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Abstract: The ‘Every Earthquake a Precursor According to Scale’ (EEPAS) medium-term earthquake
forecasting model is based on the precursory scale increase (Ψ) phenomenon and associated scaling
relations, in which the precursor magnitude MP is predictive of the mainshock magnitude Mm,
precursor time TP and precursory area AP. In early studies of Ψ, a relatively low correlation between
TP and AP suggested the possibility of a trade-off between time and area as a second-order effect.
Here, we investigate the trade-off by means of the EEPAS model. Existing versions of EEPAS in New
Zealand and California forecast target earthquakes of magnitudes M > 4.95 from input catalogues
with M > 2.95. We systematically vary one parameter each from the EEPAS distributions for time
and location, thereby varying the temporal and spatial scales of these distributions by two orders
of magnitude. As one of these parameters is varied, the other is refitted to a 20-year period of each
catalogue. The resulting curves of the temporal scaling factor against the spatial scaling factor are
consistent with an even trade-off between time and area, given the limited temporal and spatial
extent of the input catalogue. Hybrid models are formed by mixing several EEPAS models, with
parameter sets chosen from points on the trade-off line. These are tested against the original fitted
EEPAS models on a subsequent period of the New Zealand catalogue. The resulting information
gains suggest that the space–time trade-off can be exploited to improve forecasting.

Keywords: earthquake forecasting; precursors; statistical seismology; earthquake likelihood models;
seismicity patterns; New Zealand; California

1. Introduction

Medium-term earthquake forecasting with time-varying models is becoming increas-
ingly important for operational earthquake forecasting and the development of seismic
hazard models. For example, the New Zealand medium-term forecast model has end
users interested in time-varying earthquake hazards and risk, including the land use
planning and building sector, central and local government agencies and the insurance
industry [1–3].

Empirical observations of precursory seismicity patterns have an important role in
aiding the development of earthquake forecasting models [4–10]. One such pattern is the
precursory scale increase (Ψ) phenomenon, which is an increase in the magnitude and rate
of occurrence of small earthquakes [11,12]. Individual examples of Ψ were identified by
examining the seismicity in arbitrary frames of space and time preceding the occurrence
of a major earthquake, such as in Figure 1 for the 2014 Napa, California earthquake.
A magnitude versus time plot (Figure 1b) and a cumulative magnitude anomaly (Cumag)
plot (Figure 1c) were used to identify the onset of precursory seismicity [12]. The onset is
marked by the minimum of the Cumag plot. The precursor time TP is then found as the
time between the onset and origin time of the major earthquake. The space–time frame
was chosen to informally maximize the increase in magnitude and seismicity rate at the
time of the onset. Each example of Ψ provided a value of the mainshock magnitude Mm,
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precursory magnitude MP, precursor time TP and precursory area AP (Figure 1c), within
which the precursors, major earthquake and aftershocks all occurred.

Figure 1. Identification of Ψ phenomenon for the August 2014 M6.0 South Napa, California earthquake. (a) The precursory
area AP (dashed rectangle) with the epicenters of the precursory seismicity, mainshocks and aftershocks. (b) Magnitude
versus time of prior and precursory earthquakes. Dashed lines show the precursory increase in magnitude level. Mm is the
main shock magnitude, and MP is the precursor magnitude. (c) Changes in the cumulative magnitude anomaly (Cumag)
over time; see [12] for the definition. Dashed lines show the precursory increase in the seismicity rate in 1998. The protractor
translates the Cumag slope into the seismicity rate in magnitude units per year (M.U. yr−1). TP is the precursor time.

From the combined identifications of Ψ from four well-catalogued regions, it was found
that Mm, MP, TP and AP were all positively correlated [12]. In particular, three scaling
relations (Figure 2) allowed Mm, TP and AP to be predicted from MP, defined as the average
magnitude of the three largest precursory earthquakes. These three predictive relations
became the basis for the ‘Every Earthquake a Precursor According to Scale’ (EEPAS) medium-
term earthquake forecasting model [13].

Although Mm, MP, TP and AP were all positively correlated, AP and TP were less
correlated than the other pairs of variables, as shown by the low value of the coefficient
of determination R2 in Figure 3a compared with those in Figure 2a–c. In Figure 2, we
highlighted the earthquakes for which AP was high and TP was low or vice versa relative
to the fitted relations, a condition that is not uncommon. The same earthquakes are
highlighted in Figure 3. Remarkably, the product of TP and AP was highly correlated with
Mm, as seen in Figure 3b, with R2 being higher than any of those values in Figure 2. These
features pointed to a trade-off between AP and TP. However, the origin of this trade-off was
not clear. Could it have a physical origin related to, say, the tectonic setting or seismicity
rate [14–16], or could it be a statistical side-effect? For example, in this case, if log TP and
log AP were independently correlated with Mm, then their sum would be correlated even
better, such as in Figure 3b.
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Figure 2. Predictive scaling relations and 95% tolerance limits derived from 47 examples of ψ from four regional earthquake
catalogues, taken after [12]. (a) Mainshock magnitude Mm versus precursor magnitude MP (coefficient of determination
R2 = 71%). (b) Precursor time TP versus MP (R2 = 65%). (c) Precursory area AP versus MP (R2 = 48%). Enlarged and colored
points are for 1990 Weber (blue square), 1968 Puysegur Bank (red square), 1969 E. Hokkaido (blue circle), 2000 W. Tottori
(red circle), 1948 Karpathos (blue triangle), 1983 Kefallonia (red triangle), 1966 Colorado D. (blue cross) and 1980 S. Cascadia
(red cross).

Figure 3. Scaling relations and 95% tolerance limits derived from 47 examples of Ψ from four regional earthquake catalogues,
taken after [12]. (a) Precursor time TP versus precursory area AP (R2 = 34%). (b) Product of AP and TP versus mainshock
magnitude Mm (R2 = 75%). Symbols are enlarged and colored as in Figure 2.

A study of the Ψ phenomenon in synthetic earthquake catalogues shed new light on
the matter [17]. It was found that, in a synthetic catalogue generated by the earthquake
simulator RSQSim [18,19], two or more equally plausible identifications of Ψ could be
found for individual mainshocks. These identifications presented very different TP and AP
values, consistent with a hypothetical space–time trade-off.

The evidence for the trade-off, whatever its origin, can also be strengthened through
applications of the EEPAS model. One example was the EEPAS model fitted with different
fixed lead times [20]. The lead time is defined as the time interval between the start of
the catalogue and the origin time of a target earthquake. It was found that as the lead
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time increases, the mean of the EEPAS time distribution increases, and the variance of the
location distribution decreases. The time and spatial scales involved varied by about a
factor of two. Here, we aim to further understand the space–time trade-off by fitting the
EEPAS time distribution with a fixed spatial distribution and the spatial distribution with a
fixed time distribution.

In the next section, we review the defining equations of the EEPAS model and then
describe the method and data for the present study. Our results show how the space–
time trade-off is revealed through constrained fitting of the EEPAS model to the New
Zealand and California catalogues. Finally, we indicate by way of a simple New Zealand
example how the space–time trade-off might be exploited for improving the performance
of medium-term earthquake forecasts.

2. EEPAS Forecasting Model

Although inspired by the Ψ predictive scaling relations (Figure 2), the EEPAS model
does not involve the identification of precursory seismicity for individual major earth-
quakes. It treats every earthquake as a potential precursor of future larger earthquakes
to follow in the medium term [13]. Depending on the magnitude, this period can range
from months to decades. The model has a background component and a time-varying
component. The background component is a smoothed seismicity model, with the spatial
distribution depending on the proximity to the location of past earthquakes. It is, in prin-
ciple, time-invariant, but it is updated at the origin time of each contributing earthquake.
The time-varying component, based on the Ψ predictive relations, is obtained by summing
the contributions from all past earthquakes after a starting time t0 and exceeding an input
magnitude threshold m0. The expected earthquake occurrence rate density is a function of
the time, magnitude and location denoted by λ. For times t > t0, magnitudes m exceeding
a target threshold mc and locations (x,y) within a region of surveillance R, the total rate
density takes the following form:

λ(t, m, x, y) = µλ0(t, m, x, y) + ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y) (1)

where µ is an adjustable mixing parameter representing the proportion of the forecast
contributed by the background model component; λ0 is the rate density of the background
model; η is a normalizing function and ti and mi are the origin time and magnitude of the
ith contributing earthquake, respectively. The contributing earthquakes come from a larger
search region, which needs to be big enough to include all earthquakes that might affect
the rate density within R. The contribution from the ith earthquake to the rate density is
given by

λi(t, m, x, y) = wi f (t|ti, mi)g(m|mi)h(x, y|xi, yi, mi), (2)

in which wi is a weighting factor and f, g and h are the densities of probability distributions
which are based on the Ψ predictive scaling relations (Figure 2). These distributions depend
on the magnitude mi of the contributing earthquake. Following the notation in [20], the
magnitude density g is a normal density of the following form:

g(m|mi) =
1

σM
√

2π
exp

[
−1

2

(
m− aM − bMmi

σM

)2
]

, (3)

in which aM, bM and σM are adjustable parameters. The time density f is a lognormal
density of the following form:

f (t|ti, mi) =
H(t− ti)

(t− ti)σT ln(10)
√

2π
exp

[
−1

2

(
log(t− ti)− aT − bTmi

σT

)2
]

, (4)

in which H(s) = 1 if s > 0 and is 0 otherwise and aT , bT and σT are adjustable parameters.
If all other parameters are fixed, the mean of the time distribution is proportional to 10aT .
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Therefore, 10aT can be regarded as a temporal scaling factor. The location density h is a
bivariate normal density of the following form:

h(x, y|xi, yi, mi) =
1

2πσ2
A10bAmi

exp

[
− (x− xi)

2 + (y− yi)
2

2σ2
A10bAmi

]
, (5)

in which σA and bA are adjustable parameters. If all other parameters are fixed, the area
occupied by the location distribution is proportional to σ2

A. Therefore, σ2
A can be regarded

as a spatial scaling factor.
The adjustable parameters are fitted to maximize the log likelihood of the target

earthquakes in the region of surveillance over a fitting period (ts, t f ) and a magnitude range
(mc, mmax). If the target earthquakes have coordinates

[(
tij, mij, xij, yij

)
, j = 1, · · · , N

]
,

the space–time point process log likelihood [21,22] is given by

ln L =
N

∑
j=1

ln λ(tij, mij, xij, yij) +
x

R

∫ mmax

mc

∫ t f

ts
λ(t, m, x, y)dtdmdxdy. (6)

Information gain statistics compare the performance of different models with the same
data [23]. For models with the same number of fitted parameters or for testing pre-fitted
models on an independent data set, the information gain per earthquake I(X, Y) of one
model X over another model Y is given by

I(X, Y) = (ln LX − ln LY)/N. (7)

where ln LX is the log-likelihood of model X and N is the number of target earthquakes [24].

3. Method

The EEPAS model is usually fitted with a time lag to prevent any influence on the
parameters from short-term clustering. Here, a time lag of 50 days was applied. This means
that no precursory earthquake contributed to the time-varying rate density until 50 days
after its occurrence.

Two different weighting strategies are commonly adopted in applications of the EEPAS
model: equal weighting and down-weighting of aftershocks. For down-weighting of
aftershocks, the weight assigned to each earthquake depends on the ratio of the rate density
of the background model to the rate density of an epidemic-type aftershock model at the
time, magnitude and location of its occurrence. For details, see [13]. The down-weighted
aftershocks strategy is preferable for investigating the space–time trade-off because it better
respects the hierarchical nature of seismicity, as seen in aftershock occurrence as well as
precursory seismicity [25–27].

We considered two versions of the down-weighted aftershocks EEPAS model, which
we labeled EEPAS_1F. The models were called NZ EEPAS_1F and California EEPAS_1F. The
model parameters are listed in Table 1. The values were slightly different from the models
previously tested in the New Zealand and California testing centers of the Collaboratory
for the Study of Earthquake Predictability (CSEP) since 2008 and 2006, respectively [28–30].
The differences were due to looser constraints imposed in the fitting of µ.

The surveillance and search regions for New Zealand and California are shown in
Figures 4 and 5, respectively. Figures 4a and 5a show the locations of earthquakes with
magnitudes M > 2.95 contributing to their fitting between times t0 and t f . Time t0 is the
beginning of 1951 for New Zealand and 1932 for California, while t f is the end of 2006 for
New Zealand and 2005 for California. Figures 4b and 5b show the locations of the target
earthquakes with M > 4.95 between times ts and t f , where ts is the beginning of 1987 for
New Zealand and 1986 for California.
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Table 1. EEPAS_1F model parameters for New Zealand (NZ) and California.

Parameter Details NZ EEPAS-1F California EEPAS-1F

m0
Minimum precursor

magnitude 2.95 * 2.95 *

mc
Minimum target

magnitude 4.95 * 4.95 *

mu
Maximum target

magnitude 10.05 *,! 10.05 *!

bGR
Gutenberg–Richter

b-value 1.16 † 1.0 †

aM Equation (3) 1.10 † 1.74 †

bM Equation (3) 1.0 * 1.0 *
σM Equation (3) 0.35 † 0.60 †

aT Equation (4) 1.44 † 2.11 †

bT Equation (4) 0.43 † 0.40 †

σT Equation (4) 0.53 † 0.43 †

bA Equation (5) 0.37 † 0.35 †

σA Equation (5) 1.16 † 0.88 †

µ Equation (8) 0.18 † 0.27 †

* Fixed. † Fitted. ! Standard threshold used for CSEP models.

Figure 4. Maps of New Zealand seismicity, including the region of surveillance (inner dashed polygon), the search region (outer
dotted polygon) and locations of earthquakes with magnitudes (a) M > 2.95 with a hypocentral depth≤45 km from 1951 to 2006
and (b) M > 4.95 with a hypocentral depth≤40 km from 1987 to 2006 in the region of surveillance (158 target earthquakes).

To investigate the space–time trade-off, we varied the EEPAS model parameters in a
controlled way. Starting with the parameter sets listed in Table 1, we separately changed the
EEPAS_1F parameters σA and aT while the other parameters, except the mixing parameter
µ, remained fixed at their previously fitted values. We changed σA in seven steps in either
direction away from its optimal value (Table 2) and obtained the corresponding values of
the temporal scaling factor σ2

A. Subsequently, we changed the aT values in a similar manner
(Table 3) and obtained the corresponding values of the temporal scaling factor 10aT . Over
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seven steps, each of the controlled scaling factors varied by an order of magnitude on either
side of the optimal fit. For each controlled value of aT or σA, two free parameters, µ and
either σA or aT , were refitted to maximize the likelihood of target earthquakes in the region
of surveillance over time period (ts, t f ).

Figure 5. Maps of California’s seismicity, including the region of surveillance (inner dashed polygon), search region (outer
dotted polygon), and locations of earthquakes with magnitudes (a) M > 2.95 and hypocentral depths≤30 km from 1932 to 2004
and (b) M > 4.95 and hypocentral depths≤30 km from 1986 to 2005 in the region of surveillance (155 target earthquakes).

Table 2. Controlled values of σA in EEPAS_1F model for New Zealand (NZ) and California.

NZ EEPAS-1F California EEPAS-1F

0.34 0.26
0.41 0.31
0.49 0.37
0.58 0.44
0.69 0.53
0.82 0.97
0.97 0.74

1.16 † 0.88 †

1.38 1.05
1.64 1.25
1.95 1.49
2.32 1.77
2.75 2.10
3.27 2.50
3.89 2.98

† Fitted.
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Table 3. Controlled values of aT in EEPAS_1F models for NZ and California.

NZ EEPAS-1F California EEPAS-1F

2.49 3.16
2.34 3.01
2.19 2.86
2.04 2.71
1.89 2.56
1.74 2.41
1.59 2.26

1.44 † 2.11 †

1.29 1.96
1.14 1.81
0.99 1.66
0.84 1.51
0.69 1.36
0.54 1.21
0.39 1.06

† Fitted.

4. Results

The likelihood of the refitted models declined with each step change in the controlled
parameter away from its optimal value, as shown for New Zealand in Figure 6. The results
for California were similar. The log-likelihood of the refitted model is plotted against
the controlled spatial scaling factor in Figure 6a and against the temporal scaling factor
in Figure 6b. An order of magnitude change in each scaling factor induced a modest
reduction in the log-likelihood. The maximum reduction of about 34 units corresponded to
an information loss per earthquake of about 0.2 relative to the overall optimal fit.

Figure 6. Log-likelihood of EEPAS model fitted with controlled values of (a) σA (Table 2) and (b) aT (Table 3) to the New
Zealand earthquake catalogue.

The refitted mixing parameter µ tended to increase as the controlled parameter shifted
further away from its optimal value, as shown for New Zealand in Figure 7. Again, the
results were similar for California. The variation of µ with the spatial scaling factor is
shown in Figure 7a and against the temporal scaling factor in Figure 7b. The values of
µ increased from about 0.15 at the optimal fit to greater than 0.5 when the temporal or
spatial scaling factors were changed by an order of magnitude. The µ value represents the
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proportional contribution of the background model to the total EEPAS model rate density.
Higher µ values thus indicate a greater contribution of the background component and
a smaller contribution of the time-varying component. In other words, higher µ values
indicate that there were fewer target earthquakes with precursors matching the changed
spatial and temporal distributions.

Figure 7. Fitted values of mixing parameter µ (0 ≤ µ ≤ 1) of the EEPAS model fitted with controlled values of (a) σA and
(b) aT to the New Zealand earthquake catalogue.

As the controlled parameter was changed, the refitted values of the other parameters
changed in a way that was consistent with the notion of a space–time trade-off. The results
are shown for New Zealand in Figure 8a and for California in Figure 8b.

Figure 8. Trade-off of spatial and temporal scaling factors σA
2 and 10aT , respectively, revealed by the fit of the EEPAS model

with controlled values of σA (blue triangles) and aT (black squares). The straight line with a slope of −1 represents an even
trade-off between space and time. (a) New Zealand. (b) California.
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In each plot, the pairs of scaling factors resulting from controlling σA are shown as blue
triangles, and those resulting from controlling aT are shown as black squares. The temporal
scaling factor decreased as the controlled spatial scaling factor increased, and the spatial
scaling factor decreased as the controlled temporal scaling factor increased. However, the
curves had different slopes depending on whether σA or aT was the controlled variable.
An even trade-off line with a slope of −1 is drawn through the intersection of the two
curves (straight blue line in Figure 8a,b). Its slope lies between the average slopes of the
two controlled fitting curves.

5. Discussion

As seen in Figure 8, the controlled fits produced two curves which did not lie on the
even trade-off line but instead had higher or lower slopes. This result can be explained by
the limitations on the length of the catalogue and the size of the search region. The fitted
parameters could only adjust to the precursors that were contained in the catalogue and
not to those that were screened out by such limitations. We now consider in detail the
trend of the fitted σA value away from the even trade-off line for the controlled values of
aT . The trend of the other curve can be explained similarly.

As aT was stepped down to lower values (i.e., the time scale was shortened), fitting the
trade-off required earthquakes at increasingly longer distances from the target earthquakes.
However, at longer distances, more precursory events were screened out by the spatial
limitation on the input catalogue. The precursors of the largest earthquakes in the target
magnitude range would be most affected by the spatial limitation because they had larger
precursory areas (Figure 2). The spatial limitation at small aT values forced the fitted values
of σA to increasingly fall below the even trade-off line. On the other hand, as aT was
stepped up to higher values, the precursory time scale became longer and exceeded the
available lead time. This temporal limitation most affected the largest earthquakes in the
target magnitude range, which had the longest precursor times (Figure 2). Thus, more and
more precursory earthquakes on the specified time scale were screened out by the limited
time span of the catalogue. The remaining precursors for fitting σA would be those at the
lower end of the time distribution. Because of the space–time trade-off, these remaining
precursors tended to be at longer distances than the screened-out events. This forced the
fitted σA to increasingly exceed the even trade-off line.

The space–time trade-off in the EEPAS model shows that as the mean of f (t|m) in
Equation (4) increased, the area of the fitted h(x, y|m) in Equation (5) decreased and vice
versa. This phenomenon can be interpreted in terms of the predictive scaling relations on
which the EEPAS model is based (Figure 2). Figure 2 shows that TP and AP both increased
with the precursory earthquake magnitude MP. Similarly, in the EEPAS model, the mean
of the time distribution f (t|m) and the area of the location distribution h(x, y|m) both
increased with m. Now, the space–time trade-off observed in the EEPAS model can be
interpreted in terms of the space–time distribution of precursors to an individual major
earthquake; that is, the earliest precursors tend to occur very close to the source, and the
later precursors to occupy a wide area around the source. This interpretation only applies
to precursors occurring more than 50 days before the mainshock because of the time lag
applied for EEPAS model fitting here.

The existence of this trade-off raises the question of how it can be exploited to improve
the performance of the EEPAS model. The EEPAS model treats the time and location as
independent variables, but the trade-off implies that they are correlated. We will illustrate
how to improve forecasting by forming hybrid models. The hybrid models are mixtures of
three EEPAS models with the values of aT and σA chosen from points on the even trade-off
line with a slope of −1. We constructed two models, Hybrid_1F and Hybrid_1R, starting
from two different EEPAS models: EEPAS_1F and EEPAS_1R, respectively. EEPAS_1R was
similar to EEPAS_1F in nearly all aspects, apart from having fewer optimized parameters.
Its fixed and optimized parameters are given in Table 4. An important difference between
the two models was that EEPAS_1F (Table 1) had a larger value of σT than EEPAS_1R
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(Table 4). The parameter σT was optimized in the fitting of EEPAS_1F but not in EEPAS_1R.
In prospective testing over 10 years in the New Zealand CSEP testing center, EEPAS_1F
significantly outperformed EEPAS_1R [29].

Table 4. EEPAS_1R model parameters for New Zealand.

Parameter Value

m0 2.95 *
mc 4.95 *
mu 10.05 *
bGR 1.16 †
aM 1.00 †
bM 1.0 *
σM 0.32 *
aT 1.40 †
bT 0.40 *
σT 0.23 *
bA 0.35 *
σA 1.74 †
µ 0.24 †

* Fixed. † Fitted.

To construct the hybrid models, we replaced the time-varying component of each
model’s rate density with the average rate density of the three models, with the values of
aT and σA chosen from the trade-off line. The three models were the original one and two
others formed by an arbitrary increase and decrease in aT of ∆ = 0.5. For an increase in ∆
in aT , the corresponding value of σA on the trade-off line was found by multiplying the
original σA by 10−0.5∆. The other parameters, including µ and σT , remained unchanged
at their values in Tables 1 and 4. Using information gain statistics, we compared the
performance of the EEPAS_1F, EEPAS_0F, Hybrid_1F and Hybrid_1R models. For this,
we used a test period from 2007 to 2017, during which there were 259 target earthquakes
with magnitudes M > 4.95. Hybrid_1R outperformed all the other models, and EEPAS_1R
was the weakest model (Figure 9). Figure 9a shows the information gain of EEPAS_1F,
and Figure 9b shows that of Hybrid_1R over the other models. Both hybrid models and
EEPAS_1F outperformed EEPAS_1R with 95% confidence according to the T-test [24].

Figure 9. Information gain per earthquake and 95% confidence interval of the (a) EEPAS_1F model and (b) Hybrid_1R
model compared with other models during the test period of 2007–2017 in the New Zealand testing region (259 target
earthquakes with M > 4.95).

This simple example of hybrid formation, even without fitting additional parameters,
suggests that it might be possible to use the space–time trade-off to improve forecasting.
However, much more work needs to be done to construct a formal method for optimal
inclusion of the trade-off in the fitting of the EEPAS model. The temporal and spatial limita-
tions of the catalogue are clearly among the issues to be considered. The spatial limitations
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can be resolved if a global catalogue is used, but then a higher threshold magnitude of
completeness would apply. That in turn imposes further limitations. Additionally, there is
evidence that the precursor time distribution is dependent on the strain rate in the vicinity
of a target earthquake [17]. This dependence would have to be included in a global model.
Temporal limitations can also be partly resolved by introducing a fixed lead time for all
target earthquakes and then compensating for the lead time using the method described
in [20].

6. Conclusions

A space–time trade-off of precursory seismicity has been investigated by repeated
refitting of the EEPAS earthquake forecasting model to the catalogues of New Zealand and
California. In a sequence of controlled fits, the temporal scaling parameter was constrained
to vary in steps ranging over two orders of magnitude with the spatial scaling parameter
before being refitted, and vice versa. The two resulting curves of the temporal scaling factor
against the spatial scaling factor differed depending on which parameter was controlled
and which was fitted. However, both curves were consistent with an even trade-off between
space and time once the temporal and spatial limits of the contributing earthquake data
were considered. As the controlled parameter deviated further from its optimal value,
the likelihood of the refitted model decreased. In addition, the refitted model had an
increasingly large background component and a diminishing time-varying component.

The trade-off implies that the earliest precursors to a major earthquake tend to occur
very close to its source and that the later precursors occupy a wide area around the source.
A simple example in which hybrid forecasts were created by mixing several EEPAS models
with parameters chosen from the trade-off line suggests that it should be possible to exploit
the trade-off for improved forecasting. However, more research is needed to develop a
formal method for routinely incorporating the space–time trade-off into medium-term
earthquake forecasts.
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