind
the proposed IDS was to reduce the energy of the nodes by detecting malicious nodes.

https://www.hs-coburg.de/forschungkooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detectiondata-sets.html
https://www.hs-coburg.de/forschungkooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detectiondata-sets.html
https://www.hs-coburg.de/forschungkooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detectiondata-sets.html
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
http://nsl.cs.unb.ca/nsl-kdd/

Appl. Sci. 2021, 11, 10268 5 of 21

In this research, it was suggested that various models use cross-section direction-based
networks. The security framework proposed expects the nodes to demonstrate the use of
their energy at an inspection rate of 0.5 s. The suggested approach continuously monitored
the energy usage by the nodes and any node that was found to deviate at any point was
set as a malicious node. Finally, such nodes were removed, and the routing table of the
connected nodes was also updated.

An IDS proposed by Sonar and Upadhyay [15] operates as a software-based supervisor
between the network and the gateway. This helps to protect the IP addresses in the grey
list or the ones that control access to the network. At every 300 s interval, the blacklist is
refreshed, and the grey list is refreshed every 40 s. The simulated framework of this IDS
is reproduced on the Contiki operating system by Dunkels et al. [16]. Amount of packet
delivery ratio, packets served, true positives, and false positives are not performed at an
acceptable rate in this IDS. Another significant limitation of the proposed IDS is that it has
a larger retrieval time as compared to the learning time.

Similarly, machine learning techniques are recommended in modern-day IDSs to
achieve accurate prediction, automation, speed, and scalability. In the same direction,
machine learning for intrusion detection in the industrial IoT (IIoT) was applied through
federated learning (FL) in [22]. The federated learning assistant application is primarily
designed to train an algorithm that enables multiple edge devices to connect without
sharing private data. Distributed denial of service (DDoS) attacks pose a significant threat to
IIoT applications. The adversarial nodes overwhelm the network servers, SCADA systems,
and other IoT-enabled devices, causing the crash of industrial systems and resulting in
operational disruption. The authors have suggested the use of FL to protect the IIoT
framework from DDoS attacks. They trained the model locally so that edge nodes can
include modules that perform analysis and detection for DDoS. These modules include
traffic policies that all the network traffic must adhere to before a connection can be
established. As per their scheme, upon sensing any malicious cyber activity, the IDS moves
the application to the sandbox, and related information is updated to the cloud to make
other edge nodes aware of this type of intrusion.

Data security is a big concern in smart healthcare industry applications. Gope et al. [11]
addressed the problems related to machine learning-based modeling attacks by proposing
a physically-unclonable function (PUF)-based authentication mechanism. This proposed
scheme has two phases: registration and authentication, to ensure secure connections and
protection against man-in-middle attacks, replay, etc. However, weak PUF (WPUF) and
one-time PUF (OPUF) can put the entire network at risk. Although their proposed scheme
has shown decent protection against a few attacks, it does not protect against DDoS, Brute
force, and bot attacks. These inferences and findings motivated us to develop a robust IDS
for enhanced protection against potential attacks.

Deep learning-based intrusion detection was proposed by Tama and Rhee [17] to
protect IoT networks. This model was evaluated using the NSLKDD dataset. Through
this model, the author examined an IDS with the customary shallow model methods. This
proposed IDS is executed with focused and appropriated validations. Test results showed
that the distributed attacks detection schemes performed better in terms of accuracy.
Additionally, the deep model is much better than the shallow model concerning the
precision, recall, reliability, and F1 measures. Additionally, Primartha and Tama [18]
proposed an IDS based on anomalies that make use of a gradient boosting machine (GBM)
as a recognized automated machine. The GBM model ideal parameters are used in the
grid-based search and the IDS uses three datasets, namely, UNSW-NB15, NSL-KDD, and
GPRS, to approve using hold-out and cross-fold strategies. The proposed model was
compared with previous approaches like fuzzy classifiers, GAR forest, and tree-based
ensembles. It was found that the suggested model is better concerning accuracy, specificity,
sensitivity, and area under the curve (AUC). A detailed summary of the highlighted paper
is given in Table 2.

Appl. Sci. 2021, 11, 10268 6 of 21

Table 2. Summary of some important previously proposed schemes.

Author Attacks Coverage Dataset Methodology Performance Metric

Gope et al. [11]

Man-in-middle, replay,
DoS, security-against-
any-learner, tracking,

scalability

-

Physically unclonable
function (PUF),

registration, and
authentication

-

Li et al. [22]
DDoS, bot,

attacker-centric
mitigation

UNSW NB15 dataset FLEAM architecture
Mitigation response

time;
detection accuracy

Sonar and
Upadhyay [15]

DoS, DDoS, volumetric
flooding attack -

Attack recover
algorithm along with
traditional Grey List

and Black List

Packet delivery ratio

Lee et al. [14] DoS, wormhole,
selective forwarding - 6LoWPAN Jammer Energy consumption

2.2. Classification Algorithm

A hypothesis, popularly known by the name ‘no free lunch’, stated by Douglas et al. [19],
reflects the importance of trying different things with different classifiers based on machines
to solve classification tasks. The hypothesis expresses that “all optimization algorithms
perform equally well when their performance is averaged across all possible problems [20]”.

For the case we considered, we focused on only one type of classification algorithm: an
ensemble classifier. Among the ensemble techniques, widely explored algorithms [23–25]
are random forest (RF), gradient boosted machine (GBM), AdaBoost (AB), extreme gra-
dient boosting classifier, and extremely randomized trees. Referenced classification is
the fundamental explanation behind the choice of algorithm. Single classifiers such as
classification and regression tree (CART) and multi-layer perceptron (MLP) have mainly
been discussed as the number of input features was very large. Also, the presentation
of ensembles for the CIDDS-001 and UNSW-NB15 datasets has not been read in and out.
Lastly, the performance of ensemble classifiers in IoT-enabled appliances has rarely been
focused upon, which prompted us to express this analytical study.

2.2.1. Ensemble Classifiers

The ensemble has been demonstrated for acceptable classification and regression
algorithms. Subsequently, in this proposed strategy, we have used random forest and
gradient boosting machine ensembles for analysis purposes.

2.2.2. Gradient Boosting Machine (GBM)

Also termed as gradient tree boosting or gradient boosted regression tree (GBRT) [24,25],
GBM is a classifier technique that enhances the performance of classification and regression
trees (CART) [26].

The classifier working with GBM requires different hyperparameters in the tuned
format. This classifier requires that the same parameters be used for each dataset, so
a grid-based search model was used to select the best parameters for the dataset. For
experimental fulfillment, we used the GBM model which is implemented in the CatBoost
(https://catboost.ai/docs/, accessed on 20 April 2021) library in a Python environment.

2.2.3. Random Forest

The random forest (RF) model uses the property of the decision tree-based model to
build and aggregate a set of learning trees. It selects variables that are capable of being put
into each model for random selection [27] for examples of predictors {t(xin, θn), n = 1, · · ·}
that have individual predictive outputs at a given input xin. This predictive model relies
only on a set of variables, θn, that admits to random selection, freely sampled with similar

https://catboost.ai/docs/

Appl. Sci. 2021, 11, 10268 7 of 21

prevalence values. The core concept behind building a random forest model is that it
accepts the simultaneous number of indicators that helps to achieve better accuracy while
keeping away the issues of over-fitting values. Every indicator in a random forest develops
to the largest size without sorting. When innumerable trees are created, they predict the
information by deciding in favor of the most mainstream class on the input xin. For the
performance evaluation, the quality of estimators (trees) was set to 500 and the maximum
depth for tree growth was 26 as suggested by Breiman [26,28] and Tama and Rhee [17].
Various parameters were obtained by using random search operations.

The novelty of the proposed model is the bagging technique, which uses the random
forest to train different sets of models in a sequential manner. This bagging technique
is ensembled with a gradient boosting machine. This ensemble technique learns from
the model’s citations of its previous residual errors and misclassifications to produce a
strong learning model, whereas the previously introduced models try to enrich the model
by updating the weights of the data points, which affects the performance of the model.
Additionally, the performance of the proposed ensemble technique was estimated to be
2.9% more than that of the earlier models [18]. The proposed model was implemented with
polynomial and standard scalar feature selection, rather than a grid search-based process,
which enhanced the overall performance of the model by extracting the most relevant
features from the input malicious attack data values.

3. Proposed Work

As presented in Figure 1, the traffic classification scheme consisting of four phases,
including data preparation, data sampling, feature selection, and traffic classification, is
proposed. In particular, the objective of data preparation was to enhance data quality, data
integration, data cleaning, data transformation, and data normalization. After preparing
the data, an under-sampling process was conducted to reduce the irregularity of the benign
and malicious traffic samples, as the amount of specific data transmission traffic was much
larger than that of regular transmission. The selection of features was done in such a way as
to eliminate the unnecessary characteristics of attack behavior, improving the effectiveness
of the data training and testing. Finally, the purpose of the GBM-based ensemble machine
learning model was to identify malicious attacks.

To train a model, it is necessary to have a well-organized intrusion detection dataset.
The network-based dataset should include modern network traffic scenarios, large varieties
of low footprint intrusions, and deeply structured information on network traffic. Selecting
such a dataset proved to be a significant challenge. Before finalizing the dataset for our
research, we conducted a comparison-based study between the latest available intrusion
detection datasets: UNSW-NB15-v2, TON-IoT-V2, BOT-IoT-V2, and CSE-CIC-IDS2018-V2,
as shown in Table 3 and Figure 2.

The proportion of classes, i.e., benign, DoS, and DDoS, varies in each dataset. The
CSE-CIC-IDS2018 dataset has incredibly vast coverage and a very high benign-to-attack
ratio, which drew the attention of this research to the CSE-CIC-IDS2018-V2 dataset.

Table 3. Comparison of datasets on coverage of latest attacks [29–31].

Class UNSW-NB15 ToN-IoT BoT-IoT CSE-CIC-IDS2018

Benign 1,550,712 270,279 13,859 7,373,198
DoS 5051 17,717 56,833 269,361

DDoS 0 326,345 56,844 380,096
Web Attacks 0 0 0 4394
Infiltration 0 0 0 62,072
Brute Force 0 0 0 287,597

Bot 0 0 0 15,683

Appl. Sci. 2021, 11, 10268 8 of 21

Figure 1. Proposed methodology.

Appl. Sci. 2021, 11, 10268 9 of 21

Figure 2. Summary of attacks covered by available datasets.

3.1. Data Preparation

In this section, the process of data preparation, including data integration, data
cleaning, data transformation, and data normalization using feature scaling, is presented
in detail.

3.1.1. Data Integration

The considered dataset “CSE-CIC-IDS2018-V2” on AWS was assumed to capture all
available network traffic during 10 consecutive days of activities under a controlled network
environment. All appropriate base traffic that was conducted on specific attack scenarios
was controlled. The dataset also captured benign network traffic and the most well-
known attacks. The unusual dataset consisted of 10 raw-data files, containing 16 million
(approximately) individual network flows that cover common and different types of attacks,
including Brute Force attacks, DoS attacks, DDoS attacks, Heartbleed attacks, web attacks,
intrusions, and botnets. For the subsequent training phase, we combined all these files into
the dataset.

3.1.2. Data Cleaning

A few samples of the raw dataset had some values missing. Therefore, medina
imputation was used as a strategy to find those missing values. The mean/median of the
non-missing values in each column is calculated and then the missing values within each
column are individually substituted.

3.1.3. Data Transformation

As per the attack conditions study done by Sharafaldin et al. [27], we turned 15 types
of different traffic flows into 9 types only: infiltration, SQL injection, Brute Force-Web,
Brute Force-XSS, DoS Slowloris attacks, benign, bot, DDOS-HOIC attacks, and DDoS-LOIC-
HTTP attacks [32,33]. Table 4 lists the sample numbers of these nine types of network
traffic after changes.

The string labels were converted into integer labels in the range of 0 to 8. As the first
integer number may cause halfway requesting in vector space-based estimation algorithms,
we further utilized one-hot encoding to map discrete labels to Euclidean space, which
made them continuous in each dimension.

Appl. Sci. 2021, 11, 10268 10 of 21

Table 4. Distribution of 9 different types of traffic flow.

Training Labels Validation Labels Test Labels

Infiltration 129,547 16,193 16,194

SQL Injection 70 9 8

Brute Force-Web 489 61 61

Brute Force-XSS 184 23 23

DoS Slowloris Attacks 8792 1099 1099

Benign 10,787,766 1,348,471 1,348,471

Bot 228,953 28,619 28,619

DDOS-HOIC Attacks 548,809 68,601 68,602

DDoS-LOIC-HTTP Attacks 460,953 57,619 57,619

3.1.4. Data Normalization Utilizing Feature Scaling

As the range of estimation was a very broad one, (the scope of port number varied
from 1 to 65,535 and the range of the packet size varied from 1 to 1500), we scaled the data
by utilizing a method of standard scaler as formulated in Equation (1). A huge number
of samples, as much as 100,000, were required in every category of attack for the machine
learning algorithms. For achieving this target, we performed upsampling by utilizing the
method of synthetic minority oversampling provided by the SMOTE library:

standardization z =
(x− µ)

σ
(1)

where x is the original value of the features, mean is µ = 1
N ∑N

i=1(xi), and standard

deviation is σ =
√

1
N ∑N

i=1(xi − µ)2.

3.2. Undersampling

The conversion ratio of benign traffic to absolute numbers was 84.14%, as shown
in Table 4, and it caused an unbalanced classification problem. To avoid this issue, we
randomly performed undersampling for benign traffic samples as given in Equation (2),
where αus represents the ratio of undersampling, NrM is the quantity of the sample after
undersampling, and Nm denotes the original samples:

NrM = αus × NM (2)

3.3. Feature Selection

We used XGBoost as the ensemble algorithm to select the dominant features for
anomaly detection as it performs better in accuracy and robustness. The random forest
method was comprised of multiple decision trees, and each decision tree is based upon
randomly selected samples and features. When features selection was applied, all the
samples were divided into two buckets. The results of classification were compared for
these two buckets after randomly changing the value of a certain feature. The importance
score of each feature was calculated using the Gini impurity [34] shown in Equation (3),
where C denotes the data category and p(i) represents the probability of each type of traffic
that a random sample belongs to:

G =
c

∑
i+1

p(i)× (1− p(i)) (3)

Appl. Sci. 2021, 11, 10268 11 of 21

3.4. Target Grouping

The binary target variable was created by target grouping all malicious network traffic
into a single attack category represented by the positive class 1, whereas benign traffic was
represented as the negative class 0. Through class weight calculation for each class, the
proportion of samples of this class was given in the training set. For the majority class, the
class weight was set to be 1 while for the minority class the class weight was calculated
with the formula given in Equation (4):

Class− weightminority =
sum_negative_class
sum_positive_class

(4)

4. Experimental Results and Discussion
4.1. Experimental Setup

The machine used was a 64-bit Windows 10 Pro operating system with the following
specifications: an Intel i7 vPro four-core processor, 3.60 GHz clock speed, and 16 GB
main memory. For implementation and performance evaluation of the classifier, the
Python (version 3.7.2) environment was used. Additionally, Python library Scikit-learn [35]
was used to implement the model of the classifiers, as it highly supports the machine
learning algorithms. The PARAM system operating on a 64-bit Ubuntu 14.04 was used for
tuning the hyperparameters, and was equipped with an Intel Xeon Gold 6132 twenty-eight
core processing CPU unit with a 2.64 GHz clock speed and 16 GB main memory. The
IoT application is supported by the Raspberry Pi 3B+ model, which was enabled on an
operating system named Raspbian equipped with a 64-bit quad-core ARM processing
unit running at a 1.4 GHz clock speed and 1 GB of main memory. It was used to estimate
the response time of the classifier. STAC is a web-based application that was used for a
statistical test of the classes and the calculation of the performance results [36]:

avg. response time =
∑

ntest_sample
i=1 ti

ntest_sample
(5)

The computation formula of average response time represented in Equation (5), where
i is the instance number; ti is the total time consumed by the applied classifier to classify
the ith test simple instance into two classes, i.e., attack or normal category; and ntest_sample
represents the overall test instances.

4.2. Metrics and Method of Model Evaluation and Validation

The chosen range of the input parameters affected the general performance of the
classifiers. The method of random search was used to explore the best optimal input
parameters picked from the hyperparameters of the random forest technique and gradient
boosting machine method for the CSE-CIC-IDS 2018 dataset. The method of randomized
search CVs was used for the hyper-tuning of parameters, implemented in the Python
programming environment using the Scikit-learn library. Randomized search CV finds
the best optimal parameters settings by performing a method of cross-validation search
given by the client. This test uses specific metrics to access the evaluation of the classifiers
that are accuracy, specificity, or the rate of true negatives, and sensitivity, or the rate of
true positives [36]. The metrics FPR and AUC were mathematically represented through
Equations (6) and (7) as follows:

PR =
FP

(TN + FP)
(6)

AUC =
∫ 1

0

TP
(TP + FN)

d
FP

(FP + TN)
(7)

Appl. Sci. 2021, 11, 10268 12 of 21

In Equations (6) and (7), the term TP represents the true positive, which is the amount
of truly classified attack instances and the term TN represents the true negative, which
is the amount of true classified specified instances. The amount of incorrectly classified
attack instances is defined by the term FP, false positive, and the FN, false negative, is the
quantity of incorrectly classified normal instances. Accuracy is the absolute number of
examples accurately classified to the total number of cases in the dataset. The sensitivity of
the model represents the number of instances of general attacks accurately classified on
all specific instances. The FPR represents the number of instances of misclassified attacks
over the total number of common instances, and the AUC represents the referenced area
under the receiver operating characteristics (ROC) curve, wherein the ROC curve is plotted
against the FRP of the defined TRP.

For the computation process of the model and evaluation of full performance, we
directed the experiment using a cyclic hold-out as in the cyclic k-fold cross-validations (in
our case 10-fold) method [37]. As proposed by Rodriguez et al. [38], the cyclic version
makes the error estimation stable and reduces the variance of the validation approach.
For hold-out validation purposes, we divided the considered dataset into the 7:3 ratio,
meaning 70% of the dataset was considered as training instances, while 30% of the dataset
was considered as a testing instance. Additionally, for k-fold cross-validation, k is assumed
to be 10. Cyclic 10f and 100 rounds of hold-out validation are considered as the models
of classification which are assumed stable, indicating uniform prediction for the same
dataset. To derive accurate information, all performance results reported in this paper were
outputs estimated by 10 iterations of each cyclic validation approach and each experiment
was repeated using an alternate seed which was also a contributing input to the random
number generator.

The performance evaluation of the machine learning ensemble technique using the
random forest model and the gradient boosting machine model with a hyperparame-
ter search space, specifically with the CSE-CIC-IDS2018-V2 dataset, is discussed in this
section. The results provide an optimal parameter configuration for both random forest
and gradient boosting machine models and statistically analyze the performance of the
models. To conduct the hyperparameter search to accomplish the task, Hyperopt was used,
a distributed hyperparameter optimization [29,37,39,40] library providing a standardized
optimization over awkward search space for serial or parallel searches. Through this exper-
imental study, it was shown that the classifier used in the study is useful for detecting the
intrusion of IoT appliances. First, we analyzed the performance results of hyperparameter
optimization with the utilization of a random forest classifier.

4.3. Hyperparameter Optimization for the Random Forest Model

To optimize the parameters, a search-space needs to be defined, so for the random
forest model the defined search space is as follows in Table 5.

Table 5. Hyperparameter search space for random forest.

Parameter Description Parameter Identifier Hyperparameter Search
Space Training Hyperparameter Search Space Result

Number of tree
estimators (n_estimators) Uniform integer space in the

interval of [10, 100].
The optimal number of tree estimators seems to be

in the interval of [60, 100].

Information gain criterion (criterion) Choice of Gini or entropy. The entropy criterion yields a better performance
than the Gini criterion in our search run.

Maximum depth of a
single tree (max_depth)

Uniform integer space in the
interval of [10, 100] or None

resulting in an unbounded tree.

Restricting the depth of the trees seems to perform
better than using unrestricted trees. A value in the

interval of [20, 50] for the maximum tree depth
yields a good performance.

Maximum features for
the best split (max_features) Choice of sqrt or log2. The sqrt option seems to perform better than log2.

Appl. Sci. 2021, 11, 10268 13 of 21

Table 5. Cont.

Parameter Description Parameter Identifier Hyperparameter Search
Space Training Hyperparameter Search Space Result

Minimum samples to
split a node (min_samples_split) Uniform integer space in the

interval of [1, 10].
The optimal number of minimum samples to split

a node is in the interval of [4, 6].

Minimum samples at a
leaf node (min_samples_leaf) Uniform integer space in the

interval of [2, 10].

Given our search run, there is no conclusive best
option for the minimum numbers of samples in a
leaf node. However, the values {3, 6, 7, 8} seem to

perform well.

Before applying the random forest model over the dataset, a preprocess was applied to
compute the best optimal parameters of the data as illustrated in Figure 3. The performance
of the random forest model yielded a precision/recall score of 0.9810, with a precision
of 0.967 and a recall of 0.955 with respect to the positive class as presented in Figure 4.
The model performs quite well, except for the attack category infiltration, as presented in
Tables 6 and 7.

Figure 3. Scatter plot of best optimal model parameter with (a) ‘criterion’: 1, (b) ‘max_depth’: 1,
(c) ‘max_features’: 0, (d) ‘min_samples_leaf’: 3.0, (e) ‘min_samples_split’: 4.0, (f) ‘nr_estimators’:
80.0, and (g) ‘nr_max_depth’: 32.0.

Appl. Sci. 2021, 11, 10268 14 of 21

Figure 4. The loss-time graph with a best average error of random forest of −0.9810 and the finite
loss range of −0.9810, −0.9751, and −0.9805.

Table 6. Classification report of model before using random forest model.

Precision Recall f1-Score Support

0 0.991 0.993 0.992 1,348,471
1 0.967 0.955 0.961 274,823

Accuracy 0.987 1,623,294
Macro avg 0.979 0.974 0.977 1,623,294

Weighted avg 0.987 0.987 0.987 1,623,294

Table 7. Misclassification by attack category.

Misclassified Total Percent_Misclassified

Infiltration 12,252 16,193 0.756623
SQL Injection 1 9 0.111111

Brute Force–Web 4 61 0.065574
Brute Force–XSS 1 23 0.043478

DoS attacks-Slowloris 8 1099 0.007279
Benign 8820 1,348,471 0.006541

Bot 17 28,619 0.000594
DDOS attack-HOIC 22 68,601 0.000321

DDoS attacks-LOIC-HTTP 17 57,619 0.000295

The accuracy score of the random forest model, with consideration of precision and
recall as visualized in Figure 5 with an average ratio of precision and recall, was 98.10%,
and the computed confusion matrix over the true and predicted values is presented in
Figure 6, which represents the number of true positives, true negatives, false positives, and
false negatives.

This time, before applying the gradient boosting machine learning modeling technique
over the dataset, a preprocess was applied to compute the best optimal parameters of the
data as visualized in Figure 7. The performance of the gradient boosting machine model
over loss time had an average error score of −0.9826, including the finite loss range pf
−0.9827, −0.9720, and −0.9825 as presented in Figure 8. The model performed quite well,
again except for the attack category infiltration. Tables 6 and 7 cover the classification
report and the range of misclassification attack of the model before using the random forest
model, respectively.

Appl. Sci. 2021, 11, 10268 15 of 21

Figure 5. Precision-recall curve with average precision/recall score ≈ 98.10%.

Figure 6. Confusion matrix without normalization.

Appl. Sci. 2021, 11, 10268 16 of 21

Figure 7. Scatter plot of best optimal model parameter with (a) ‘border_count’: 1, (b) ‘l2_reg’: 4.8139, (c) ‘nr_iterations’:
1900.0, (d) ‘random_strength’: 5.0, and (e)’ tree_depth’: 10.0.

Figure 8. Loss-time graph with a best average error of gradient boosting machine of −0.9826 and a finite loss range of
−0.9827, −0.9720, and −0.9825.

Hyperparameter optimization for gradient boosting machine (GBM) model. Again,
the defined search space for the GBM model is as follows in Table 8.

Appl. Sci. 2021, 11, 10268 17 of 21

Table 8. Hyperparameter search space for gradient boosting machine.

Parameter Description Parameter Identifier Hyperparameter Search
Space Training

Hyperparameter Search
Space Result

Maximum number of trees (nr_iterations) Uniform integer space in the
interval of [100, 2000].

A value in the interval of
[1600, 1900] seems to perform

best.

Maximum depth of a tree (depth) Uniform integer space in the
interval of [4, 10].

The optimal value for the
maximum dept of trees is 10
in all best performing cases.
This suggests that another
round of hyperparameter
search with a higher value
might yield a better result.

L2 regularization coefficient (l2_leaf_reg) Uniform space in the interval
of [1, 10].

A value in the interval of [2, 6]
yields good results.

Number of splits for
numerical features (border_count) A choice of 128 and 254. A border count of 254 was

chosen for all the best models.

Amount of randomness used
for scoring splits (random_strength) Uniform integer space in the

interval of [0, 5].
The optimal value seems to be

in the interval of [3, 5].

The accuracy score of the gradient boosting machine model, with consideration
of the precision and recall covered in Table 9, additionally Table 10 cover the range of
misclassification attack of the model after using ensemble technique with random forest,
and as visualized in Figure 9 with an average ratio of precision and recall, was 98.27%,
and the computed confusion matrix over the true and predicted values is presented in
Figure 10, which represents the number of true positives, true negatives, false positives,
and false negatives.

Table 9. Classification report of model after applying ensemble technique with random forest.

Precision Recall f1-Score Support

0 0.991 0.993 0.992 1,348,471
1 0.964 0.957 0.961 274,823

Accuracy 0.987 1,623,294
Macro avg. 0.978 0.975 0.976 1,623,294

Weighted avg. 0.987 0.987 0.987 1,623,294

Table 10. Misclassification by attack category.

Misclassified Total Percent_Misclassified

Infiltration 11,690 16,193 0.721917
SQL Injection 1 9 0.111111

Brute Force-XSS 1 23 0.043478
Brute Force-Web 2 61 0.032787

Benign 9784 1,348,471 0.007256
DoS-Slowloris Attacks 6 1099 0.00546

Bot 35 28,619 0.001223
DDoS-LOIC-HTTP Attacks 13 57,619 0.000226

Appl. Sci. 2021, 11, 10268 18 of 21

Figure 9. Precision-recall curve with average precision/recall score ≈ 98.27%.

Figure 10. Confusion matrix without normalization.

Figure 11 presents the average response times that were taken by the classifiers
individually and with the ensemble technique as the proposed model for classifying a
single instance. From the results, it can be observed that the ensemble technique through
bagging with random forest and boosting with gradient boosting machine took the least
time to classify the instances of the CSE-CIC-IDS2018-V2 dataset.

Appl. Sci. 2021, 11, 10268 19 of 21

Figure 11. Average response times of classifiers.

The comparison results are shown in Table 11. The proposed model outperformed
the most recent functions of intuition detection trained with the CSE-CIC-IDS2018-V2
dataset, that is, random forest + gradient boosting machine, in terms of accuracy. It was
also better than the previous models: the border/router node convection model [15], the
GBM model [17,18], and the random tree + NB tree model [18].

Table 11. Comparison results of proposed model with other models.

Method Feature Selection Accuracy Rate (%) Significance Test Results

Border/router node
convection [15] No 73.88 No

GBM [17,18] No 93.64 No

Random tree [18] Yes 95.23 Yes

Proposed (RF + GBM) Yes 98.27 Yes

5. Conclusions

The research work conducted used an experimental study on an anomaly-based
intrusion detection system that is suitable for providing network security against DoS
attacks to an IoT-enabled framework. The performance evaluation was done using two
machine learning classification algorithms: random forest and gradient boosting machines.
The hyperparameter optimization technique was used to find the best optimal parameters
for the classifiers to train the models and compare their performances, respectively. The
valuated performance of both the classifiers was measured in terms of accuracy, sensitivity,
specificity, rate of false positives, and the area under the receiver operating characteristic
curve. Benchmarking of both the classifiers was performed on the CSE-CIC-IDS-2018
dataset. The performance results indicate that the gradient boosting machine ensemble
classifier performs best for binary classification, yielding a very attractive performance
accuracy of 98.27%. Whereas, even on the validation and test sets, the classification of
intrusion types was incorrectly falling for malicious network traffic. Additionally, the

Appl. Sci. 2021, 11, 10268 20 of 21

results show the trade-off between prominent metrics and response time, implying that
both can be used for building IoT-specific anomaly-based intrusion detection systems.

Author Contributions: All authors contributed equally to this work. All authors have read and
agree to the published version of the manuscript.

Funding: This work was not funded by any agency or organization.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset presented and during this work were collected by the
Canadian Institute of Cyberspace (CIC) on Amazon’s AWS LAN network. The data is publicly
available in the ‘CSE-CIC-IDS2018-V2 Dataset’ at the link: https://registry.opendata.aws/CSE-CIC-
IDS2018-V2/, accessed on 15 March 2021.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Choo, K.-K.R. The cyber threat landscape: Challenges and future research directions. Comput. Secur. 2011, 30, 719–731. [CrossRef]
2. Gaikwad, D.P.; Thool, R.C. Intrusion detection system using bagging with partial decision treebase classifier. Procedia Comput. Sci.

2015, 49, 92–98. [CrossRef]
3. Lin, W.-C.; Ke, S.-W.; Tsai, C.-F. CANN: An intrusion detection system based on combining cluster centers and nearest neighbors.

Knowl.-Based Syst. 2015, 78, 13–21. [CrossRef]
4. Tran, N.N.; Sarker, R.; Hu, J. An approach for host-based intrusion detection system design using convolutional neural network.

In Proceedings of the International Conference on Mobile Networks and Management, Melbourne, Australia, 13–15 December
2017; pp. 116–126.

5. Denning, D. An intrusion detection system. In Proceedings of the Symposium on Security and Privacy, Oakland, CA, USA, 7–9
April 1986; IEEE Computer Society Press: Los Alamitos, CA, USA, 1986; pp. 118–131.

6. Camastra, F.; Ciaramella, A.; Staiano, A. Machine learning and soft computing for ICT security: An overview of current trends.
J. Ambient Intell. Humaniz. Comput. 2013, 4, 235–247. [CrossRef]

7. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]

8. Liao, H.-J.; Lin, C.-H.R.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013,
36, 16–24. [CrossRef]

9. Modi, C.; Patel, D.; Borisaniya, B.; Patel, H.; Patel, A.; Rajarajan, M. A survey of intrusion detection techniques in cloud. J. Netw.
Comput. Appl. 2013, 36, 42–57. [CrossRef]

10. Besharati, E.; Naderan, M.; Namjoo, E. LR-HIDS: Logistic regression host-based intrusion detection system for cloud environments.
J. Ambient Intell. Humaniz. Comput. 2019, 10, 3669–3692. [CrossRef]

11. Gope, P.; Sikdar, B.; Millwood, O. A Scalable Protocol Level Approach to Prevent Machine Learning Attacks on PUF-based
Authentication Mechanisms for Internet-of-Medical-Things. IEEE Trans. Ind. Inform. 2021. [CrossRef]

12. Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-Service detection in 6LoWPAN based Internet of Things. In
Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Lyon, France, 7–9 October 2013; pp. 600–607.

13. Suricata, I.D.S. Open-Source IDS/IPS/NSM Engine. 2014. Available online: https://cybersecurity.att.com/blogs/security-essen
tials/open-source-intrusion-detection-tools-a-quick-overview (accessed on 15 October 2021).

14. Lee, T.-H.; Wen, C.-H.; Chang, L.-H.; Chiang, H.-S.; Hsieh, M.-C. A lightweight intrusion detection scheme based on energy
consumption analysis in 6LowPAN. In Advanced Technologies, Embedded and Multimedia for Human-Centric Computing; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 1205–1213.

15. Sonar, K.; Upadhyay, H. An approach to secure internet of things against DDoS. In Proceedings of the International Conference
on ICT for Sustainable Development, Ahmedabad, India, 3–4 July 2015; Springer: Singapore, 2016; pp. 367–376.

16. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked sensors. In Proceedings
of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004;
pp. 455–462.

17. Tama, B.A.; Rhee, K.-H. An in-depth experimental study of anomaly detection using gradient boosted machine. Neural Comput.
Appl. 2019, 31, 955–965. [CrossRef]

18. Primartha, R.; Tama, B.A. Anomaly detection using random forest: A performance revisited. In Proceedings of the 2017
International Conference on Data and Software Engineering (ICoDSE), Palembang, Indonesia, 1–2 November 2017; pp. 1–6.

19. Douglas, P.K.; Harris, S.; Yuille, A.; Cohen, M.S. Performance comparison of machine learning algorithms and number of
independent components used in fMRI decoding of belief vs. disbelief. Neuroimage 2011, 56, 544–553. [CrossRef] [PubMed]

https://registry.opendata.aws/CSE-CIC-IDS2018-V2/
https://registry.opendata.aws/CSE-CIC-IDS2018-V2/
http://doi.org/10.1016/j.cose.2011.08.004
http://doi.org/10.1016/j.procs.2015.04.231
http://doi.org/10.1016/j.knosys.2015.01.009
http://doi.org/10.1007/s12652-011-0073-z
http://doi.org/10.1109/COMST.2015.2494502
http://doi.org/10.1016/j.jnca.2012.09.004
http://doi.org/10.1016/j.jnca.2012.05.003
http://doi.org/10.1007/s12652-018-1093-8
http://doi.org/10.1109/TII.2021.3096048
https://cybersecurity.att.com/blogs/security-essentials/open-source-intrusion-detection-tools-a-quick-overview
https://cybersecurity.att.com/blogs/security-essentials/open-source-intrusion-detection-tools-a-quick-overview
http://doi.org/10.1007/s00521-017-3128-z
http://doi.org/10.1016/j.neuroimage.2010.11.002
http://www.ncbi.nlm.nih.gov/pubmed/21073969

Appl. Sci. 2021, 11, 10268 21 of 21

20. Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 42, 463–484. [CrossRef]

21. Misra, S.; Krishna, P.V.; Agarwal, H.; Saxena, A.; Obaidat, M.S. A learning automata based solution for preventing distributed
denial of service in internet of things. In Proceedings of the 2011 International Conference on Internet of Things and 4th
International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; pp. 114–122.

22. Li, J.; Lyu, L.; Liu, X.; Zhang, X.; Lv, X. FLEAM: A federated learning empowered architecture to mitigate DDoS in industrial IoT.
IEEE Trans. Ind. Inform. 2021. [CrossRef]

23. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
24. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
25. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
26. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
27. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic

characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018),
Funchal, Portugal, 22–24 January 2018; pp. 108–116.

28. Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural
Inf. Process. Syst. 2013, 26, 431–439.

29. Nour, M.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data
set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

30. Smirti, D.; Pujari, M.; Sun, W. A Comparative Study on Contemporary Intrusion Detection Datasets for Machine Learning
Research. In Proceedings of the 2020 IEEE International Conference on Intelligence and Security Informatics (ISI), Arlington, VA,
USA, 9–10 November 2020; pp. 1–6.

31. Mohanad, S.; Layeghy, S.; Moustafa, N.; Portmann, M. Towards a standard feature set of nids datasets. arXiv 2021,
arXiv:2101.11315.

32. Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream analysis: A survey. Inf.
Fusion 2017, 37, 132–156. [CrossRef]

33. Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier
Systems, Cagliari, Italy, 21–23 June 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15.

34. Undercofer, J. Intrusion Detection: Modeling System State to Detect and Classify Aberrant Behavior. 2004. Available online:
https://ebiquity.umbc.edu/person/html/J./Undercofer (accessed on 15 October 2021).

35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

36. Ting, K.M. Sensitivity and Specificity. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA,
USA, 2011. [CrossRef]

37. Gaba, G.S.; Kumar, G.; Kim, T.-H.; Monga, H.; Kumar, P. Secure device-to-device communications for 5g enabled internet of
things applications. Comput. Commun. 2021, 169, 114–128. [CrossRef]

38. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 32, 569–575. [CrossRef] [PubMed]

39. Gaba, G.S.; Kumar, G.; Monga, H.; Kim, T.-H.; Liyanage, M.; Kumar, P. Robust and lightweight key exchange (lke) protocol for
industry 4.0. IEEE Access 2020, 8, 132808–132824. [CrossRef]

40. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013;
pp. 115–123.

http://doi.org/10.1109/TSMCC.2011.2161285
http://doi.org/10.1109/TII.2021.3088938
http://doi.org/10.1002/widm.1249
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.inffus.2017.02.004
https://ebiquity.umbc.edu/person/html/J./Undercofer
http://doi.org/10.1007/978-0-387-30164-8_752A
http://doi.org/10.1016/j.comcom.2021.01.010
http://doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://doi.org/10.1109/ACCESS.2020.3010302

	Introduction
	Literature Review
	Machine Learning Enabled Intrusion Detection for IoT Appliances
	Intrusion Detection System
	CSE-CIC-IDS2018-V2 Dataset
	IoT-Enabled Networks

	Classification Algorithm
	Ensemble Classifiers
	Gradient Boosting Machine (GBM)
	Random Forest

	Proposed Work
	Data Preparation
	Data Integration
	Data Cleaning
	Data Transformation
	Data Normalization Utilizing Feature Scaling

	Undersampling
	Feature Selection
	Target Grouping

	Experimental Results and Discussion
	Experimental Setup
	Metrics and Method of Model Evaluation and Validation
	Hyperparameter Optimization for the Random Forest Model

	Conclusions
	References

