
applied
sciences

Article

A Feature-Independent Hyper-Heuristic Approach for Solving
the Knapsack Problem

Xavier Sánchez-Díaz , José Carlos Ortiz-Bayliss * , Ivan Amaya , Jorge M. Cruz-Duarte ,
Santiago Enrique Conant-Pablos and Hugo Terashima-Marín

����������
�������

Citation: Sánchez-Díaz, X.

Ortiz-Bayliss, J.C.; Amaya, I.;

Cruz-Duarte, J.M.; Conant-Pablos,

S.E.; Terashima-Marín, H. A Feature-

Independent Hyper-Heuristic

Approach for Solving the Knapsack

Problem. Appl. Sci. 2021, 11, 10209.

https://doi.org/10.3390/app112110209

Academic Editor:Peng-Yeng Yin

Received: 24 September 2021

Accepted: 26 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
sax@tec.mx (X.S.-D.); iamaya2@tec.mx (I.A.); jorge.cruz@tec.mx (J.M.C.-D.); sconant@tec.mx (S.E.C.-P.);
terashima@tec.mx (H.T.-M.)
* Correspondence: jcobayliss@tec.mx

Abstract: Recent years have witnessed a growing interest in automatic learning mechanisms and
applications. The concept of hyper-heuristics, algorithms that either select among existing algorithms
or generate new ones, holds high relevance in this matter. Current research suggests that, under
certain circumstances, hyper-heuristics outperform single heuristics when evaluated in isolation. When
hyper-heuristics are selected among existing algorithms, they map problem states into suitable solvers.
Unfortunately, identifying the features that accurately describe the problem state—and thus allow for a
proper mapping—requires plenty of domain-specific knowledge, which is not always available. This
work proposes a simple yet effective hyper-heuristic model that does not rely on problem features
to produce such a mapping. The model defines a fixed sequence of heuristics that improves the
solving process of knapsack problems. This research comprises an analysis of feature-independent
hyper-heuristic performance under different learning conditions and different problem sets.

Keywords: hyper-heuristics; knapsack problem; optimization

1. Introduction

The intersection between combinatorial optimization and Hyper-Heuristics (HHs)
is a relevant and active area in literature, as Sánchez et al. detailed with their thorough
systematic review [1]. The former considers optimization problems where a permutation
of feasible values gives candidate solutions. The hardness of these problems could be
easy or hard to solve, depending on different parameters. Among them resides a category
known as NP-hard problems, for which analytical solvers cannot be scaled due to an
excessive computational burden. Therefore, approximate solvers are commonly sought
for NP-hard problems, including those based on heuristics. It is here where HHs shine
bright. This approach has been deemed as high-level heuristics useful to tackle hard-to-solve
problems [2], particularly NP-hard ones [3]. A classification of HHs considers two main
groups: selection HHs (those that select heuristics from an available set) and generation
HHs (those that create new heuristics using components of existing ones) [4]. Although both
groups have proved of great interest to the scientific community, in this work we focus on
the former.

Selection HHs deal with problems indirectly. They browse a set of available heuristics,
which are selectively applied to solve the problem at hand [5]. A selection HH analyzes a set
of available heuristics and chooses the most suitable one according to a given performance
metric. Most of the current selection HH models include two key phases: heuristic selection
and move acceptance [6]. The former represents the strategy for deciding which heuristic
should be selected. Conversely, the latter determines whether the new solution is accepted
or discarded. The approach proposed in this work simplifies the overall model by only
focusing on heuristic selection. Thus, changes resulting from applying a particular heuristic
are always accepted.

Appl. Sci. 2021, 11, 10209. https://doi.org/10.3390/app112110209 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2271-439X
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0001-6270-3164
https://orcid.org/0000-0002-5320-0773
https://doi.org/10.3390/app112110209
https://doi.org/10.3390/app112110209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110209
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110209?type=check_update&version=2

Appl. Sci. 2021, 11, 10209 2 of 22

Evolutionary computation is a recurrent approach among the many learning methods
employed in the literature to produce HHs. Some examples include, but are not limited
to, Genetic Programming (GP) [5,7–9], Grammatical Evolution (GE) [10], Genetic Algo-
rithms (GA) [11,12], and Artificial Immune Systems (AIS) [13,14]. The literature contains
other related proposals, such as those that evolve HHs by analyzing the set of problem
instances [15]. These findings support the idea of using an evolutionary strategy as a
learning mechanism for HHs, one which improves their performance via crossover or
mutation. This work focuses on the latter.

HHs have been used to tackle packing problems in the past. Hart and Sim describe a
variant of AIS used as a hybrid HH for the Bin Packing Problem [13,14,16]. Falkenauer [11]
proposed a GA-based HH model, and Burke et al. [17], Hyde [8], and Drake et al. [9,18,19]
have studied GP rules for the Bin Packing and Multidimensional Knapsack problems. More
recent studies of HHs have been conducted on the binary knapsack domain using Ant
Colony Optimization [20] and Quartile-related Information [21]. Further information about
the state-of-the-art of HHs and their applications are provided in [4,22].

As mentioned above, several combinatorial optimization problems have been tackled
with HHs [1]. This paper focuses on the Knapsack Problem (KP), which has been studied
in great depth due to its simple structure and broad applicability. Example applications
include cargo loading, cutting stock, allocation, and cryptography [23]. When a constructive
approach is used to solve this problem, the solution is built one step at a time by deciding
if one particular item must be packed or ignored. For simplicity, our setting states that once
the process chooses an item, there is no way to change such a decision. Using a constructive
approach leads to different subproblems throughout the solving process, depending on the
heuristic used. This happens because packing an item produces an instance with a reduced
knapsack capacity (the previous knapsack capacity minus the weight of the packed item)
and a reduced list of items (the item recently packed or ignored is no longer part of the
items to pack). This behavior raises the question of which heuristic, among the different
options, should be used to maximize the overall profit resulting from the items contained
in the knapsack. The literature usually refers to the problem of selecting the best algorithm
for a particular situation as the Algorithm Selection Problem [24].

Despite the extensive use of selection HHs [4,25], only a few works explore the insights
of their behavior. A few examples include a run-time analysis [26,27], the use and control of
crossover operators [19], and heuristic interaction when applied to constraint satisfaction
problems [28]. Furthermore, traditional selection HH models, that represent the relation
between problem states and heuristics through 〈condition, action〉 rules, exhibit a signifi-
cant limitation: they require the definition of a set of features to characterize the problem
state [29]. Finding such a set of features implies an additional layer of complexity to the
model. To the best of our knowledge, there is only one work on feature-independent HHs
for the knapsack problem, which obtained only a few preliminary results [30]. Therefore,
our work aims at filling this knowledge gap through two particular contributions:

• It proposes an evolutionary-powered hyper-heuristic framework capable of combining
the strengths of individual heuristics when solving sets of KP instances.

• Besides the model itself, it provides the analysis and understanding of the performance
of the hyper-heuristics designed under this model on instance sets formed by challeng-
ing instances, both balanced and unbalanced (in terms of heuristic performance).

The remainder of this document is organized as follows. Section 2 defines the fun-
damental ideas associated with our work. Section 3 describes the HH model and the
rationale behind it. Section 4 details the experiments conducted and analyzes the results.
Finally, Section 5 presents the conclusions and provides an overview of future directions
for this investigation.

Appl. Sci. 2021, 11, 10209 3 of 22

2. Background

This section introduces several basic concepts utilized in this work. It starts by describ-
ing the fundamental Knapsack Problem (KP). Then, it presents heuristics in general. Later
on, it explains the basic foundations of Evolutionary Algorithms (EAs).

2.1. Knapsack Problem

In layman’s terms, a knapsack problem seeks to store a set of items into a knapsack
with limited capacity. Therefore, one must choose a subset of the items based on some
criteria. For example, the profit or weight to select the items that must go into the knapsack.
In formal terms, let ~x ∈ Zn

2 be a binary-valued vector of n items, where each element
xi ∈ ~x represents an item and its selection according to its position and value, respectively,
for example, if there is a stock of three items and we choose the second one, we have
~x = (0, 1, 0)ᵀ. Likewise, let ~p ∈ Rn

+ and ~w ∈ Rn
+ be the profit and weight vectors directly

related to the items, i.e., the i-th item has profit pi ∈ ~p and weight wi ∈ ~w. Thus, this
problem (widely known as the 0/1 Knapsack Problem) can be defined as

~x∗ = argmax
~x
{~p ·~x},

s.t. ~w ·~x ≤ c,

with ~x ∈ Zn
2 and ~p, ~w ∈ Rn

+

(1)

where c ∈ R+ is the total capacity of the knapsack.
Although many solving strategies can be found in the literature, the initial solvers

for the knapsack problem were initially divided into two categories: exact methods and
approximate ones. Exact methods provide optimal solutions but have limited applications
due to their consumption of computational resources [31,32]. Conversely, approximated
methods make some assumptions to simplify the solving process to give usually suboptimal
solutions [33].

However, the advance in computing power and creativity has lead to extensive
diversity of techniques that can be found nowadays, most of them hybrids. To provide
a glance at such diversity, we mention some representative works. For example, Genetic
Algorithms (GA) and Particle Swarm Optimization (PSO) have been used for solving the
multidimensional KP [34,35]. Gómez et al. proposed a Binary Particle Swarm strategy
with a genetic operator, also for the multidimensional KP [36]. Another example of recent
solving methods includes the one by Razavi and Sajedi, where the authors proposed using
Gravitational Search (GSA) for solving the 0/1 KP [37]. Inspired by Quantum Computing,
Patvardhan et al. proposed a novel method to solve the KP by using a Quantum-Inspired
Evolutionary Algorithm [38]. Modifications to apparently simple ideas can also be found
nowadays. For example, Lu et al. solve the 0/1 KP by using Greedy Degree and Expectation
Efficiency (GDEE) [39]. Some probabilistic models include Cohort Intelligence (CI) [40] and
hybrid heuristics. For example, by using Mean Field Theory [41], Banda et al. generated a
probabilistic model capable of replacing a complex distribution of items with an easier one.

The literature on the KP includes a wide variety of solution methods. For a thorough
treatment, we refer the reader to the textbooks found in [42,43]. Broadly speaking, the so-
lution methods are of three types: exact methods, heuristic methods, and approximation
algorithms (which are special heuristic methods that yield solutions of a guaranteed qual-
ity). The best exact methods are now capable of solving instances with thousands of items
to proven optimality in reasonable computing times [32,44–46]. However, it is possible to
devise instances that are very challenging for exact methods [45]. For this reason, heuristics
remain of interest.

2.2. Heuristics

A heuristic is a procedure that creates or modifies a candidate solution for a given
problem instance. There are many classifications of heuristics in the literature. Most of them

Appl. Sci. 2021, 11, 10209 4 of 22

relate to combinatorial optimization domains [47]. In this work, we use the term ‘heuristic’
to refer to the low-level operations to apply to a problem instance [4]. An illustrative
example is a specific way to organize a knapsack based on item size. In mathematical terms,
a heuristic h : X 7→ X applied to an instance problem X, may use the current candidate
solution ~x ∈ X, and delivers a new candidate ~x′ as shown,

~x′ = h{~x}. (2)

Consider that if~x = ∅, the heuristic creates a candidate solution; otherwise, it modifies
the current one.

A HH is described as a high-level strategy that controls heuristics in the process of
solving an optimization problem [47]. Therefore, HHs move in the heuristic space to find
a heuristic configuration that solves a given problem. With that in mind, a HH can be
defined as follows [4]. Let hhh ∈ Hv be a heuristic sequence from the heuristic space H, and let
F(hhh|X) : Hv ×X 7→ R be its performance measure function. Here, X is the problem domain
in an optimization problem with an objective function f (~x) : X 7→ R. For the particular
case of the knapsack problem, X = Zn

2 . Then, a solution ~x∗ ∈ X and its corresponding
fitness value f (~x∗) are found when a hhh is applied on X, so its performance F(hhh|X) can also
be determined. Therefore, let a HH be a technique that solves

(hhh∗;~x∗) = argmax
hhh∈Hv ,~x∈X

{F(hhh|X)}. (3)

In other words, a HH searches for the optimal heuristic configuration hhh∗ that produces
the optimal solution ~x∗ with the maximal performance F(hhh∗|X).

It is essential to mention that there also exists something we might categorize as
mid-level heuristics: Metaheuristics (MHs). These methods are trendy because of their
proven performance on different scenarios and applications [48]. MHs are defined as master
strategies that control simple heuristics [49]. Therefore, by finding a middle point between
definitions for low and high-level heuristics, it is possible to say that an MH corresponds to
a heuristic sequence hhh applied recurrently until reaching the desired performance. This idea
has been extended by Cruz-Duarte et al. [50,51]. Thus, for a given optimization problem,
we can define the process of approximating the optimal solution ~x∗ ∈ X via an MH such as

~x∗ ,
h f

	И
hk∈hhh

hk{X} (4)

where h f is also an operator to evaluate stopping criteria, and 	И is the iteral operator based
on that in [52]. This operator indicates a recurrent application of heuristics from a sequence
hhh until h f marks the halt. For example, for a MH defined with two operations (v = 2), say
crossover (h1) and mutation (h2), thence hhh = {h1, h2}. Consider h f as a common fitness
tolerance criterion such as f (~x) ≤ ε. Therefore, the metaheuristic applies first h1, followed
by h2, and then it checks the condition given by h f . If such a condition is not met, the process
is repeated until it complies.

2.3. Evolutionary Algorithms (EAs)

EAs are a particular subgroup of the population-based metaheuristics inspired by
evolution and biological processes observed in nature [53]. The most notable examples of
these methods are Differential Evolution (DE) [54] and Genetic Algorithms (GAs) [55]. In a
general sense, the individuals of an EA interact with each other to explore the problem
domain and exploit the candidate solutions, i.e., they evolve. Such evolution is possible
due to operators such as selection, crossover, mutation, and reproduction. It is easy to
notice that these operators are just (low-level) heuristics. In this work, we chiefly employ
mutation-based operations, which are detailed in the next section.

Appl. Sci. 2021, 11, 10209 5 of 22

3. Proposed Hyper-Heuristic Model

The HH model developed in this work can be classified as an offline selection HH [56].
Internally, the HH model relies on a variant of the (1 + 1) Evolutionary Algorithm (EA) to
find the sequence of heuristics to apply. The original EA flipped each bit with probability
1/v (where v is the chromosome length). Conversely, our approach chooses one among
various available mutation operators based on a uniform random probability distribution.
This EA implementation considers some of the features used by Lehre and Özcan [27].
However, the set of available operators is different as we work with constructive heuristics
while they have used perturbative ones.

We choose four simple packing heuristics due to their popularity: H = {Def, MaxP,
MaxPW, MinW}. Before moving forward, we describe them below.

Default (Def) packs the items in the same order that they are contained in the instance,
as long as they fit in the knapsack.

Maximum profit (MaxP) sorts the items in descending order based on their profit and
packs them in that order as long as they fit in the knapsack.

Maximum profit per weight (MaxPW) calculates profit-over-weight ratio for each item and
sorts them in descending order. Then, MaxPW follows this ordering until the knapsack
is full or no more items are left to be packed.

Minimum weight (MinW) favors lighter items, so it sorts items in ascending order based
on their weight and packs them by following such order until they no longer fit.

Should there be a tie, all heuristics will choose the first conflicting item. Among these
heuristics, Def is the fastest one to execute as it involves no additional operations. On the
contrary, MaxP, MaxPW, and MinW take longer to compute but usually yield better results
than using no order at all (Def). We are aware that more complex heuristics are available
in the literature. Still, at this point in the investigation, we consider it suitable to test the
proposed HH approach on this set of simple heuristics.

In our model, each HH represents a sequence of heuristics to apply to the problem in
one specific order. For simplicity, we refer to its length as the cardinality of the HH. Let us
consider the HH with cardinality of five (hhh ∈ H5) given by hhh = {Def, MaxP, MaxP, Def, MinW}
(Figure 1). Please note that one of the available heuristics is not contained within the HH,
MaxPW. In this HH, Def occupies positions 0 and 3, MaxP occupies positions 1 and 2, and MinW
occupies position 4. Let us assume that hhh will solve a 12-item knapsack instance. In this
case, there are 12 decisions to be made for solving this instance (d1 to d12). While some of
the decisions will add an item to the knapsack, others will discard it. As the HH represents
a sequence of five heuristics, the first five decisions will be made in the same order in
which the heuristics are presented in hhh: Def, MaxP, MaxP, Def, and MinW. After that, there
are no more heuristics to choose to make further decisions. Then, the HH is used again,
but now backwards: MinW, Def, MaxP, MaxP, and Def. The process repeats by inverting the
sequence every time we reach the end of the HH. Although this scheme seems disruptive,
we consider it feasible to favor the changes in heuristics throughout the solving process.

Appl. Sci. 2021, 11, 10209 6 of 22

Figure 1. An example of a hyper-heuristic with a cardinality of five, and the way it solves an instance
with 12 items. Black arrows indicate the direction in which heuristics are selected to make a decision.

3.1. Hyper-Heuristic Training

The learning mechanism within the HH model works as follows. The HH, hhh ∈ Hv , is
randomly initialized (with a sequence of v randomly selected heuristics), and it is used
to solve the set of training instances. We register the profit of the solution obtained by hhh
for each instance. The performance of the HH, F(hhh,X), is then calculated as the average
of all the profits obtained for the training set. In our EA implementation, a chromosome
represents a HH that codes a sequence of heuristics to apply, i.e., hhh. At each iteration,
the process randomly chooses one mutation operator om from the available operators O.
To do so, a uniform probability distribution is employed. Thus, EA applies it on a copy of
the current HH, which produces a candidate HH, according to (2). The model evaluates
the candidate HH on the set of training instances. If its performance is greater or equal (to
favor diversity) than the current HH, this candidate takes its place. The process is repeated
until it reaches the maximum number of allowed iterations Imax. Pseudocode 1 details this
training procedure.

The main goal of the learning mechanism is to produce a HH (an ordered sequence of
heuristics) that maximizes the profit of an instance by packing appropriate items into the
knapsack. In other words, it solves (1). Thus, the EA does not operate on the solution space
X, but on the heuristic space H.

Appl. Sci. 2021, 11, 10209 7 of 22

Pseudocode 1 Hyper-heuristic trainer

input:
Set of heuristics H,
Set of mutation operators O,
Set of instances to train the hyper-heuristic X,
Initial cardinality v,
Performance function F(hhh,X), and
Maximum number of iterations Imax

output: Best selection hyper-heuristic hhh∗

1: hhh← INITIALIZERANDOMLY(H, v)
2: Fh ← F(hhh, X) . Evaluate the current HH
3: for i = 0 to Imax do
4: hhh′ ←GENERATECANDIDATE(hhh)
5: Fh′ ← F(hhh′, X) . Evaluate the candidate HH
6: if Fh′ ≥ Fh then
7: hhh← hhh′ and Fh ← Fh′

8: end if
9: end for

10: return hhh∗ ← hhh

11: procedure GENERATECANDIDATE(hhh)
12: hhh′ ← CLONE(hhh)
13: om ← CHOOSERANDOMLY(O)
14: hhh′ ← om{hhh′} . Mutate hhh′ by applying om
15: return hhh′

16: end procedure

3.2. Mutation Operators

The evolutionary process dynamically chooses among eight available mutation op-
erators to alter the candidate hyper-heuristic hhh′. Operators contained within set O are
described below. To clarify the behavior of such operators, we also provide a brief exam-
ple of their behavior. Bear in mind that, in all the examples, we always consider the HH
depicted in Figure 1 as the HH to mutate, i.e., hhh′ = {Def, MaxP, MaxP, Def, MinW}.

Add inserts a randomly chosen heuristic at a random position i ∼ U{0, v − 1} into hhh′.
In doing so, cardinality (v = #hhh′) increases by one and existing heuristics at this
position onward are shifted to the right. For the example, let us assume that i = 3 and
that the random selection chooses MaxPW. Thus, the resulting HH has a cardinality of
six and is given by hhh′ = {Def, MaxP, MaxP, MaxPW, Def, MinW}.

Single-point Flip selects a position i ∼ U{0, v − 1} at random from hhh′ and changes its
heuristic hi ∈ hhh to a different one (selected at random). Thus, cardinality is preserved.
Let us suppose that i = 0. As Def is the current heuristic at this position, it cannot be
chosen. Therefore, let us assume that the new heuristic is MinW. Then, the resulting
HH is hhh′ = {MinW, MaxP, MaxP, Def, MinW}.

Two-point Flip is a more disruptive version of the previous operator. This time, heuristics
at two different positions (i, j ∼ U{0, v − 1}) are renewed. Let us suppose that
i = 2 and j = 4. In the first case, the available heuristics are Def, MaxPW, and MinW.
In the second one, they are Def, MaxP, and MaxPW. Imagine that MaxPW and Def are
selected, respectively. Then, the resulting HH still preserves cardinality and is given
by hhh′ = {Def, MaxP, MaxPW, Def, Def}.

Neighbor-based Add is similar to Add as it also inserts a heuristic at a random position
k ∼ U{0, v − 1} within hhh′. However, the heuristic to insert is randomly selected
among neighboring heuristics (positions j = i − 1 and k = i + 1), as long as they

Appl. Sci. 2021, 11, 10209 8 of 22

are valid positions. Should i correspond to an edge, the only neighbor is copied.
Let us suppose that i = 1. In this case, the heuristic to insert would be either Def
(j = 0) or MaxP (k = 2), with the same probability (50%). Imagine that MaxP is selected.
Then, and as with the Add operator, cardinality grows to six and the resulting HH is
hhh′ = {Def, MaxP, MaxP, MaxP, Def, MinW}.

Neighbor-based Single-point Flip is a variant of Single-Point Flip where the heuristic
at i ∼ U{0, v− 1} changes into one of its neighbors (positions j = i− 1 and k = i + 1,
if they exist). For example, suppose that i = 2. In this case, candidate replacements
would be either MaxP (j = 1) or Def (k = 3), each one with a 50% probability. Let
us suppose that Def is selected. Then, the resulting HH preserves cardinality and
becomes hhh′ = {Def, MaxP, Def, Def, MinW}.

Neighbor-based Two-point Flip likewise, this is a variant of Two-Point Flip in which
heuristics are chosen at random from neighboring ones. Let us suppose that i = 2
and j = 4. In the first case, available heuristics are MaxP and Def; in the second one, it
is only Def since the position corresponds to an edge of the HH. Let us suppose that,
in the first case, Def is selected. Therefore, the resulting HH is hhh′ = {Def, MaxP, Def,
Def, Def}.

Swap interchanges heuristics at two randomly selected locations, i, j ∼ U{0, v− 1}, and so
preserves cardinality. For example, assume that i = 1 and j = 3. Thus, the resulting
HH becomes hhh′ = {Def, Def, MaxP, MaxP, MinW}.

Remove randomly selects one position i ∼ U{0, v− 1} within the HH and removes the
heuristic at that position. Therefore, cardinality is reduced by one. After removing
the heuristic, upcoming ones are shifted to the left. For example, imagine that i = 0.
Then, the resulting HH has a cardinality of four and is given by: hhh′ = {MaxP, MaxP,
Def, MinW}.

Note that neighbor-based operators are allowed to replace the corresponding heuristic
with the same one since it is determined by the neighbors. Certainly, other operators
can be used but, for the sake of simplicity, we limit ourselves to these eight to formulate
O. Finally, consider that there is only one operator that reduces cardinality (Remove),
while two of them increase it (Add and Neighbor-based Add), and the remaining five
preserve it (Single-point Flip, Two-point Flip, Single-point Neighbor-based Flip,
Two-point Neighbor-based Flip, and Swap). Therefore, it is rather expected that trained
HHs exhibit a higher cardinality than untrained ones. Because of this, a HH may end up
choosing a different amount of items with each heuristic. We believe such flexibility in the
learning process may favor more complex interactions between the available heuristics.

3.3. The Knapsack Problem Instances

In this investigation, we consider four datasets: α1, α2, β1, and β2. Dataset α1 is used
for training purposes and comprises 400 knapsack problem instances. We synthetically
generated such instances for this work by using the algorithm proposed by Plata et al. [57].
This dataset contains a balanced mixture of problem instances, where each heuristic has
an equal probability of performing best. Therefore, we are sure that no single heuristic
outperforms others on all instances. We replicated the process to produce 400 additional
problem instances for testing purposes (dataset α2). These two datasets consider instances
of 50 items and a knapsack capacity of 20 units. Dataset β1 contains 600 hard instances
proposed by Pisinger [45] and featuring 20 items but at different capacities. Finally, dataset
β2 consists of 600 additional hard instances (also proposed by Pisinger [45]). In this case,
instances have 50 items and, again, exhibit different capacities. A summary of the datasets
is provided in Table 1. Bear in mind that for the confirmatory experiments, we analyze the
effect of changing the training dataset, but we shall discuss it in more detail further on.

Appl. Sci. 2021, 11, 10209 9 of 22

Table 1. Datasets used in this work.

ID Type
Features

Instances Items Capacity

α1 Balanced 400 50 50
α2 Balanced 400 50 50
β1 Hard 600 20 Variable
β2 Hard 600 50 Variable

3.4. Performance Metrics

We evaluate performance by considering both absolute and relative performances.
All approaches are evaluated based on the profits obtained by their solutions (the sum
of the profits of the items packed within the knapsack). The overall performance of a
method on a particular set is calculated as the sum of the profits of the solutions produced
for all the instances in such a set. However, it is also useful to estimate the relative per-
formance, i.e., w.r.t. the other methods. For this purpose, we also include a performance
ranking and the success rate (ρ).

The performance ranking is calculated as follows. All methods solve every instance in
the set. Then, for each instance, the methods are sorted based on the profit of their solutions.
The best one receives a ranking of 1, the second one a ranking of 2, and so on. In the case
of ties, the ranking is the average of tied positions. This metric is helpful to identify ties
that indicate a similar performance of two or more methods. Conversely, the success rate
is calculated as the percentage of instances in a set where a particular method reaches or
surpasses a threshold. In this investigation, such a threshold is given per instance and
corresponds to the best result among those achieved by the heuristics, i.e., the best profit
we can get from using each heuristic individually. For the sake of clarity, we present the
success rate as a vector of two components: one where the threshold is achieved and one
where it is surpassed. Bear in mind that the second component in the vector can only
be achieved by mixing heuristics throughout the solving process, and so it only applies
to HHs.

4. Experiments and Results

We organized our experiments in three stages: preliminary, exploratory, and confirma-
tory experiments. For the sake of clarity, these stages are further divided into categories.
Figure 2 provides an overview of our experimental methodology. In the following lines, we
carefully describe each stage, the corresponding experiments, and the results we obtained.

4.1. Preliminary Experiments

The preliminary experiments were designed first to justify the need for an intelli-
gent way to combine the heuristics (the HHs) and, second, to determine a suitable set of
parameters for running the EA to produce such HHs.

4.1.1. Preliminary Experiment I

The first experiment conducted in this work aims to prove that we need an intelligent
approach to define the sequences of heuristics. In other words, we justify that it is unlikely
for a random sequence of heuristics to achieve competent results. For this purpose, we
generated 30 random HHs. The length of these HHs was set to 16 heuristics for empirical
reasons. As in this experiment, we were only interested in the behavior of randomly
generated HHs, the EA was not used to improve the initial HHs. Then, we used the
30 randomly generated HHs to solve set α2, and we compared their results against the ones
obtained by the available heuristics (see Section 3 for more details). For the sake of clarity,
our comparisons include the results of three representative HHs from the perspective of
total profit on set α2: the best, the median, and the worst hyper-heuristics.

Appl. Sci. 2021, 11, 10209 10 of 22

Figure 2. Three-stage methodology followed in this work.

One way to analyze the performance of the methods relies on ranking the resulting
data. Table 2 shows the ranks obtained by the four heuristics, as well as the three represen-
tative HHs, when solving set α2. As one may observe, in most of the cases, the heuristics
obtain the best result in isolation (ranks close to 1), as it was expected as set α2 is balanced.
Although the best HH never occupies the last positions in the rank, the median performance
hints that the good behavior of Best-HH is more likely to be due to chance. Furthermore,
by randomly generating the sequences of heuristics, we risk producing something as bad
as Worst-HH, where it replicated the worst heuristic for this set, i.e., Def.

Table 2 also shows the total profit obtained for each method on set α2, which serves
as evidence that it is indeed possible to produce one good HH at random, such that it
outperforms several heuristics. However, this seems unlikely to happen by chance since at
least half the HHs perform worse than MinW.

Regarding the success rate, the results confirm that generating sequences of heuristics
at random is not a good idea. The success rate of the best randomly generated HH was
(0.0500, 0.0025), which means that only in 5% of the instances in set α2 this HH produced
a solution as competent as the best one among the four heuristics, while in 0.25% of the
instances for the same set, the HH improved upon this result.

4.1.2. Preliminary Experiment II

Before moving further in this investigation, we needed to fix the number of iterations
for the EA. Therefore, we generated 30 HHs by running the EA for 1000 iterations each
time. In all the cases, the initial HH contained sequences of 12 heuristics, and we used α1
as the training set. This time, the cardinality of the HHs was reduced by 1/4 concerning
the previous experiment since the mutation operators allow shortening and extending the
sequences. Then, we no longer need long initial sequences as with the first preliminary
experiment. For each HH, we recorded the Stagnation Point (SP). We define SP as the
iteration at which the best solution was first encountered and for which the profit showed
no improvement in subsequent iterations. Table 3 shows the stagnation points of the 30 runs
of the EA.

Appl. Sci. 2021, 11, 10209 11 of 22

Table 2. Ranks and total profit obtained by the four heuristics and the best, median, and worst
randomly generated hyper-heuristics when tested on set α2. The best result, measured in terms of
total profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 1 100 102 78 1 0 0
1.5 80 0 9 22 12 20 79
2.0 4 0 111 0 107 1 4
2.5 6 0 59 0 64 5 6
3.0 0 13 20 35 83 65 1
3.5 9 1 82 4 99 21 10
4.0 0 27 15 90 29 80 0
4.5 2 0 2 43 3 46 2
5.0 0 165 0 28 1 103 0
5.5 17 0 0 34 0 34 17
6.0 0 12 0 32 1 6 0
6.5 281 0 0 16 0 16 281
7.0 0 82 0 18 0 3 0

Profit 241,081 343,872 467,145 376,148 436,393 361,284 241,025

Table 3. Stagnation points for the first 30 runs of the EA-based hyper-heuristic model.

Run SP Run SP Run SP

1 162 11 46 21 675
2 127 12 51 22 41
3 743 13 114 23 30
4 39 14 38 24 47
5 682 15 18 25 40
6 38 16 317 26 28
7 68 17 56 27 152
8 21 18 146 28 78
9 405 19 176 29 37

10 64 20 30 30 34

We used these stagnation points to estimate the maximum number of iterations for
running the EA. The average stagnation point among the 30 runs was 150.1, so we rounded
it down to 150 iterations. Fifty additional iterations were added just as a precaution to
minimize the risk of not reaching a good result. Thus, we set the maximum number of
iterations to 200 for the rest of the experiments.

4.2. Exploratory Experiments

The exploratory experiments comprise a series of tests that cover general aspects of
the proposed model, particularly those regarding how it copes with single heuristics on
the balanced instance sets (sets α1 and α2).

4.2.1. Exploratory Experiment I

In this experiment, the rationale was to test the performance of HHs on similar
instances to those they were trained on. Therefore, we produced 30 HHs with an initial
cardinality of 12 heuristics each, as in preliminary experiment 2 (Section 4.1.2). Each HH
was trained using set α1 for 200 iterations. Afterward, we tested the resulting HHs on set
α2 and we compared the data against those obtained by heuristics applied in isolation.

Table 4 presents the ranking of the four heuristics as well as the best, median, and worst
HHs produced in this experiment and tested on set α2. This table also shows the total profit
obtained by each of these methods on the same set. Based on the results obtained (both
on ranks and total profit), we observe that the process is forcing the HHs to replicate the

Appl. Sci. 2021, 11, 10209 12 of 22

behavior of the best performing heuristic for these types of instances (MaxPW). This also
means that the HHs are, most of the time, ignoring the remaining heuristics. Although this
may seem like a good choice as MaxPW is the best individual performer, the HHs are
sacrificing the opportunity to improve their overall performance and outperform the best
individual heuristic.

Table 4. Ranks and total profit obtained by the four heuristics and the best, median, and worst
hyper-heuristics trained on set α1 and tested on set α2. The best result, measured in terms of total
profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 85 100 0 87 0 7 0
1.5 0 0 6 8 6 0 8
2.0 1 1 5 4 5 16 1
2.5 0 0 100 1 100 99 100
3.0 2 0 3 0 3 10 5
3.5 1 0 264 1 264 258 258
4.0 0 0 16 1 16 4 25
4.5 0 0 6 0 6 1 1
5.0 11 21 0 78 0 5 2
5.5 0 1 0 1 0 0 0
6.0 18 195 0 183 0 0 0
7.0 282 82 0 36 0 0 0

Profit 241,081 343,872 467,145 376,148 467,145 467,103 466,711

4.2.2. Exploratory Experiment 2

In the previous experiment, the EA forced the HHs into replicating the behavior of
one heuristic, MaxPW. In this experiment, we try to overcome this situation by reducing
the number of instances in the training set. Then, for this experiment, 30 new HHs were
produced, but this time, only 60% of the instances in set α1 were used for training purposes.
These 60% instances were randomly selected once and used for producing the 30 HHs.
As in the previous experiment, the maximum number of iterations for the EA was set to
200 and all the HHs were initialized by using a random sequence of 12 heuristics. We used
the 30 HHs to solve set α2 and summarized the results through the rankings and total
profit (Table 5).

Based on the results shown in Table 5, we observe a small improvement in Best-HH
with respect to MaxPW. Although this supports our initial idea that we can improve the
results obtained by the heuristics with a hyper-heuristic, the improvement is rather small
and insignificant in practice. Furthermore, the success rate of Best-HH is (0.285, 0.0), which
is exactly the same as MaxPW.

For a more in-depth analysis about the performance of the best HH in this experiment,
we plotted the performance of Best-HH, as well as of the best and worst heuristic for each
particular instance in set α2. For clarity, the results are sorted (from larger to smaller) on
the profit obtained by Best-HH on each instance in the set. Figure 3 depicts the profit of
each method across all instances. As we can observe, there are many cases where Best-HH
obtains a smaller profit than the best heuristic for each particular instance.

Appl. Sci. 2021, 11, 10209 13 of 22

Table 5. Ranks and total profit obtained by the four heuristics and the best, median, and worst
hyper-heuristics trained on 60% of set α1 and tested on set α2. The best result, measured in terms of
total profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 86 100 0 91 0 0 0
1.5 0 0 5 4 0 5 4
2.0 0 1 6 5 11 6 5
2.5 0 0 100 0 100 100 100
3.0 2 0 4 0 9 4 2
3.5 1 0 274 1 274 274 274
4.0 0 0 5 1 5 5 12
4.5 0 0 6 0 1 6 1
5.0 11 21 0 78 0 0 2
5.5 0 1 0 1 0 0 0
6.0 18 195 0 183 0 0 0
7.0 282 82 0 36 0 0 0

Profit 241,081 343,872 467,145 376,148 467,182 467,145 466,711

Figure 3. Profit per instance obtained by the best hyper-heuristic trained on 60% of set α1 and the
best and worst heuristic per instance on set α2.

4.2.3. Exploratory Experiment III

So far, we have observed that, even though it is possible to overcome the best individ-
ual performer for each instance in some specific cases, oftentimes the HHs tend to replicate
the behavior of the overall best heuristic (MaxPW for sets α1 and α2). Although this is not a
bad result—the model produces very competent HHs, it is difficult to justify the additional

Appl. Sci. 2021, 11, 10209 14 of 22

time devoted to producing such HHs given the small gains with respect to MaxPW. For this
reason, in this experiment we wanted to explore the case where the HHs can only choose
among Def, MaxP, and MinW (all the available heuristics but MaxPW) and evaluate if the HHs
produced may still be considered competent. As in the previous experiments, we generated
30 HHs by training on set α1 for 200 iterations each, and testing on set α2. In all the cases,
the HHs have an initial cardinality of 12 heuristics.

A comparison between the total profits of Best-HH and MaxPW (Table 6) reveals that
a significant efficiency was lost due to the removal of MaxPW from the pool of heuristics
(Figure 4). However, all three representative HHs (best, median, and worst) obtained
the second rank in terms of total profit. The profit of Best-HH shows an improvement of
nearly 6% and over 64% with respect to the MinW and Def heuristics, respectively. Therefore,
the model can learn in harsh conditions and thus obtains promising results regardless of
whether it was given a pool of heuristics with limited quality.

Figure 4. Profit per instance obtained by the best hyper-heuristic trained on set α1 (removing MaxPW
from the pool of available heuristics) and the best and worst heuristic per instance on set α2 (including
MaxPW in the comparison).

4.3. Confirmatory Experiments

Seeking to test the generalization properties of the proposed HH model, we conducted
three additional experiments that now incorporate problem instances taken from the
literature. These experiments were conducted in a similar way to the exploratory ones:
each one involves the generation of 30 HHs with an initial cardinality of 12, which were
trained for 200 iterations. However, this time we tried some combinations of the instance
sets for training and testing. The rationale behind these experiments is to observe how well
the HHs adapt to changes in the properties of the instances being solved with respect to
the instances used for producing such HHs.

Appl. Sci. 2021, 11, 10209 15 of 22

Table 6. Ranks and total profit obtained by the four heuristics and the best, median, and worst hyper-
heuristics trained on set α1 and tested on set α2, but MaxPW is not available for the hyper-heuristics.
The best result, measured in terms of total profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 83 99 111 96 0 0 0
1.5 3 0 2 2 1 2 2
2.0 13 2 219 1 49 39 8
2.5 0 0 5 3 19 32 31
3.0 1 14 30 19 82 61 37
3.5 0 0 5 1 49 87 106
4.0 1 4 14 16 70 51 59
4.5 0 0 1 3 33 67 84
5.0 0 26 13 91 53 33 42
5.5 0 1 0 12 17 18 22
6.0 17 176 0 129 18 6 5
6.5 0 0 0 6 7 2 3
7.0 282 78 0 21 2 2 1

Profit 241,081 343,872 467,145 376,148 397,373 395,586 391,940

4.3.1. Confirmatory Experiment I

So far, we have evaluated the performance of HHs on instances similar to the ones
used for training, under various scenarios. In the first confirmatory experiment, we use all
the instances from set α1 to train the HHs, but test their performance on set β1. Let us recall
that set β1 contains 600 hard instances proposed by Pisinger [45] and feature 20 items and
different capacities. The relevant issue regarding set β1 is that such instances are considered
hard to solve.

Table 7 shows that MaxPW is, once again, the best individual performer in this experi-
ment. Although all the produced HHs perform similarly (cf. Worst-HH), they are unable to
improve upon the results obtained by the best heuristic. Nonetheless, all the HHs produced
obtained a total profit larger than those obtained by the remaining heuristics.

Table 7. Ranks and total profit obtained by the four heuristics and the best, median, and worst
hyper-heuristics trained on set α1 and tested on set β1. The best result, measured in terms of total
profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 24 116 32 10 42 39 31
1.5 16 20 71 11 60 39 25
2.0 32 41 111 79 124 57 33
2.5 14 19 80 27 56 54 54
3.0 54 47 63 38 59 84 77
3.5 18 4 62 16 48 47 43
4.0 69 33 47 35 53 98 79
4.5 30 3 42 14 32 44 47
5.0 63 31 26 48 46 73 94
5.5 22 4 31 17 21 13 24
6.0 190 43 20 64 36 42 75
6.5 15 6 13 14 5 2 3
7.0 53 233 2 227 18 8 15

Profit 3,804,271 3,724,588 4,039,708 3,867,345 4,031,981 3,958,061 3,905,734

Appl. Sci. 2021, 11, 10209 16 of 22

Even if the HHs were incapable of overcoming MaxPW in this experiment, it is inter-
esting to see how close their performance is, especially as these HHs were trained with
instances of a different type than those used for testing.

4.3.2. Confirmatory Experiment II

In the previous experiment, we evaluated the performance of HHs trained on balanced
sets of instances when tested on hard instances, and we observed a limited capacity to
deal with such instances. In this experiment, we show that this behaviour is not due to the
hardness of the instances, but because of the discrepancy between the instances used for
training and the ones used for testing. For this reason, this experiment is twofold: (1) we
test how HHs behave when trained and tested on hard instances (set β1) and (2) we try
to reduce the effect of MaxPW in the resulting HHs by reducing the number of instances in
the training set. Then, we produced 30 new HHs using only 60% of the instances in set
β1 for training purposes. As in previous experiments, the 60% instances were randomly
selected once and used for producing the 30 HHs. For consistency, the maximum number
of iterations for the EA was set to 200 and all the HHs were initialized to a cardinality of
12. The HHs produced in this experiment were evaluated on the remaining 40% of the
instances in set β1. The results for rankings and total profit derived from this experiment
are summarized in Table 8.

Table 8. Ranks and total profit obtained by the four heuristics and the best, median, and worst
hyper-heuristics trained on 60% of set β1 and tested on the remaining 40% of set β1. The best result,
measured in terms of total profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 16 54 3 3 12 4 2
1.5 1 0 6 5 13 3 16
2.0 14 8 10 9 29 28 20
2.5 2 5 47 3 51 59 59
3.0 14 16 54 30 67 64 56
3.5 3 3 20 0 19 25 22
4.0 19 13 24 12 16 21 13
4.5 4 1 29 11 18 20 21
5.0 30 19 10 19 10 8 11
5.5 9 3 21 13 4 6 6
6.0 101 16 9 28 1 0 10
6.5 6 4 6 10 0 2 2
7.0 21 98 1 97 0 0 2

Profit 1,584,007 1,540,100 1,673,387 1,600,015 1,681,403 1,681,127 1,678,375

This experiment confirms the importance of the instances used for training and their
similarity with those solved during the test process. This time, the performance of most
of the hyper-heuristics produced using 60% of set β1 when tested on the remaining 40%
of set β1 improve on MaxPW (the best heuristic for this set). In fact, the performance of
Worst-HH is practically the same as MaxPW (Figure 5). Although the results suggest that an
improvement in the total profit can be obtained by using the proposed hyper-heuristic
approach, the gain in profit derived from using Best-HH instead of MaxPW is rather small
(<0.5%). However, this result should not be interpreted as an indication that Best-HH is
replicating the behavior of MaxPW. In fact, their overall profit is similar (with a small gain
for Best-HH but their specific performance is not. As depicted in Figure 6, when the ranks
are analyzed, we observe that Best-HH obtains better results in more cases than the best
individual heuristic, MaxPW.

Appl. Sci. 2021, 11, 10209 17 of 22

Figure 5. Profit per instance obtained by the best hyper-heuristic trained on 60% of set β1, and the
best and worst heuristic per instance on the remaining 40% of set β1.

Figure 6. Frequency of the ranks obtained by MaxPW and Best-HH (trained on 60% of set β1) the
remaining 40% of set β1.

4.3.3. Confirmatory Experiment III

In this final experiment, we extend our analysis to hard and larger instances. This
time, we produced 30 HHs by using 60% of set β2 and tested them on the remaining 40%
of the same set. With this experiment, we validate that the learning method is quite stable
as it still produces competent hyper-heuristics. Despite the fact that the set comprised
instances with different features, all three cases beat the best operator (MaxPW) in isolation.
Additionally, setting a good training set seems to impact the efficiency of the HH model.

Appl. Sci. 2021, 11, 10209 18 of 22

Training done on α1 seemed to negatively affect the results, as seen on exploratory
experiment I and confirmatory experiment I. It is important to note that sets α1 and α2 are
balanced and synthetically produced. Thus, 25% of the problem instances are designed
to maximize the performance of a single low-level heuristic. This pattern is repeated for
all the heuristics in this set. Conversely, hard problem instances from sets β1 and β2 are
randomly sampled (without replacement) using three different seeds. This training scheme
is more representative of real-life applications, where often no balanced or ideal conditions
are met.

The model’s behavior is similar to what we observed in previous cases. The hyper-
heuristics trained on hard and larger instances are still competitive regarding the single
heuristics applied in isolation. This time, the improvement on MaxPW is smaller than in
previous cases (<0.01%). Table 9 shows that, as in previous cases, there is a difference in the
behavior of the heuristics and HHs in terms of ranks, but it does not necessarily represent
a significant difference in terms of total profit. However, when we analyze the success rate,
we observe that Best-HH obtains promising results, (0.6542, 0.0958). This indicates that
in little more of 65% of the instances in the 40% of set β2 used for testing, Best-HH was
equal in performance to the best out of the four heuristics. Besides, in almost 10% of the
instances for the same set, Best-HH improved upon this result.

Table 9. Ranks and total profit obtained by the four heuristics and the best, median, and worst
hyper-heuristics trained on 60% of set β2 and tested on the remaining 40% of set β2. The best result,
measured in terms of total profit, is highlighted in bold.

Heuristics Hyper-Heuristics

Rank Def MaxP MaxPW MinW Best-HH Median-HH Worst-HH

1.0 10 20 0 15 10 4 15
1.5 1 1 4 2 8 6 2
2.0 10 12 14 2 23 19 7
2.5 0 1 81 2 80 82 80
3.0 14 25 62 33 62 71 63
3.5 1 2 31 3 29 30 26
4.0 3 5 9 9 8 6 16
4.5 0 0 17 6 10 11 12
5.0 25 27 4 44 2 3 4
5.5 3 2 15 8 7 8 9
6.0 140 34 2 27 1 0 5
6.5 1 1 1 0 0 0 1
7.0 32 110 0 89 0 0 0

Profit 3,752,072 3,631,322 4,046,715 3,930,092 4,052,501 4,052,039 4,045,794

4.4. Discussion

We would like to discuss the rationale behind the proposed model and why it may be
useful for other problem domains besides the one studied in this document.

As with other packing problems, the iterative nature of KP makes it a great candidate
for a hyper-heuristic approach. The inherent mapping of problem states to decisions (or,
in this case, packing heuristics) can lead to an optimal item selection by overfitting if the
relationship were to be searched exhaustively. A generalization of this item selection is
the basis of the rationale behind this approach. Furthermore, the advantages of mixing
heuristics have previously been discussed in detail for various optimization and search
problems [27,58].

The evidence obtained from the experiments confirms that it is possible to produce
a sequence of heuristics that provides an acceptable performance when tested on a set of
instances. Allow us to explain this in more detail. Let us assume that a hyper-heuristic HH1
is to be produced for solving only one KP instance with n items, KP1. If the cardinality
of the hyper-heuristic is equal to the number of items to pack (v = n), then HH1 can

Appl. Sci. 2021, 11, 10209 19 of 22

decide which heuristic to use for packing each item. Among all the possible HHs that
could be produced, there is one where all the decisions are correct, HH∗1 , which represents
the optimal sequence to pack the items in KP1, given the available heuristics. Now, let us
produce a new hyper-heuristic HH∗2 , the best sequence of heuristics for solving a second
KP instance, KP2, also containing n items (the simplest case for the analysis). There is no
guarantee that the previous hyper-heuristic, HH∗1 , will also represent the optimal sequence
of heuristics for solving KP2. If we keep the idea of having one individual decision per item,
only a few of these decisions will be the same for both sequences, HH∗1 and HH∗2 . In order
to merge the two sequences, some errors must be accepted. The task of the evolutionary
framework is to decide which errors to accept so that the performance is the best among
all the instances in the training set. Overall, the model is not looking for the best sequence
of heuristics for each particular instance but the best sequence to solve, acceptably, all the
instances in the training set.

5. Conclusions and Future Work

In this work, we analyzed the efficiency of a selection HH which does not depend on
problem characterization. The analysis showed that the learning mechanism deals very
well on all instances despite its simple parameters. For small instances like the ones in
sets α1 and α2, the MaxPW heuristic seemed like the most suitable heuristic in isolation.
The instances used for training were generated with one packing heuristic in mind. Instead,
instances in the literature are considered harder and represent a challenge for a single
heuristic in isolation. It is also important to note that the instance sets may be considered
small, so the learning process was not computationally expensive. For larger datasets with
more instances to solve, a HH could perform better if one has adequate resources for the
learning process.

Our work proves the feasibility of a feature-independent hyper-heuristic approach
powered by an evolutionary algorithm. The results confirm our idea that it is possible
to generate generic sequences of heuristics that perform better than individual heuristics
for specific sets of instances. Our results also demonstrate that the similarity between
the training and testing instances influences the model’s performance. In other words,
the model can generalize to unseen types of instances, but the ideal scenario would be
to train the hyper-heuristics on instances with similar features to the ones to be solved
when training is over. At this point, we consider it fair to mention that we are aware of the
diversity of the optimization problems. We have selected the KP because it was convenient
for our study, as we can easily develop and test hyper-heuristics for this particular problem.
However, many other exciting problems could have also been considered in this regard.
Our interest was to propose a new hyper-heuristic method to deal with instances that are
hard to solve by exact methods.

Many considerations could be taken into account to improve the analysis. Fixing the
size of HHs and setting a single heuristic per gene in the model may impact the frequency
analysis. Adding more mutation operators and tweaking their probability distribution
is also something to consider for future work. More importantly, extending the amount
of packing heuristics to choose from, though increasing the heuristic search space, may
display more explicit differences between heuristic sequences. Once again, we would like to
emphasize that the selection HH proposed did not deal with any problem characterization
or feature analysis. Adding problem characterization may improve the performance of the
learning process even more at the expense of some additional computational effort.

Although we have not tested the proposed model on other NP-hard optimization
problems, we are confident that the model can work correctly on similar problems such as
packing and scheduling. Based on our experience, those problems show similar properties
that allow hyper-heuristics to grasp the structure of the instances and decide which heuristic
to apply at certain times of the solving process. Therefore, the proposed model should
perform properly. Nonetheless, testing our approach on other challenging problems is,
undoubtedly, a path for future work.

Appl. Sci. 2021, 11, 10209 20 of 22

Author Contributions: Conceptualization, X.S.-D. and J.C.O.-B.; methodology, X.S.-D., I.A. and
J.M.C.-D.; software, X.S.-D. and J.C.O.-B.; validation, I.A. and J.M.C.-D.; formal analysis, X.S.-D.;
investigation, X.S.-D., H.T.-M. and S.E.C.-P.; resources, J.C.O.-B.; data curation, X.S.-D.; writing—
original draft preparation, X.S.-D.; writing—review and editing, J.C.O.-B., I.A. and J.M.C.-D.; vi-
sualization, X.S.-D., I.A. and J.M.C.-D.; supervision, H.T.-M. and S.E.C.-P.; project administration,
J.C.O.-B.; funding acquisition, I.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the research group with strategic focus in intelligent
systems at ITESM, grant NUA A00834075, and CONACyT Basic Science projects with grant number
287479 and fellowship 2021-000001-01NACF-00604.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sánchez, M.; Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Ceballos, H.; Terashima-Marín, H.; Amaya, I. A Systematic Review of

Hyper-heuristics on Combinatorial Optimization Problems. IEEE Access 2020, 1–28. [CrossRef]
2. Bai, R.; Burke, E.K.; Gendreau, M.; Kendall, G.; McCollum, B. Memory Length in Hyper-heuristics: An Empirical Study. In

Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling, SCIS ’07, Honolulu, HI, USA, 2–4 April 2007;
pp. 173–178. [CrossRef]

3. Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art.
J. Oper. Res. Soc. 2013, 64, 1695–1724. [CrossRef]

4. Pillay, N.; Qu, R. Hyper-Heuristics: Theory and Applications; Natural Computing Series; Springer International Publishing: Cham,
Switzerland, 2018; doi:10.1007/978-3-319-96514-7. [CrossRef]

5. Poli, R.; Graff, M. There is a free lunch for hyper-heuristics, genetic programming and computer scientists. In Proceedings
of the 12th European Conference on Genetic Programming (EuroGP 2009), Tübingen, Germany, 15–17 April 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 195–207._17. [CrossRef]

6. Özcan, E.; Bilgin, B.; Korkmaz, E.E. A Comprehensive Analysis of Hyper-heuristics. Intell. Data Anal. 2008, 12, 3–23. [CrossRef]
7. Hart, E.; Sim, K. A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling. Evol. Comput. 2016, 24, 609–635. [CrossRef]

[PubMed]
8. Hyde, M. A Genetic Programming Hyper-Heuristic Approach to Automated Packing. Ph.D. Thesis, University of Nottingham,

Nottingham, UK, 2010.
9. Drake, J.H.; Hyde, M.; Ibrahim, K.; Özcan, E. A Genetic Programming Hyper-Heuristic for the Multidimensional Knapsack

Problem. In Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems, Limerick, Ireland, 23–24
August 2012.

10. Lourenço, N.; Pereira, F.B.; Costa, E. The Importance of the Learning Conditions in Hyper-heuristics. In Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, Amsterdam, The Netherlands, 6–10 July 2013; ACM:
New York, NY, USA, 2013; pp. 1525–1532. [CrossRef]

11. Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. J. Heuristics 1996, 2, 5–30. [CrossRef]
12. Ortiz-Bayliss, J.C.; Moreno-Scott, J.H.; Terashima-Marín, H. Automatic Generation of Heuristics for Constraint Satisfaction

Problems. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2013); Studies in Computational Intelligence; Springer:
Cham, Switzerland, 2013; Volume 512, pp. 315–327._24. [CrossRef]

13. Hart, E.; Sim, K. On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System. In Proceedings of
the International Conference on Parallel Problem Solving from Nature—PPSN XIII, Ljubljana, Slovenia, 13–17 September 2014;
Volume 8672, pp. 282–291.

14. Sim, K.; Hart, E. An Improved Immune Inspired Hyper-heuristic for Combinatorial Optimisation Problems. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14, Vancouver, BC, Canada, 12–16 July 2014;
ACM: New York, NY, USA, 2014; pp. 121–128. [CrossRef]

15. Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.; Terashima-Marin, H. Hyper-heuristics Reversed: Learning to Combine Solvers
by Evolving Instances. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand,
10–13 June 2019; pp. 1790–1797. [CrossRef]

16. Hart, E.; Sim, K. On Constructing Ensembles for Combinatorial Optimisation. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’17, Berlin, Germany, 15–19 July 2017; ACM: New York, NY, USA, 2017; pp. 5–6.
[CrossRef]

17. Burke, E.K.; Hyde, M.R.; Kendall, G.; Woodward, J. Automating the Packing Heuristic Design Process with Genetic Programming.
Evol. Comput. 2012, 20, 63–89._a_00044. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3009318
http://dx.doi.org/10.1109/SCIS.2007.367686
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1007/978-3-319-96514-7
http://dx.doi.org/10.1007/978-3-642-01181-8_17
http://dx.doi.org/10.3233/IDA-2008-12102
http://dx.doi.org/10.1162/EVCO_a_00183
http://www.ncbi.nlm.nih.gov/pubmed/27120113
http://dx.doi.org/10.1145/2463372.2463558
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.1007/978-3-319-01692-4_24
http://dx.doi.org/10.1145/2576768.2598241
http://dx.doi.org/10.1109/CEC.2019.8789928
http://dx.doi.org/10.1145/3067695.3084379
http://dx.doi.org/10.1162/EVCO_a_00044

Appl. Sci. 2021, 11, 10209 21 of 22

18. Drake, J.H.; Özcan, E.; Burke, E.K. Modified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem. In
Genetic and Evolutionary Computing; Sun, H., Yang, C.Y., Lin, C.W., Pan, J.S., Snasel, V., Abraham, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 225–234.

19. Drake, J.H.; Özcan, E.; Burke, E.K. A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the
Multidimensional Knapsack Problem. Evol. Comput. 2016, 24, 113–141._a_00145. [CrossRef]

20. Duhart, B.; Camarena, F.; Ortiz-Bayliss, J.C.; Amaya, I.; Terashima-Marín, H. An Experimental Study on Ant Colony Optimization
Hyper-Heuristics for Solving the Knapsack Problem. In Pattern Recognition; Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.,
Olvera-López, J.A., Sarkar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 62–71.

21. Gómez-Herrera, F.; Ramirez-Valenzuela, R.A.; Ortiz-Bayliss, J.C.; Amaya, I.; Terashima-Marín, H. A Quartile-Based Hyper-
heuristic for Solving the 0/1 Knapsack Problem. In Advances in Soft Computing; Castro, F., Miranda-Jiménez, S., González-
Mendoza, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 118–128.

22. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2020, 285, 405–428.
[CrossRef]

23. Wilbaut, C.; Hanafi, S.; Salhi, S. A survey of effective heuristics and their application to a variety of knapsack problems. IMA J.
Manag. Math. 2008, 19, 227. [CrossRef]

24. Rice, J.R. The Algorithm Selection Problem. Adv. Comput. 1976, 15, 65–118. [CrossRef]
25. Garza-Santisteban, F.; Sanchez-Pamanes, R.; Puente-Rodriguez, L.A.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.; Terashima-

Marin, H. A Simulated Annealing Hyper-heuristic for Job Shop Scheduling Problems. In Proceedings of the 2019 IEEE Congress
on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 57–64. [CrossRef]

26. Alanazi, F.; Lehre, P.K. Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In Proceedings of the
2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2515–2523. [CrossRef]

27. Lehre, P.K.; Özcan, E. A Runtime Analysis of Simple Hyper-heuristics: To Mix or Not to Mix Operators. In Proceedings of the
Twelfth Workshop on Foundations of Genetic Algorithms XII, FOGA XII ’13, Adelaide, Australia, 16–20 January 2013; ACM:
New York, NY, USA, 2013; pp. 97–104. [CrossRef]

28. Ortiz-Bayliss, J.C.; Terashima-Marín, H.; Özcan, E.; Parkes, A.J.; Conant-Pablos, S.E. Exploring heuristic interactions in constraint
satisfaction problems: A closer look at the hyper-heuristic space. In Proceedings of the 2013 IEEE Congress on Evolutionary
Computation, Cancun, Mexico, 20–23 June 2013; pp. 3307–3314. [CrossRef]

29. Amaya, I.; Ortiz-Bayliss, J.C.; Rosales-Pérez, A.; Gutiérrez-Rodríguez, A.E.; Conant-Pablos, S.E.; Terashima-Marín, H.; Coello,
C.A. Enhancing Selection Hyper-Heuristics via Feature Transformations. IEEE Comput. Intell. Mag. 2018, 13, 30–41. [CrossRef]

30. Sánchez-Díaz, X.F.C.; Ortiz-Bayliss, J.C.; Amaya, I.; Cruz-Duarte, J.M.; Conant-Pablos, S.E.; Terashima-Marín, H. A Preliminary
Study on Feature-independent Hyper-heuristics for the 0/1 Knapsack Problem. In Proceedings of the 2020 IEEE Congress on
Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [CrossRef]

31. Dudzinski, K.; Walukiewicz, S. Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 1987, 28, 3–21.
[CrossRef]

32. Martello, S.; Pisinger, D.; Toth, P. New trends in exact algorithms for the 0–1 knapsack problem. Eur. J. Oper. Res. 2000,
123, 325–332. [CrossRef]

33. Lawler, E.L. Fast Approximation Algorithms for Knapsack Problems. Math. Oper. Res. 1979, 4, 339–356. [CrossRef]
34. Lienland, B.; Zeng, L. A Review and Comparison of Genetic Algorithms for the 0–1 Multidimensional Knapsack Problem. Int. J.

Oper. Res. Inf. Syst. 2015, 6, 21–31. [CrossRef]
35. Hembecker, F.; Lopes, H.; Godoy, W., Jr. Particle Swarm Optimization for the Multidimensional Knapsack Problem. In

Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Warsaw, Poland, 11–14 April 2007;
Volume 4331, pp. 358–365._40. [CrossRef]

36. Gómez, N.; López, L.; Albert, A. Multidimensional knapsack problem optimization using a binary particle swarm model with
genetic operations. Soft Comput. 2018, 22, 2567–2582. [CrossRef]

37. Razavi, S.; Sajedi, H. Cognitive discrete gravitational search algorithm for solving 0–1 knapsack problem. J. Intell. Fuzzy Syst.
2015, 29, 2247–2258. [CrossRef]

38. Patvardhan, C.; Bansal, S.; Srivastav, A. Quantum-Inspired Evolutionary Algorithm for difficult knapsack problems. Memetic
Comput. 2015, 7. [CrossRef]

39. Lv, J.; Wang, X.; Huang, M.; Cheng, H.; Li, F. Solving 0–1 knapsack problem by greedy degree and expectation efficiency. Appl.
Soft Comput. J. 2016, 41, 94–103. [CrossRef]

40. Kulkarni, A.J.; Shabir, H. Solving 0–1 Knapsack Problem using Cohort Intelligence Algorithm. Int. J. Mach. Learn. Cybern. 2016,
7, 427–441. [CrossRef]

41. Banda, J.; Velasco, J.; Berrones, A. A hybrid heuristic algorithm based on Mean-Field Theory with a Simple Local Search for the
Quadratic Knapsack Problem. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastián,
Spain, 5–8 June 2017; pp. 2559–2565. [CrossRef]

42. Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990.
43. Kellerer, H.; Pferschy, U.; Pisinger, D. Knapsack Problems; Springer: Berlin, Germany, 2004.
44. Furini, F.; Monaci, M.; Traversi, E. Exact approaches for the knapsack problem with setups. Comput. Oper. Res. 2018, 90.

[CrossRef]

http://dx.doi.org/10.1162/EVCO_a_00145
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1093/imaman/dpn004
http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1109/CEC.2019.8790296
http://dx.doi.org/10.1109/CEC.2014.6900602
http://dx.doi.org/10.1145/2460239.2460249
http://dx.doi.org/10.1109/CEC.2013.6557975
http://dx.doi.org/10.1109/MCI.2018.2807018
http://dx.doi.org/10.1109/CEC48606.2020.9185671
http://dx.doi.org/10.1016/0377-2217(87)90165-2
http://dx.doi.org/10.1016/S0377-2217(99)00260-X
http://dx.doi.org/10.1287/moor.4.4.339
http://dx.doi.org/10.4018/ijoris.2015040102
http://dx.doi.org/10.1007/978-3-540-71618-1_40
http://dx.doi.org/10.1007/s0050
http://dx.doi.org/10.3233/IFS-151700
http://dx.doi.org/10.1007/s12293-015-0162-1
http://dx.doi.org/10.1016/j.asoc.2015.11.045
http://dx.doi.org/10.1007/s13042-014-0272-y
http://dx.doi.org/10.1109/CEC.2017.7969616
http://dx.doi.org/10.1016/j.cor.2017.09.019

Appl. Sci. 2021, 11, 10209 22 of 22

45. Pisinger, D. Where Are the Hard Knapsack Problems? Comput. Oper. Res. 2005, 32, 2271–2284. [CrossRef]
46. Sun, X.; Sheng, H.; Li, D. An exact algorithm for 0–1 polynomial knapsack problems. J. Ind. Manag. Optim. 2007, 3, 223–232.

[CrossRef]
47. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A classification of hyper-heuristic approaches:

Revisited. In Handbook of Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 453–477.
48. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.

2019, 137, 106040. [CrossRef]
49. Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 IEEE International

Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India,
22–24 December 2016; pp. 261–265.

50. Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marín, H. A Primary Study on Hyper-
Heuristics to Customise Metaheuristics for Continuous Optimisation. In Proceedings of the 2020 IEEE Congress on Evolutionary
Computation, Glasgow, UK, 19–24 July 2020.

51. Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Amaya, I.; Shi, Y.; Terashima-Marín, H.; Pillay, N. Towards a Generalised Metaheuristic
Model for Continuous Optimisation Problems. Mathematics 2020, 8, 2046. [CrossRef]

52. Salov, V. Notation for Iteration of Functions, Iteral. arXiv 2012, arXiv:1207.0152.
53. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review; Elsevier Inc.: London, UK,

2018; pp. 185–231. [CrossRef]
54. Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [CrossRef]
55. Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland, 2019; pp. 43–55.
56. Burke, E.K.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A Classification of Hyper-heuristic Approaches. In

Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 449–468._15. [CrossRef]
57. Plata-González, L.F.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marín, H.; Coello Coello, C.A. Evolutionary-

based tailoring of synthetic instances for the Knapsack problem. Soft Comput. 2019, 23, 12711–12728. [CrossRef]
58. Epstein, S.L.; Petrovic, S. Learning a Mixture of Search Heuristics. In Autonomous Search; Hamadi, Y., Monfroy, É., Saubion, F., Eds.;

Springer: Berlin/Heidelberg, Germany, 2012; pp. 97–127._5. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2004.03.002
http://dx.doi.org/10.3934/jimo.2007.3.223
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.3390/math8112046
http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/s00500-019-03822-w
http://dx.doi.org/10.1007/978-3-642-21434-9_5

	Introduction
	Background
	Knapsack Problem
	Heuristics
	Evolutionary Algorithms (EAs)

	Proposed Hyper-Heuristic Model
	Hyper-Heuristic Training
	Mutation Operators
	The Knapsack Problem Instances
	Performance Metrics

	Experiments and Results
	Preliminary Experiments
	Preliminary Experiment I
	Preliminary Experiment II

	Exploratory Experiments
	Exploratory Experiment I
	Exploratory Experiment 2
	Exploratory Experiment III

	Confirmatory Experiments
	Confirmatory Experiment I
	Confirmatory Experiment II
	Confirmatory Experiment III

	Discussion

	Conclusions and Future Work
	References

