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Abstract: In this paper, a Lie-algebraic nonholonomic motion planning technique, originally designed
to work in a configuration space, was extended to plan a motion within a task-space resulting from
an output function considered. In both planning spaces, a generalized Campbell–Baker–Hausdorff–
Dynkin formula was utilized to transform a motion planning into an inverse kinematic task known
for serial manipulators. A complete, general-purpose Lie-algebraic algorithm is provided for a local
motion planning of nonholonomic systems with or without output functions. Similarities and
differences in motion planning within configuration and task spaces were highlighted. It appears
that motion planning in a task-space can simplify a planning task and also gives an opportunity
to optimize a motion of nonholonomic systems. Unfortunately, in this planning there is no way to
avoid working in a configuration space. The auxiliary objective of the paper is to verify, through
simulations, an impact of initial parameters on the efficiency of the planning algorithm, and to
provide some hints on how to set the parameters correctly.

Keywords: nonholonomic systems; motion planning; Lie algebraic method; configuration space;
task-space

1. Introduction

A large number of contemporary and practically important robots can be described
as nonholonomic systems. Despite different sources of nonholonomy and nonholonomic
manipulators, wheel mobile robots [1] and free-floating space robots [2] belong to this class.
Even when modeled at the kinematic level, nonholonomic systems are difficult to control
because the number of controls is smaller than the dimension of their configuration spaces.
Thus, sophisticated maneuvers have to be performed to get a desired location, clearly
exemplified by the task of parking a car (especially towing trailers). For some special
cases of nonholonomic systems (like Dubbins [3] and Reeds-Shepp cars [4] or systems in
a chain form [5]), dedicated methods were proposed to plan their motions. However, there
is a constant need to develop general purpose methods applicable to any nonholonomic
system. Two main classes of general purpose methods can be distinguished: global [6,7]
and local ones [8]. Global methods try to get a whole output trajectory at once (although in
an iterative manner), while local ones construct an output trajectory from sub-trajectories
derived from local planning. Global methods are rooted in various paradigms. Using
a linearization of a nonholonomic system along the trajectory corresponding to current
controls, Tchon and coworkers [7] reformulated a nonholonomic motion planning task into
an inverse task solved with classical methods. Jakubczyk [9] applied the Volterra series
expansion of a nonholonomic system with an output function to get highly oscillatory
controls that were able to trace a desired trajectory with an arbitrary precision. Arismendi
and coworkers [10] adapted a variant of a wave front technique to design the fast marching
square path planning method of nonholonomic motion planning.

Generally, algorithms derived from global methods are computationally involved and
very sensitive to geometric constraints due to obstacles. Consequently, they cannot be
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applied in dynamic or partially unknown environments. Local methods do not suffer from
these drawbacks.

In this paper, a Lie-algebraic local method of motion planning will be studied. There
are three main goals of the paper:

1. to extend applicability of the method to plan a motion also within a task-space, and
to provide a complete algorithm for implementing the method,

2. to show through simulations how data parameterizing the algorithm impacts its
efficiency,

3. to compare planning within a configuration and a task-space, pointing out similarities
and differences.

It is worth noticing that local and global planning tasks belong to a classic triple: geo-
metrical planning, motion planning, and control. Recently, some attempts have been made
to combine the last two tasks into one planning-control loop [11,12]. A vast majority of
motion planning algorithms are based on discretization of control/configuration spaces to
transform continuous tasks, described by differential equations and static output functions,
into a graph domain. In this discrete space, graph-searching algorithms, like RRT or its
numerous variants [13], can be used to solve the planning task.

The paper is organized as follows: In Section 2 a model of nonholonomic systems is
introduced supplemented with an output function, then a motion planning task is defined
and, finally, a Lie algebraic algorithm to solve the task is presented. In Section 3 an extensive
simulation study is provided to evaluate performance of the algorithm for various data
that impact its behavior. Then, some observations are formulated based on the simulation
results. Section 4 concludes the paper.

2. Model and Algorithm

Nonholonomic systems modeled at a kinematic level are described by the control-
affine equation [14]

q̇qq =
m

∑
i=1

gggi(qqq)ui, dim(qqq) = n > m, (1)

where Q 3 qqq is a configuration, uuu = (u1, . . . , um)T are controls, and gggi(qqq) are (smooth)
vector fields (generators) that span a null space of nonholonomic constraints. By definition,
nonholonomic systems satisfy the Lie algebra rank condition. Thus, according to the
Chow’s theorem [15], they are small time locally controllable.

In order to shorten notations, two-input systems, m = 2, will be considered with
ggg1 = XXX and ggg2 = YYY. Two input systems are the most challenging as for the systems it is
quite easy to generate difficult motion planning tasks by increasing a configuration space
dimension.

In many practical applications not all components of a configuration vector are impor-
tant (for example wheel angles of mobile robots do not impact obstacle collisions), thus
an output map is introduced

xxx = kkk(qqq), dim(xxx) = r (2)

and usually r < n.
Now, a motion planning task can be stated as follows: given an initial configuration

qqq0 and a goal point, xxx f find controls uuu(·) which, applied to the system (1), generates
an end-point of the resulting trajectory mapped with Equation (2) into the desired location
xxx f .

In Lie-algebraic methods, locally, around a current configuration qqqc, possible directions
of motion of the system (1) are described by vector fields derived from generators XXX,YYY. To
avoid redundancy, it is a common practice to take only a basis of the Lie algebra spanned by
the generators. There are at least three such bases, but probably the most frequently used
is the Ph. Hall basis. It is composed of an infinite number of Lie monomials, interpreted as
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vector fields within the scope of the control system (1). The very first elements of the basis
are given below

HHH = (XXX,YYY, [XXX,YYY], [XXX, [XXX,YYY]], [YYY, [XXX,YYY]], . . .) (3)

where [AAA, BBB] denotes a Lie bracket of Lie monomials (for vector fields [AAA, BBB] = (∂BBB/∂qqq)AAA−
(∂AAA/∂qqq)BBB). The basis is composed of generators (degree 1 Lie monomials) and higher
degree monomials derived from generators and their descendants. The system (1) is
a nonholonomic one, thus a finite (and usually small) number of initial Ph. Hall basis
elements, HHHtrunc, can be taken to satisfy the Lie algebra rank condition [15]

∀qqqc ∈ Q rank HHHtrunc(qqqc) = n. (4)

Consequently, the system (1) is a small time locally controllable and it can evolve
at any configuration in any direction. The condition (4) is quite easy to check in off-line
mode with the assistance of symbolic computation packages. However, a very demanding
problem is how to generate a motion in any direction with a small number of controls.
Fortunately, the generalized Campbell–Baker–Hausdorff–Dynkin formula [16] answers this
question constructively. It states that a configuration shift zzz(t)(qqqc) at a current configuration
qqqc, depends on controls uuu [17] as follows

zzz(t)(qqqc, uuu) =α1(t)XXX(qqqc) + α2(t)YYY(qqqc) + α3(t)[XXX,YYY](qqqc)+

+ α4(t)[XXX, [XXX,YYY]](qqqc) + α5(t)[YYY, [XXX,YYY]](qqqc) + . . . = HHHtrunc(qqqc)
Tααα(uuu),

(5)

where control-dependent coefficients ααα = (α1, α2, . . .)T pre-multiplying Lie monomials
(vector fields) are expressed as

α1(t) =
∫ t

0 u1(s1)ds1, α2(t) =
∫ t

0 u2(s1)ds1,

α3(t)= 1
2

∫ t
0

∫ s2
0 (u1(s1)u2(s2)− u2(s1)u1(s2))ds1ds2, . . .

(6)

and they become more and more complex as the integration is performed over the
k-dimensional simplex, where k is the degree of a Lie monomial the coefficient corresponds
to. It is a common practice to express controls as linear combinations of time-dependent
functions [7]

ui(t) =
Ni−1

∑
j=0

φj(t)pj
i , i = 1, . . . , m, t ∈ [0, T], (7)

where φj(t) are elements of any functional basis (polynomials, harmonic functions) and Ni
is the number of variables required to describe the i-th control. Thus, a vector ppp collects
all variables pj

i and uniquely describes controls uuu and also energy of controls. Moreover,
the shift (5) can be expressed as a function of ppp and resembles forward kinematics (but at
a velocity level when considered on a fixed time horizon)

zzz(t)(qqqc, ppp) = FFF(ppp). (8)

The shift (8) from the configuration space is mapped into the task-space, and within
this space a desired motion towards the goal xxx f can be computed using the Newton
algorithm. A complete algorithm to plan a motion of the system (1) with the output
function (2), either in a configuration or a task-space, is presented in Algorithm 1.
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Algorithm 1 nonholonomic motion planning within a task-space
Step 1. Read-in initial data:
the system (1) together with the output function (2), the initial configuration qqq0 and the
goal point xxx f , desired accuracy of reaching the goal ε, the initial value of pppc.
Step 2. Initialize empty resulting trajectory qqqres(·), and set the current configuration
qqqc ← qqq0.
Step 3. Check the stop condition: iff

‖xxx f − kkk(qqqc)‖ < ε, (9)

then stop computations and output resulting trajectory qqqres(·). Otherwise, progress with
Step 4.
Step 4. Select a parameterization of controls (7), a time horizon T, and derive mapping (8).
Step 5. At a current point in the task-space xxxc = kkk(qqqc), select the planned shift

∆xxx ← ξ(xxx f − xxxc) (10)

by setting a positive coefficient ξ.
Step 6. Using the Newton algorithm, Ref. [18] find ppp? that solves the inverse kinematic
task

∆xxx = JJJ(qqqc)FFF(ppp), (11)

where JJJ(qqq) = ∂kkk(qqq)/∂qqq is the Jacobi matrix of the mapping (2).
Step 7. Check whether the solution is acceptable:

‖xxx f − kkk(qqq?(T))‖ < ‖xxx f − xxxc‖, (12)

where qqq?(T) is the end-point of the trajectory qqq?(·) initialized at qqqc and generated by the
system (1) with controls uuu?(t), t ∈ [0, T], corresponding to the vector of parameters ppp?, cf.
Equation (7).
Step 8. If Condition (12) is satisfied, then:
1. append the trajectory qqq?(·) to the resulting trajectory qqqres(·)← qqqres(·) ∪ qqq?(·),
2. update the current configuration qqqc ← qqq?(T)
3. and go back to Step 4.
Otherwise, decrease the coefficient ξ and go to Step 5.

Comments on Algorithm 1:

• A nonholonomic motion planning in a configuration space is achieved by setting the
identity output function (2).

• A selected parameterization (7), Step 4, can vary from one iteration to another. Usually,
one or at most a few parameterizations can be exploited, and vectors α(uuu(ppp)) from
Equation (5) can be computed in an off-line mode.

• In Step 7, a minimal requirement was formulated, i.e., a new end-point of trajectory in
the task-space should be closer to the goal than it was in the previous iteration. More
restrictive requirement assumes that it should also be close enough to the planned
sub-goal xxxc + ∆xxx.

• Singularities in solving (11) result from a rank deficiency of the Jacobi matrix, derived
from the right hand side of (11)

ĴJJ(ppp) =
∂(JJJ(qqqc)FFF(ppp))

∂ppp
= JJJ(qqqc)

∂FFF(ppp)
∂ppp

. (13)

Thus, singularities may arise

1. either due to a rank deficiency of JJJ(qqqc) (they are avoidable by a small variation
of controls which results in a small shift of qqqc)
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2. or a rank deficiency of the Jacobi matrix ∂FFF(ppp)/∂ppp at the current pppc. Equivalent
to the matrix ∂α(uuu(ppp))/∂ppp, cf. Equations (5), (7), and (8) as the full rank matrix
HHHtrunc(qqqc) cannot introduce singularities at all, cf. Equation (4).

• In Step 5, the positive coefficient ξ should not be too large, as values of matrices JJJ(qqqc),
HHHtrunc(qqqc)T are computed at the current configuration qqqc and neglecting some vector
fields, while truncation HHH → HHHtrunc, is justified only locally. Its value cannot be too
small either, as many iterations might be required to complete the algorithm.

• In motion planning within a task-space with r < n, it is impossible to avoid planning
within a configuration space, as the mapping (2) is not unique in this case.

3. Simulations

In order to evaluate Algorithm 1, some tests were performed using two models of
mobile robots depicted in Figure 1. The unicycle is described by equations

q̇qq =

q̇1
q̇2
q̇3

 =

cos(q3) 0
sin(q3) 0

0 1

uuu =

cos(q3)
sin(q3)

0

u1 +

0
0
1

u2 = XXX(qqq)u1 +YYY(qqq)u2. (14)

The configuration vector qqq is composed of position (q1, q2) and orientation q3 of the
vehicle on a plane, while u1, u2 denote controls interpreted as angular and linear velocities.

The model of a kinematic car is given as

q̇qq =


L cos(q3) cos(q4) 0
L sin(q3) cos(q4) 0

sin(q4) 0
0 1

uuu =


L cos(q3) cos(q4)

L sin(q3) cos(q4)

sin(q4)

0

u1 +


0
0
0
1

u2 = XXX(qqq) u1 +YYY(qqq) u2, (15)

where configuration qqq has got an extra component q4 describing the steering wheel angle.
For simplicity, it was assumed that L = 1. Both models are nonholonomic ones because
generators XXX,YYY supplemented with the Lie bracket [XXX,YYY] for the unicycle

[XXX,YYY] =

 sin(qqq3)
− cos(qqq3)

0

, (16)

and

[XXX,YYY] =


L cos(qqq3) sin(qqq4)
L sin(qqq3) sin(qqq4)
− cos(qqq4)

0

, [XXX, [XXX,YYY]] =


−L sin(qqq3)
L cos(qqq3)

0
0

, [YYY, [XXX,YYY]] = XXX. (17)

for the kinematic car, satisfy Condition (4).
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Figure 1. The unicycle (left panel) and the kinematic car (right panel).

For both models, the position on the xy plane was selected as the output function

kkk(qqq) = (q1, q2)
T . (18)

If a robot is inscribed in a circle of sufficient radius, its orientation does not influence
the possibility of collisions with obstacles. For the kinematic car another output function
was used, coupling position on the xy plane and orientation of the vehicle

kkk(qqq) = (q1, q2, q3)
T , (19)

In practice, the orientation of the steering axle is not relevant. In order to check
the motion planning Algorithm 1 within a configuration space, the identity output function
was selected for both mobile robots.

In all tested cases, an initial configuration was set to the vector composed of zeroes only

qqq0 = 000. (20)

In the tests, a side-way motion maneuver on the xy-plane was planned for both models
and all output functions. The maneuver is challenging as it requires a motion along higher
(than generators XXX,YYY) degree vector fields. Depending on a dimension of a task-space, goal
points were selected as

xxx f = (0, δ), xxx f = (0, δ, 0), δ ∈ {0.05, 0.1, 0.2, 0.5, 0.7, 1}. (21)

Any single task was run using three parameterizations of controls. Each control was
composed of a few very first items of the orthonormal Fourier basis

u1 = p1
1ρ + p2

1

√
2ρ sin(ωt) + p3

1

√
2ρ cos(ωt),

u2 = p1
2ρ + p2

2

√
2ρ sin(ωt) + p3

2

√
2ρ cos(ωt)

(22)

u1 = p1
1ρ + p2

1

√
2ρ sin(ωt), u2 = p1

2ρ + p3
2

√
2ρ cos(ωt) (23)

u1 = p1
1ρ + p3

1

√
2ρ cos(ωt), u2 = p1

2ρ + p2
2

√
2ρ sin(ωt) (24)

where ρ =
√

1/T and ω = 2π/T. Later on, it was assumed that T = 1. The total energy
expenditure on controls is equal to

energy(ppp) =
2

∑
i=1

#Ni

∑
j=1

(pj
i)

2, (25)

where #Ni is the number of the Fourier basis elements contributing to the i-th control. All
tasks, with the data collected in Table 1, were solved using Algorithm 1. In Step 6 of the
algorithm, two versions of the Newton algorithm were tested: the basic one and with
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the energy (25) optimization within the null-space of the Jacobi matrix (13). In order to
obtain statistically significant results, Step 6 was repeated 100 times for each task, with
initial values of ppp varied (each component of ppp was generated randomly with the uniform
distribution on the interval [−1, 1]). Programs used in simulations were written in Wolfram
Mathematica, version 11.3, and run on a computer with Intel® Core™ i5-8400 CPU and
24 GiB RAM memory. In Figures 2 and 3, some characteristic paths (projected on the
xy-plane and with a target point marked with an asterisk) were visualized for the unicycle
and the kinematic car, respectively.

Task 1
(a) the shortest (b) the longest (c) the most accurate

 0

 0.5

-1 -0.5  0  0.5x

y

 0

 0.5

-1 -0.5  0  0.5x

y

 0

 0.5

-1 -0.5  0  0.5x

y

(d) the smallest energy (e) the biggest energy (f) the most accurate

 0

 0.5

-1 -0.5  0  0.5x

y

 0

 0.5

-1 -0.5  0  0.5x

y

 0

 0.5

-1 -0.5  0  0.5x

y

Task 2
(a) the shortest (b) the longest (c) the most accurate

 0

 0.5

-0.5  0  0.5x

y

 0

 0.5
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y
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 0.5

-0.5  0  0.5x

y

(d) the smallest energy (e) the biggest energy (f) the most accurate
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-0.5  0  0.5x

y

 0

 0.5

-0.5  0  0.5x

y

 0
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Figure 2. Cont.



Appl. Sci. 2021, 11, 10245 8 of 16

Task 3
(a) the shortest (b) the longest (c) the most accurate

 0
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-0.4 -0.2  0  0.2  0.4x

y

 0

 0.2

-0.4 -0.2  0  0.2  0.4x
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y

Figure 2. xy-plane projections of some paths generated with basic (a–c) and null-space optimization
(d–f) versions of the Newton algorithm run for the unicycle robot.

Task 4
(a) the shortest (b) the longest (c) the most accurate
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(d) the smallest energy (e) the biggest energy (f) the most accurate
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Task 5
(a) the shortest (b) the longest (c) the most accurate
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Figure 3. Cont.
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Task 6
(a) the shortest (b) the longest (c) the most accurate
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(d) the smallest energy (e) the biggest energy (f) the most accurate
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 0.1
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Figure 3. xy-plane projections of some paths generated with basic (a–c) and null-space optimization
(d–f) versions of the Newton algorithm run for the kinematic car.

Table 1. Data for tasks.

Task No. Model Output Function Controls δ

1 unicycle identity Equation (22) 0.5
2 unicycle Equation (18) Equation (22) 0.5
3 unicycle Equation (18) Equation (24) 0.2

4 kinematic car identity Equation (22) 0.1
5 kinematic car Equation (18) Equation (22) 0.05
6 kinematic car Equation (19) Equation (23) 0.1

Some numeric data describing the quality of solutions were collected in Tables 2 and 3.
The abbreviations used:

b.a. —the best end-point accuracy obtained;

a. —how many generated paths were accurate enough,

f. —the percentage of the Newton algorithm runs which caused numerical problems due
to an inversion of near-singularity matrices,

ctime —the average computation time. It is worth noticing that the time includes all stages
of running each task, i.e., a symbolic generation of the Ph. Hall basis, kinematic-like
mapping, and Jacobians and, finally, a truly numeric trajectory generation.

A path is considered to be accurate if an end-point of generated trajectory xxx f real in the
task-space is close enough to the target point xxx f , i.e.,

‖xxx f − xxx f real‖ < η‖xxx f − xxx0‖, (26)

where xxx0 = kkk(qqq0)—the starting point and η— an accuracy coefficient. In Tables 2 and 3,
data were collected for η = 0.3. The most accurate path satisfies

min ‖xxx f − xxx f real‖. (27)

In Tables 4 and 5, statistical data (length and energy ranges for paths satisfying
Condition (26)) were collected. The case when no path meets Condition (26) is marked
with a dash (or not included at all when both versions of the Newton algorithm failed).
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Table 2. Accuracy, numeric failures, and computing time for the unicycle tasks.

The Newton Algorithm

Basic Null-Space Optimization

Output Control
δ b.a. a. f. Ctime b.a. a. f. Ctime

Function Param. [%] [%] [s] [%] [%] [s]

ident.

(22)

0.05 0.000 100 0 1.7 0.001 100 0 1.7
0.1 0.001 100 0 1.6 0.001 100 0 1.6
0.2 0.002 98 0 1.5 0.003 100 0 1.5
0.5 0.009 49 0 1.5 0.011 62 0 1.5
0.7 0.017 43 0 1.4 0.020 42 0 1.4
1 0.037 29 0 1.2 0.040 31 0 1.3

(23)

0.05 0.000 100 0 0.6 0.000 100 0 0.6
0.1 0.000 100 0 0.5 0.001 100 0 0.5
0.2 0.000 100 0 0.4 0.002 100 0 0.5
0.5 0.006 100 0 0.4 0.010 100 0 0.5
0.7 0.012 100 0 0.4 0.020 100 0 0.4
1 0.028 100 0 0.4 0.040 100 0 0.4

(24)

0.05 0.002 100 0 0.5 0.005 100 0 0.6
0.1 0.010 99 0 0.5 0.017 100 0 0.5
0.2 0.032 82 0 0.4 0.049 100 0 0.6
0.5 0.157 0 0 0.4 0.195 0 0 0.5
0.7 0.262 0 0 0.4 0.322 0 0 0.5
1 0.454 0 0 0.4 0.546 0 0 0.4

(18)

(22)

0.05 0.001 6 5 42.3 0.006 1 0 42.4
0.1 0.004 7 3 43.1 0.018 1 0 43.2
0.2 0.007 4 0 38.5 0.051 1 1 38.5
0.5 0.136 1 0 42.7 0.172 0 0 42.8
0.7 0.155 2 2 40.3 0.257 0 0 40.3
1 0.328 0 3 39.2 0.381 0 0 39.2

(23)

0.05 0.005 10 15 13.7 0.042 0 0 13.8
0.1 0.016 2 20 13.0 0.083 0 1 13.2
0.2 0.095 0 21 13.0 0.164 0 0 13.4
0.5 0.388 0 5 12.6 0.406 0 1 12.8
0.7 0.546 0 3 12.4 0.567 0 2 12.5
1 0.783 0 2 12.6 0.809 0 1 12.7

(24)

0.05 0.009 7 11 15.6 0.005 68 2 16.6
0.1 0.033 0 13 15.0 0.017 62 4 15.2
0.2 0.069 0 3 15.0 0.037 43 7 15.1
0.5 0.103 1 5 15.3 0.207 0 8 15.4
0.7 0.296 0 2 15.0 0.329 0 17 15.1
1 0.553 0 4 14.7 0.539 0 11 14.8
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Table 3. Accuracy, numeric failures, and computing time for the kinematic car tasks.

The Newton Algorithm

Basic Null-Space Optimization

Output Control
δ b.a. a. f. Ctime b.a. a. f. Ctime

Function Param. [%] [%] [s] [%] [%] [s]

ident.

(22)

0.05 0.001 8 14 31.8 0.001 6 8 32.4

0.1 0.021 1 18 30.8 0.004 9 8 31.5

0.2 0.077 0 18 30.5 0.022 3 9 31.3

0.5 0.017 3 14 28.3 0.005 7 4 29.4

0.7 0.292 0 19 30.6 0.104 4 3 31.5

1 0.446 0 25 30.6 0.030 7 4 31.7

(23)

0.05 0.001 7 0 10.0 0.001 12 3 10.4

0.1 0.001 4 8 9.2 0.001 12 31 9.5

0.2 0.244 0 10 9.5 0.000 11 27 9.9

0.5 0.507 0 22 8.4 0.003 7 40 8.8

0.7 0.679 0 23 10.0 0.011 7 36 10.3

1 0.940 0 34 10.0 0.015 7 35 10.5

(24)

0.05 0.001 47 53 12.0 0.001 48 52 12.8

0.1 0.001 52 48 11.1 0.001 53 47 12.3

0.2 — 0 100 — 0.000 46 54 14.7

0.5 — 0 100 — 0.002 40 60 15.0

0.7 — 0 100 — 0.003 36 64 14.8

1 — 0 100 — 0.008 42 58 14.1

(18)

(22)

0.05 0.001 6 5 42.3 0.006 1 0 42.4

0.1 0.004 7 3 43.1 0.018 1 0 43.2

0.2 0.007 4 0 38.5 0.051 1 1 38.5

0.5 0.136 1 0 42.7 0.172 0 0 42.8

0.7 0.155 2 2 40.3 0.257 0 0 40.3

1 0.328 0 3 39.2 0.381 0 0 39.2

(23)

0.05 0.005 10 15 13.7 0.042 0 0 13.8

0.1 0.016 2 20 13.0 0.083 0 1 13.2

0.2 0.095 0 21 13.0 0.164 0 0 13.4

0.5 0.388 0 5 12.6 0.406 0 1 12.8

0.7 0.546 0 3 12.4 0.567 0 2 12.5

1 0.783 0 2 12.6 0.809 0 1 12.7

(24)

0.05 0.009 7 11 15.6 0.005 68 2 16.6

0.1 0.033 0 13 15.0 0.017 62 4 15.2

0.2 0.069 0 3 15.0 0.037 43 7 15.1

0.5 0.103 1 5 15.3 0.207 0 8 15.4

0.7 0.296 0 2 15.0 0.329 0 17 15.1

1 0.553 0 4 14.7 0.539 0 11 14.8
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Table 3. Cont.

The Newton Algorithm

Basic Null-Space Optimization

Output Control
δ b.a. a. f. Ctime b.a. a. f. Ctime

Function Param. [%] [%] [s] [%] [%] [s]

(19)

(22)

0.05 0.002 58 7 43.4 0.005 94 0 43.5

0.1 0.005 53 5 43.2 0.018 93 1 43.3

0.2 0.015 32 4 43.2 0.052 63 3 43.3

0.5 0.070 30 1 42.2 0.175 0 1 42.3

0.7 0.142 17 1 42.4 0.260 0 0 42.5

1 0.210 6 2 43.0 0.384 0 0 43.2

(23)

0.05 0.007 24 0 13.9 0.007 29 0 14.0

0.1 0.024 19 0 13.8 0.024 28 0 13.9

0.2 0.073 0 0 13.7 0.074 0 0 13.8

0.5 0.303 0 0 13.5 0.304 0 1 13.6

0.7 0.496 0 2 13.7 0.496 0 0 13.8

1 0.788 0 0 13.4 0.815 0 0 13.4

(24)

0.05 0.005 46 1 16.5 0.005 59 0 17.1

0.1 0.020 10 0 15.1 0.019 61 0 15.2

0.2 0.074 0 0 14.2 0.056 63 1 14.2

0.5 0.228 0 0 13.9 0.208 0 0 13.9

0.7 0.349 0 0 13.7 0.330 0 0 13.8

1 0.555 0 0 13.7 0.540 0 3 13.8

Table 4. Path length and energy of motion of the unicycle.

The Newton Algorithm

Output Control
δ

Basic Null-Space Optimization

Function Param. Length Energy Length Energy

ident.

(22)

0.05 0.62÷ 2.63 0.27÷ 1.24 0.62÷ 0.69 0.42÷ 0.54
0.1 1.26÷ 3.02 0.51÷ 1.35 1.24÷ 1.25 0.71÷ 0.71
0.2 2.52÷ 3.95 0.79÷ 1.68 2.50÷ 2.51 1.01÷ 1.01
0.5 6.30÷ 7.55 1.29÷ 2.08 6.27÷ 6.28 1.59÷ 1.60
0.7 8.80÷ 9.70 1.57÷ 2.31 8.78÷ 8.79 1.89÷ 1.89
1 12.60÷ 13.58 2.14÷ 2.73 12.55÷ 12.55 2.26÷ 2.26

(23)

0.05 0.62÷ 1.66 0.23÷ 1.14 0.62÷ 0.63 0.47÷ 0.51
0.1 1.26÷ 2.67 0.36÷ 1.23 1.24÷ 1.26 0.71÷ 0.71
0.2 2.51÷ 3.86 0.61÷ 1.59 2.50÷ 2.51 1.01÷ 1.01
0.5 6.28÷ 7.26 1.22÷ 2.10 6.27÷ 6.28 1.59÷ 1.60
0.7 8.80÷ 9.75 1.50÷ 2.35 8.78÷ 8.79 1.89÷ 1.89
1 12.57÷ 13.61 1.84÷ 2.69 12.55÷ 12.56 2.26÷ 2.26

(24)
0.05 0.62÷ 2.92 0.23÷ 1.53 0.62÷ 0.63 0.50÷ 0.50
0.1 1.25÷ 2.27 0.43÷ 1.30 1.24÷ 1.26 0.71÷ 0.71
0.2 2.51÷ 3.67 0.84÷ 1.60 2.50÷ 2.51 1.01÷ 1.01
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Table 4. Cont.

The Newton Algorithm

Output Control
δ

Basic Null-Space Optimization

Function Param. Length Energy Length Energy

(18)

(22)

0.05 0.41÷ 3.03 0.18÷ 1.04 0.36÷ 0.62 0.35÷ 0.50
0.1 0.76÷ 3.01 0.36÷ 1.18 0.72÷ 1.28 0.50÷ 0.70
0.2 1.65÷ 4.07 0.60÷ 1.27 1.83÷ 1.99 0.86÷ 0.90
0.5 4.35÷ 6.28 1.21÷ 1.63 4.80÷ 4.80 1.39÷ 1.39
0.7 6.45÷ 9.79 1.40÷ 1.88 — —
1 9.00÷ 13.46 1.72÷ 2.23 — —

(23)

0.05 0.38÷ 1.91 0.18÷ 0.90 0.36÷ 0.41 0.34÷ 0.41
0.1 0.73÷ 2.07 0.33÷ 0.91 0.72÷ 0.73 0.54÷ 0.54
0.2 1.51÷ 2.89 0.61÷ 0.98 — —
0.5 4.31÷ 5.12 1.13÷ 1.30 — —
0.7 6.51÷ 6.78 1.44÷ 1.47 — —

(24)

0.05 0.63÷ 2.18 0.22÷ 1.13 0.62÷ 0.67 0.48÷ 0.60
0.1 1.26÷ 2.88 0.45÷ 1.39 1.24÷ 1.28 0.68÷ 0.71
0.2 2.52÷ 4.33 0.65÷ 1.42 2.50÷ 2.51 1.01÷ 1.01
0.5 6.37÷ 7.91 1.26÷ 1.94 — —
0.7 9.04÷ 10.42 1.56÷ 2.32 — —
1 12.88÷ 14.18 1.90÷ 2.65 — —

Table 5. Path length and energy of motion for the kinematic car.

The Newton Algorithm

Output Control
δ

Basic Null-Space Optimization

Function Param. Length Energy Length Energy

ident.

(22)

0.05 6912 ÷ 49,083 74÷ 199 5166÷ 5392 64÷ 66
0.1 18,281 ÷ 18,281 121÷ 121 9788÷ 10,735 89÷ 93
0.2 — — 18,057 ÷ 19,637 120÷ 126
0.5 44,864 ÷ 135,750 190 ÷ 331 41,005 ÷ 45,333 182 ÷ 191
0.7 — — 59,707 ÷ 75,423 219 ÷ 247
1 — — 82,748 ÷ 87,747 258 ÷ 266

(23)

0.05 21,332 ÷ 45,418 131 ÷ 191 4049 ÷ 24,218 57 ÷ 140
0.1 76,600 ÷ 79,107 249 ÷ 253 8310 ÷ 22,968 82 ÷ 136
0.2 — — 18,926 ÷ 137,973 123 ÷ 334
0.5 — — 40,082 ÷ 162,380 180 ÷ 362
0.7 — — 55,316 ÷ 113,002 211 ÷ 302
1 — — 80,542 ÷ 197,181 255 ÷ 399

(24)

0.05 21,146 ÷ 123,282 130 ÷ 316 4020 ÷ 86,003 57 ÷ 264
0.1 86,087 ÷ 163,986 264 ÷ 364 8229 ÷ 105,744 81 ÷ 292
0.2 — — 17,406 ÷ 176,427 118 ÷ 378
0.5 — — 54,373 ÷ 142,871 209 ÷ 340
0.7 — — 76,363 ÷ 211,192 248 ÷ 413
1 — — 106,666 ÷ 219,503 294 ÷ 421

(18)

(22)

0.05 2.63 ÷ 5.96 0.94 ÷ 1.70 5.28 ÷ 5.28 1.40 ÷ 1.40
0.1 4.43 ÷ 10.33 1.20 ÷ 1.61 9.00 ÷ 9.00 1.71 ÷ 1.71
0.2 8.17 ÷ 17.87 1.55 ÷ 1.93 15.87 ÷ 15.87 2.11 ÷ 2.11
0.5 37.16 ÷ 37.16 2.55 ÷ 2.55 — —
0.7 39.00 ÷ 49.05 1.08 ÷ 2.93 — —

(23) 0.05 2.20 ÷ 3.39 0.88 ÷ 1.09 — —
0.1 4.19 ÷ 4.80 1.07 ÷ 1.12 — —

(24)

0.05 5.31 ÷ 5.65 1.10 ÷ 1.34 5.22 ÷ 5.29 1.40 ÷ 1.40
0.1 — — 8.95 ÷ 9.01 1.70 ÷ 1.71
0.2 — — 15.90 ÷ 15.94 2.11 ÷ 2.19
0.5 35.86 ÷ 35.86 3.19 ÷ 3.19 — —
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Table 5. Cont.

The Newton Algorithm

Output Control
δ

Basic Null-Space Optimization

Function Param. Length Energy Length Energy

(19)

(22)

0.05 5.38 ÷ 13.11 0.98 ÷ 2.50 5.23 ÷ 6.80 1.40 ÷ 1.73
0.1 9.44 ÷ 27.03 1.35 ÷ 3.79 8.95 ÷ 10.80 1.70 ÷ 2.04
0.2 16.93 ÷ 29.52 1.71 ÷ 3.57 15.83 ÷ 15.87 2.11 ÷ 2.11
0.5 36.59 ÷ 54.22 2.22 ÷ 3.36 — —
0.7 49.38 ÷ 57.04 2.51 ÷ 3.03 — —
1 66.52 ÷ 76.19 2.92 ÷ 3.62 — —

(23) 0.05 6.77 ÷ 7.24 1.43 ÷ 1.95 6.75 ÷ 6.80 1.72 ÷ 1.73
0.1 10.81 ÷ 11.14 1.95 ÷ 2.33 10.73 ÷ 10.79 2.04 ÷ 2.04

(24)
0.05 5.30 ÷ 5.93 1.01 ÷ 1.62 5.22 ÷ 5.29 1.40 ÷ 1.41
0.1 9.04 ÷ 9.36 1.40 ÷ 1.68 8.96 ÷ 9.01 1.70 ÷ 1.71
0.2 — — 15.90 ÷ 15.94 2.12 ÷ 2.12

Based on results of the tests, some observations can be formulated:

1. Length and energy of resulting paths strongly depend on initial values of pppc, espe-
cially when the basic Newton algorithm is used. The Newton algorithm, being local
and iterative, has to generate trajectory-dependent results (the next iteration output
depends on the output of the current iteration) and it tends to get into a desired loca-
tion as fast as possible. It may happen that the basic algorithm provides better results
than the optimized one. However, a smaller variance of results was observed in the
energy-optimized version. In this case, the search space is searched more thoroughly.

2. Trajectories generated with the optimized version of the Newton algorithm usually
form a few clusters corresponding to local minima. This feature was not observed in
the basic algorithm, as trajectories are not constrained by the energy minimization.

3. Although the null-space optimization Newton algorithm does not necessarily guaran-
tee the best accuracy, still much more often it promptly reaches the target.

4. The failure ratio, cf. Equation (26), is much bigger for non-redundant parameteriza-
tions. What is interesting, in some tasks, parameterizations with the same number of
parameters, cf. (23) and (24), generate significantly different results. Sometimes a task
is solvable in one parameterization, while it is not in the other.

5. The optimization within the null space significantly increases computational costs. In
order to decrease the costs, this version of the Newton algorithm might be run after
the target point was reached using the basic algorithm.

6. For the unicycle robot and the identity output function, the quality of the solutions
was generally better than that for tasks with smaller dimensional task-spaces, likely
due to simplicity of the model and a small number of local minima. However, the
length of a path and an energy of motion is smaller for tasks with low-dimensional
output functions as it is less restricted.

7. Obviously, the higher dimensional output space is, the more difficult task is generated.
Additionally, a high redundancy in a parameter space is more computationally costly,
but gives more flexibility as well. Thus, a compromise between flexibility and costs
has to be found.

8. Computational costs are smaller for the identity output function than for other output
functions, as there is no need to transfer data between configuration and task spaces.

9. Short length steps, characterized by small values of δ, are easier to control.
10. There are a few sources of inaccuracies in motion planning using Lie-algebraic meth-

ods: the truncation of the Lie series (5), evaluation of vector fields at qc although
a trajectory surrounds the point (quite well visible for long-range motions) numeric
properties of the Newton algorithm. All of them can be controlled by the right choice
of parameters.
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11. A planning accuracy varies substantially with the current configuration qc, as vector
fields in the Lie-algebraic methods are evaluated at the point, cf. Equation (5), and
vector fields exhibit different variability around different qqqc.

12. In almost all xy-projection plots one can notice characteristic cusps, which are typical
in Lie-algebraic motion planning. At a close vicinity of a cusp a tangent line to
the trajectory remains almost the same, while direction of motion is changed. It means
that due to particular values of controls and generators, some components of velocity
q̇ in Equation (1) change their signs while passing through zero. An illustrative
example of such behavior can be constructed by setting: XXX long, YYY short, u2 small, and
u1 control passing though zero. Therefore, one can expect that the number of cusps
strongly and positively correlates with frequencies of controls. For mobile robots
tested the explanation is even simpler, as the cusps result from linear velocity sign
changes.

13. Many trajectory cusps result in a zigzag motion, which is especially useful in obstacle-
cluttered environments as the volume of maneuvers can be controlled and kept small.
However, it is also visible that generating a relatively short motion along high degree
vector fields requires a relatively long path to follow.

14. Results for the kinematic car are the most interesting, especially for the identity output
function. In this case, a hard to meet condition q4 = 0 forces extensive movement.
This condition is particularly difficult to satisfy for non-redundant parameterizations.
Therefore, in some sub-figures of Task 4, cf. Figure 3, scales of axes were extended to
present the whole paths. Nevertheless, the point xxx f real (cf. Figure 3 b,c,e,f) is close to
the desired point xxx f as required.

15. It should be noted that planning a motion of the kinematic car is qualitatively more
difficult than of the unicycle, as a high degree (equal to 3) of vector fields have to be
involved, comparing to degree 2 for the unicycle, cf. (16), (17).

16. It may look strange that in Task 6, cf. Figure 3e, the projected path with the biggest en-
ergy is relatively short. In this case, the major contribution to the energy consumption
was caused by control uuu2, responsible for reorientation of the robot.

4. Conclusions

In this paper, the Lie-algebraic method of motion planning for nonholonomic systems,
originally designed to plan within the configuration space, has been extended to also work
in a task-space. There are some advantages of planning within the task-space:

• a smaller than the configuration space dimension either increases redundancy and
facilitates optimizing a motion or allows to decrease the number of parameters
of controls,

• it allows to define and solve many practical tasks, especially in obstacle-cluttered
environments when some components of the configuration vector are not important.

However, there are also some disadvantages:

• a new source of singularities introduced by the output mapping,
• the impossibility to plan only within the task-space, without referring explicitly to

the configuration space (usually the task-space dimension is smaller than the configu-
ration space dimension, thus no unique mapping between the two spaces exists).

Some general observations based on simulation results:

• Depending on the planning purpose, the Newton algorithm, extensively used in the
proposed algorithm, can be applied with or without optimization. The first version
(low computational costs) should be used for tasks with no extra requirements or as a
first try solution.

• A small redundancy in setting the search space size (= dim(ppp)) is advised not to
cause a significant increase of computational costs, while preserving flexibility and
solvability of planning tasks.
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• An initial value of the parameter vector ppp highly impacts solvability of the planning
task and also the resulting trajectory shape. Therefore, the multi-start technique is
recommended, especially when planning is performed in the off-line mode.

Our future research will concentrate on applications of the Lie-algebraic method in
difficult environments (narrow passages, non-convex obstacles) in the task-space. In such
environments, the planning should be performed through selection of sub-goals on the
way to the target position. The main difficulty is the sub-goal selection is caused by the fact
that nonholonomic systems are not governed by the Euclidean geometry, but rather the
sub-Riemannian one [19]. The Lie-algebraic method is local and general-purpose, thus it is
particularly well suited for solving tasks in partially known or dynamic environments.
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