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Abstract: Scoliosis is a widespread medical condition where the spine becomes severely deformed
and bends over time. It mostly affects young adults and may have a permanent impact on them. A
periodic assessment, using a suitable modality, is necessary for its early detection. Conventionally,
the usually employed modalities include X-ray and MRI, which employ ionising radiation and are
expensive. Hence, a non-radiating 3D ultrasound imaging technique has been developed as a safe
and economic alternative. However, ultrasound produces low-contrast images that are full of speckle
noise, and skilled intervention is necessary for their processing. Given the prevalent occurrence of
scoliosis and the limitations of scalability of human expert interventions, an automatic, fast, and
low-computation assessment technique is being developed for mass scoliosis diagnosis. In this
paper, a novel hybridized light-weight convolutional neural network architecture is presented for
automatic lateral bony feature identification, which can help to develop a fully-fledged automatic
scoliosis detection system. The proposed architecture, Light-convolution Dense Selection U-Net (LDS
U-Net), can accurately segment ultrasound spine lateral bony features, from noisy images, thanks
to its capabilities of smartly selecting only the useful information and extracting rich deep layer
features from the input image. The proposed model is tested using a dataset of 109 spine ultrasound
images. The segmentation result of the proposed network is compared with basic U-Net, Attention
U-Net, and MultiResUNet using various popular segmentation indices. The results show that LDS
U-Net provides a better segmentation performance compared to the other models. Additionally, LDS
U-Net requires a smaller number of parameters and less memory, making it suitable for a large-batch
screening process of scoliosis without a high computational requirement.

Keywords: lateral bony feature; depthwise separable convolution; segmentation; scoliosis; ultra-
sound; U-Net

1. Introduction

Scoliosis is a deformation of the spinal cord, usually in an S or C shape with a curvature
generally greater than 10◦, that occurs in the coronal plane between the dorsal and ventral
parts. In some cases, the degree of curvature is stable but in other cases, it increases
over time. This ailment primarily starts from adolescence [1]. Hence, it is necessary to
screen the children. The current study shows that the overall occurrence of adolescent
idiopathic scoliosis (AIS) is 0.47–5.2% of the total population [2], and is quite prevalent in
many regions such as China (5%), Hong Kong (3–4%), and the USA (2%). There are no
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early signs of idiopathic scoliosis. As the spinal deformation aggravates, patients develop
some physical irregularities such as uneven shoulders, inflated curvature of the spine,
disproportional alignment of hips, or back pain and discomfort. If not treated properly,
progressive scoliosis may cause constant back pain, breathing problems, or even physical
disability for life [3–5]. The early detection of scoliosis is critical to prevent the worsening
of the spine over time.

The conventional method of diagnosis of scoliosis is using Cobb’s measurement
technique to measure the curvature angle of the spine on a standing radiograph [6]. If two
lines are drawn so that one is perpendicular to the upper endplate of the most titled upper
vertebra and another is perpendicular to the lower endplate of the most tiled lower vertebra,
then the angle between them is known as the Cobb angle [6]. However, the traditional
radiography method is not preferred for periodic diagnosis of scoliosis as ionising radiation
may cause cancer. According to research, excessive ionising radiation exposure can cause
breast cancer in girls and may result in leukaemia and prostate cancer in general [7]. Levy
et al. established that an AIS patient who had undergone frequent X-ray scans had a
2–4% higher chance of becoming affected by cancer vis-à-vis normal young people [7]. In
improved X-ray modalities such as EOS, where the radiation dosage is 8–10 times lower
than traditional X-rays, there is still an accumulation of an ionising radiation dose that
could lead to adverse effects in the long run [8–10].

Alternatively, magnetic resonance imaging (MRI), a radiation-free technology, can
also be used for the 3D assessment of spine curvature. However, for scoliosis detection,
the patient has to be in a standing posture, something that is a challenge in MRI as such
scanning would require specialized MRI installation and a long operation time [11].

Ultrasound imaging is a non-radiating imaging modality that is used extensively in
the medical field due to its low cost and high portability. This modality works on the
principle of capturing the reflected ultrasound from the cortical surface of the internal
organs and mapping their topographical information [12]. A recent invention in this field is
freehand 3D ultrasound, where the conventional 2D ultrasound is combined with position
sensors [13,14].

Zheng et al. developed a 3D ultrasound system called the Scolioscan system [15]. The
Scolioscan system is made of an ultrasound scanner with a built-in linear probe, a frame
structure, an electromagnetic spatial sensing device, and propriety software. The procedure
involves freehand scanning with the probe from the bottom to the top of the patient’s
back, covering the whole spine area, while the electromagnetic spatial sensing device
continuously detects the probe’s position and orientation. B-mode images, collected along
with their corresponding position and orientation information, are used to reconstruct into a
3D image thereby forming the coronal view of the spine using the volume projection image
(VPI) method [16]. Through this research, Zheng et al. demonstrated the reliability of the
new Scolioscan system for scoliosis diagnosis [15] and efficacy vis-à-vis the conventional
radiographic Cobb method [2]. Medium to strong correlation between the Scolioscan angles
and X-ray Cobb angles was evidenced, along with very good intra and inter-observer
reliability and an intra-class correlation >0.87. Scolioscan, therefore, can be taken as a
promising 3D ultrasound imaging system for scoliosis screening and monitoring curve
progression [2].

However, the current technique requires manual annotation for the measurement
of the spine curvature angle, which in turn is dependent on the examiner’s judgment,
expertise, and measurement speed. As a result, the manual intervention would limit the
number of cases that can be handled at a given time, depending on the availability of
the examiner.

As an improvement, a semi-automatic measurement of spine curvature angle was
developed. It used a 6th order polynomial curve fitting method to estimate the spine curve
equation [17]. However, in this method, tangent lines were inputted manually with human
judgment. Zhou et al. then worked on an automatic measurement of spine curvature
using 3D ultrasound image pre-processing with phase congruency and a newly developed
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two-fold threshold strategy [18]. This method overcame the limitations of manual measure-
ment of spine curvature angles (e.g., variations in measurements). However, Zhou et al.
concluded that the computational time of this method was uneconomic as the program
spent a lot of time computing the phase congruencies of the images [18]. This method was
also not helpful for fast processing and detection.

There are two serious challenges associated with any ultrasound image that degrade
the quality of output images. These are (i) speckle noise, which is caused by reasons such
as air gap between the device and patient’s body (Figure 1b), inconsistencies of ultrasound
gel layer during scanning, improper scanning speed (Figure 1c), or other system losses;
and (ii) low image contrast produced because the speed of sound varies for various tissues,
and it is often difficult to separate fat and water-based tissues. As speckle noise appears as
information, it makes the clinical data hard to differentiate [19], and the low contrast of the
image causes unnecessary distractions for medical practitioners.

Figure 1. Various noise in ultrasound spine image (a), raw image (b), and (c) types of speckle noises.

1.1. Need for Segmentation of Bony Features

An alternative way of measuring a new parameter, called ultrasound curve angle
(UCA), which is equivalent to radiographic Cobb angle [20], is illustrated in Figure 2. A 3D
volume projection image is sliced into nine 2D coronal plane images of different depths for
scoliosis detection. One such 2D ultrasound spine image is shown in Figure 2a. Figure 2b
illustrates the various segments of the spine—the thoracic bony features, rib, T12 level, and
lumbar bony features. Figure 2c,d outlines the current methodology used by a medical
expert to calculate the UCA. The most tilted thoracic bony features (TBFs) and lumbar
bony features (LBFs) are identified by expert judgment. Further steps involve drawing
lines through the centre of the identified TBF and LBF pairs (Figure 2c) and allocating lines
to measure the UCA (Figure 2d) [20]. Hence, the clear segmentation of bony features is an
important step for the UCA measurement process.
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Figure 2. Ultrasound curve angle (UCA) measurement of (a) original ultrasound spine image
and (b) marked lateral bony features with three types of anatomical features. (c,d) Illustration of
methodology.

1.2. Variabilities in Lateral Bony Features

The locations, shapes, and sizes of the bony features were different (Figure 3a–c) as
were the UCA (Figure 3d–f). The slopes between two endpoints of two adjacent bony
features were also different (Figure 3d–f). The variability of LBFs and TBFs presents a
unique challenge.

Figure 3. (a–c): Lateral bony features of different shapes, sizes, and locations. (d–f) Slopes between
two adjacent bony features (thoracic) are different.

1.3. Medical Image Segmentation Using CNN

Machine learning techniques have been successfully applied in the field of medi-
cal diagnosis using ultrasound. Vedula et al. proposed the transformation of speckled,
blurry ultrasound images into better quality images using a convolutional neural network
(CNN) [21]. In the past few years, CNNs have been successfully used in various biomedical
image processing tasks including image classification [22–24], feature extraction [25], and
segmentation [26–29]. Semantic segmentation has become a prior interest area in medical
imaging [27,28,30–32]. However, automatic semantic segmentation of biomedical images
could be difficult when there is a variability of shapes and sizes of the anatomy between
patients as well as low contrast of surrounding tissues [33].

Among the many machine learning techniques, the U-Net architecture is particularly
successful in biomedical image segmentation [26]. U-Net can efficiently segment images
with a very limited number of the annotated training dataset. A U-Net consists of a
multi-layer deep encoder network that extracts spatial features from the image, and a
corresponding multi-layer deep decoder network that up-samples the feature maps to
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predict the segmentation masks. It uses the self-learning property of the convolution kernel
to input the original image and obtain the classification result. By increasing the number of
layers, the U-Net can extract considerably complex and detailed image features. Generally,
the shallower layers of U-Net are found to be capable of extracting some general features of
images, whereas the deeper layers could extract more specific features. U-Net and U-Net
like models have been used successfully in segmenting 2D or 3D ultrasound images of
breast lesion [34], human placenta [35], liver [36], spine anatomy [37–39], kidney [40], etc.

MultiResUNet [41], as an improved version of U-Net, was introduced to segment very
challenging images that cannot possibly be undertaken by basic U-Net such as images
having irregular shapes with multi-scaled features. In its architecture, Inception blocks [23]
were introduced in place of the conventional convolution layers of U-Net to help with
multilayer feature extraction. Additionally, to reduce the semantic gap between encoder–
decoder features, the normal convolution layers were replaced with residual connections
that made training easier [42].

Attention U-Net [43] improves the conventional U-Net with an attention gate for
medical imaging that automatically learns to focus on target structures of varying shapes
and sizes. Because of the small number of training data, dense connectivity is needed
in biomedical image processing. Dense connectivity can be successfully incorporated
within the encoder and decoder path [44,45]. Another semantic segmentation using Atrous
convolutions was introduced using the DeepLab family for better segmentation [46–48].

Recently, there is an increasing need to implement deep learning techniques for
medical problems on mobile phones, embedded systems, or any PC with high diag-
nostic accuracy and a low computational requirement. Most of the CNN models are
over-parameterized and need high computing power and memory for training and infer-
encing [49]. Depthwise separable convolution layers are the solution to this problem [50].
Depthwise separable convolution layers are successful in forming image classification
models in two ways: (a) they provide better models (e.g., Xception model [51]) than the
conventional convolution layers, with a considerably smaller number of parameters, and
(b), they reduce the memory space requirement when reducing the number of parameters
(e.g., the MoblieNets family of architectures [52]). Additionally, it has been found that
the regular convolution operations can be considered to be equivalent to the depthwise
separable convolution operations [53]. Hence, compared to conventional convolutional
layers, using depthwise convolution layers will have similar performance in terms of
accuracy, but require a smaller number of training parameters.

Inspired by the above work, we aimed to develop a low-computation novel hybridized
deep learning architecture to suitably segment the bony features in ultrasound spine
images. The proposed architecture has three main aspects: (a) the basic U-Net structure
is adopted as the network architecture, but the conventional convolutional layers are
replaced with dense depthwise separable convolution layers to increase the computational
efficiency; (b) selection gates [43] are deployed for a smarter identification of the target bony
features; and (c) the encoders–decoders are connected using multi-scale skip-pathways [41]
to enhance feature fusion. The segmentation result of the proposed architecture was
compared quantitatively and qualitatively with the basic U-Net [26], Attention U-Net [43],
and MultiResUNet [41] models.

2. Methodology

Our objective was to automatically segment, using a suitable CNN architecture, the
lateral bony features (LBFs and TBFs) in an ultrasound spine image, which is plagued with
speckle noise and low contrast. This paper has two main contributions:

(a) Development of a suitable architecture that can produce better segmentation results
vis-à-vis contemporary models while handling the inherent drawbacks of ultrasound
images; and

(b) Enhancement of the computational efficacy for a lightweight architecture.
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In a nutshell, a lightweight version of U-Net that contains densely connected dept-
wise separable convolution followed by pointwise convolution, multiscale skip connection,
and selection gates is proposed. It is inspired by several salient features used in other
models such as the U-Net, MultiResUNet, and Attention U-Net. Figure 4 illustrates the
architecture of the proposed network of Light-Convolution Dense Selection U-Net (LDS
U-Net). This network model was built on the concept of depthwise separable convolution
and has three main features: (a) novel light dense blocks, (b) improvised multi-scaled skip
connections, and (c) selection gates. The details of depthwise separable convolution and
the three features are given as follows.

Figure 4. Proposed architecture of LDS U-Net.

2.1. Depthwise Separable Convolution

Depthwise separable convolutions lessen the number of parameters and computation
used in convolutional operations while increasing representational efficacy [54]. This
kind of convolution can be applied to information such as spatial, depth dimensions,
and the number of channels. While normal convolution deals with a single convolution
operation, a depthwise separable convolution separates a kernel into two different kernels
that carry out two convolution operations, namely, the depthwise convolution and the
pointwise convolution. In the depthwise convolution, a spatial convolution is conducted
independently over each channel of the input. It is followed by a pointwise convolution,
where a 1× 1 convolution is conducted to map the depthwise channel output into a new
channel space [51].

A standard convolution layer works by applying a convolution kernel to all channels
of the input image and takes a weighted sum of the input pixels covered by the kernel
sliding across all input channels of the image. This means that for a standard convolution,
no matter how many input channels are available, the number of output channels is one.
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However, in depthwise separable convolutions, features are only learned from the input
channels. Therefore, the output layer has the same number of channels as the input.

Suppose in a convolution operation, the input is of size Pf × Pf × K with the feature
map f and generates an output of size Pg × Pg × L with the feature map g, where Pf is the
spatial width and height of the input feature map; K is the number of input channels; Pg
is the spatial width and height of the output feature map; and L is the number of output
channels. Then, for a conventional convolution operation (Figure 5a) with the convolution
kernel N of size Pn × Pn × K × L, where Pn is the spatial dimension of the kernel, the
computation cost is given by the equation:

Gc = Pn . Pn . K . L . Pf . Pf (1)

Figure 5. Schematic representation of (a) conventional vs. (b) depthwise separable convolution.

On using the depthwise separable convolution (Figure 5b), the computation cost will
be the aggregation of depthwise and pointwise convolutions and is given by the equation:

Gd = Pn . Pn . K . Pf . Pf + K . L . Pf . Pf (2)

Combining Equations (1) and (2), the reduction in computation can be represented by
the equation:

G = Gd
Gc

=
Pn . Pn . K . Pf . Pf + K . L . Pf . Pf

Pn . Pn . K . L . Pf . Pf

= 1
L + 1

P2
n

(3)

Equation (3) represents the reduction in computation requirements of the depthwise
separable convolution compared to the conventional convolution, resulting in considerably
lower computing and parameter cost of the network.

As conventional U-Net, with its few layers, is not deep enough to perform this
particular segmentation task, adding more layers directly and making it deeper, may
solve the segmentation problem. However, a deeper neural network tends to develop
gradient vanishing and redundant computation in network training [55]. To overcome
these associated problems, few modifications are required to enhance the learning process
of the network.

2.2. Light Dense Block

The first modification is related to the conventional dense network, which uses regular
convolutional layers and has the advantage of parameter simplicity, vanishing-gradient
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minimization, and feature reuse [56]. In this paper, a proposed light dense block was
designed as the main building block of Light-Convolution Dense Selection U-Net (LDS
U-Net). The basic structure of the light dense block is shown in Figure 6 and here, un-
like a conventional dense network, all the convolutional layers are depthwise separable
convolution layers.

Figure 6. Proposed light dense block.

The first layer of the light dense block is a depthwise convolution unit that consists
of a depthwise convolution block followed by a pointwise convolution block. The next
layers are the batch normalization, rectified linear unit (ReLU) activation function, another
depthwise convolution unit, and a dropout layer. The first depthwise convolution unit
is also connected densely to the dropout layer, as shown by the green dotted arrow in
Figure 6. Through this new design, the light dense block delivers the same advantages as a
conventional dense block, but with a smaller number of parameters.

2.3. Multi-Scale Path

In the basic U-Net architecture, there are skip pathways between the respective layers
of the encoding and decoding side, and shortcut paths before the max-pooling layers in
the encoder side and after the deconvolution layers in the decoder side. Often, spatial
information gets lost during the max-pooling operation, and the skip connections help the
network to propagate information from the encoder side to the decoder side. However,
the skip pathways often come up with a problem of a semantic gap during the feature
fusion because the first layer of the encoder, which extracts the low-level features, is
connected to the terminal layer of the decoder, which deals with more high-level features.
Additionally, because of the added complexities of variabilities in sizes, shapes, and
positions of bony features, both the low and high level features would have to be retained
for detailed segmentation.

To reduce the discrepancy between the encoder–decoder features and enhance the
feature fusion, a multi-scale skip path was proposed in this paper. A multi-scale incep-
tion [41] module was incorporated between the encoder and decoder layers to enhance the
low-level features extracted in the encoder side. Through this connection, the low-level
features will undergo further processing before merging with the high-level features on the
decoder side. Moreover, instead of the usual convolutional layers, multi-scale inception
layers are used. They improve the utilization rate of computing resources by increasing the
depth and width of the network while keeping the computational budget constant [57].

Inception modules have been proven to be very promising in enlarging receptive fields
and capturing more context information [58]. It enhances the depiction capability of low-
level features. The inception module adopts multiple branches with different kernel sizes
to capture multi-scale information. This methodology is key to dealing with the problem of
handling the high variability of shapes, sizes, and positions of bony features in ultrasound
images of the spine. However, as the inception module is very computationally demanding,
the normal convolution operation in the traditional inception module is replaced by the
depthwise convolution in this proposed model.
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In the proposed light dense block, a sequence of two 3× 3 depthwise convolutional
layers is used to carry out feature extraction. In the skip path, a sequence of 3× 3 con-
volution blocks is used, as shown in Figure 7, instead of bigger 5× 5 and 7× 7 blocks.
Therefore, the outputs from the three 3× 3 convolution blocks are concatenated to enhance
the receptive field and reduce the semantic gap between the encoder and the decoder. A
residual connection of a 1× 1 convolution block is also presented in the skip path to make
the learning procedure stable.

Figure 7. Multi-scale inception module.

In the proposed inception module, the technique to control the number of filters of
the convolution layers inside the block was adapted [41]. A parameter P was assigned to
control the number of filters as given by Equation (4),

P = λ× F (4)

where F is the number of filters in the corresponding layers like the basic U-Net, and λ
is a scaler coefficient. The number of filters was set to F = [32, 64, 128, 256, 512], along
with the five layers of the LDS U-Net architecture, respectively, and λ was chosen as 1.67
to ensure that the model structure was similar to the basic U-Net. The numbers of filters
were set to P

6 , P
3 , and P

2 in the three corresponding convolutional layers for extracting
multiscale features.

2.4. Selection Gate

In an ultrasound spine image, the noise in the extraneous regions can appear as in-
formation and can hinder the segmentation process. To tackle this problem smartly and
efficiently, selection gates were applied in the proposed network. The selection gate [43]
discards extraneous regions in the input spine ultrasound image to ignore the associated
noise and allows for preferential attention to the target bony features to select the relevant
features of importance. A conventional selection gate, improvised with depthwise separa-
ble convolution layers, was integrated into the proposed architecture, as shown in Figure 8.
This aimed to reduce the computational overhead while increasing the segmentation accuracy.
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Figure 8. Selection gate.

The light dense convolutional layers extract deeper features when it processes deeper
layers gradually. Suppose that after processing the n-th layer, the generated feature map
is xn. As shown in Figure 8, a is the attention coefficient that identifies and extracts only
the desired parts of the image for better segmentation; Fn is the number of feature maps in
layer n; Hx, Wx, Dx are the height, width, and dimension of the n-th layer, respectively; g is
a gating vector booked from the preceding layer of the network, which is a coarser layer;
Fg is the number of feature maps in the layer g; and Hg, Wg, Dg are the height, width, and
dimension of g, respectively.

The selection gate works with two input vectors: xn and g. g has a lower dimension
and better feature representation as it comes from a deeper layer compared to xn. xn, after
processing by a stride convolution, and g, after processing through a 1× 1× 1 convolution,
merge elementwise. After that, a ReLU activation layer σ1 and a 1× 1× 1 convolution
operation take place, which reduces the dimension of the resultant vector. Additionally,
σ1

(
xn

i,c

)
= max

(
0, xn

i,c

)
, where i and c stand for the spatial and channel dimensions,

respectively. Then, a sigmoid layer σ2 scales the vector to the range [0, 1] to generate the
attention coefficient a, where σ2(xi,c) =

1
1+exp(−xi,c)

is the sigmoid activation function. Grid

resampling of attention coefficients is conducted using trilinear interpolation. A value
of close to 1 indicates more significant features. The attention coefficient is multiplied
element-wise to xn after resampling. The output of the selection gate is x′ni,c = xn

i,c . an
i .

2.5. Ablation Study

Ablation experiments were carried out to gauge the contribution of each feature of
the LDS U-Net. Three models were successively developed before arriving at the final
segmentation architecture. These intermittent models were independently evaluated using
the available dataset.

The first intermitted model was a modified U-Net with light dense block and named
as the light dense (LD) model. In this model, the basic convolution layers of U-Net were
replaced by the newly developed light-dense blocks. In the second intermitted model,
trainable selection gates were introduced, which was trained to isolate the relevant areas
of interest, amidst noisy areas and facilitated the flow of only the relevant information
within the network. This is called the light convolution selection (LCS) model. The third
intermitted model was developed from the LD model by introducing multiscale skip-paths,
which would allow for the seamless propagation of richer information through the network.
This model is named the light-dense inception (LDI) model. In the final version, (i.e., the
LDS model), both the selection gate and multi-scale path are included for the segmentation
of bony features with various shapes and sizes.
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3. Experimental Setup
3.1. Dataset

The input images used in this research are collected using the Scolioscan system
(Figure 9) (Model SCN801, Telefield Medical Imaging Ltd., developed in Hong Kong),
which generates 3D volume projection images (VPI) using a 3D ultrasound imaging tech-
nique. The experimental procedures involving human subjects were approved by the
Institutional Review Board. The subjects gave informed consent for their inclusion in this
study as required, and the work adheres to the Declaration of Helsinki.

Figure 9. Scolioscan system [2].

A total of 109 images, collected from 109 patients (82 females and 27 males) with an
age range of 15.6 ± 2.7 years and having different degrees of spine deformity, were used
retrospectively.

Nine 2D coronal images of different depths were extracted from one 3D ultrasound
VPI image [16]. Since the quality of individual images varies greatly, human experts were
employed to manually assess the clarity of the lateral bony features represented in an image
and select the best image for a given patient. Subsequently, 109 2D vertebral coronal images
formed the input dataset for this work, and each 2D image was then resized uniformly to
2574 × 640-pixel and converted to the ‘.png’ format.

The truth mask for each 2D coronal image was carried out by experts from Hong Kong
Polytechnic University. Some sample input 2D coronal images, along with their expert
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generated truth masks, are shown in Figure 10a–d. The labelling of the truth mask was
conducted based on some key features: (1) There should be six lumbar bony features (LBF);
(2) the thoracic bony features (TBFs) in the lumbar region are not labelled as they are not
generally visible in ultrasound images; (3) if the last pair of TBFs (i.e., the T12 level) is not
visible, it is labelled according to the judgment of the experts. The input raw datasets of
109 spine ultrasound images were randomly split into one training set of 79 images and
one testing set of 30 images.

Figure 10. (a–d) Four image sets each having a raw image plus a truth mask.

3.2. Pre- and Post-Processing and Data Augmentation

The size of each raw ultrasound image was 2574 × 640 pixels and was resized to
256 × 64 pixels through image pre-processing, maintaining the aspect ratio of the original
image. The resized ultrasound images were randomly flipped and rotated for data aug-
mentation. The objective of the experiment was to develop a segmentation architecture and
to benchmark its performance against the original U-Net, Attention U-Net, and MultiRe-
sUNet. This requires no specific pre-processing except that the input images were resized
to fit into the GPU memory, and the pixel values were divided by 255 to bring them into
the [0, 1] range. During post-processing, the image was resized back to the original size of
the raw images to ensure that the image size did not impact the ultrasound curve angle
(UCA) calculation for scoliosis.

3.3. Implementation Details

Anaconda, or more specifically, Spyder software, was used to conduct the experiments.
The network models were implemented using Keras [59] with Tensorflow backend [60].
The experiments were conducted on a GPU laptop with NVIDIA GeForce RTX 2060.

The general working principle of any semantic segmentation algorithm is to inves-
tigate each pixel and anticipate whether it represents a point of interest or merely a part
of the background. Alternatively, this principle can also be treated as a pixel-wise binary
classification problem with the objective of the segmentation algorithm to minimize the
binary cross-entropy loss function.

For image A, let the corresponding truth mask (TM) be B, and the predicted segmenta-
tion output be B′. For a pixel ma, the TM value is bma and the network predicted output is
b′ma. The binary cross-entropy loss for that image is defined as:

Cross Entropy
(

A, B, B′
)
= ∑

maεA
(−(bma) log

(
b′ma
)
+ (1− bma) log

(
1− b′ma

)
) (5)
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For a batch containing p images, the loss function L becomes,

L =
1
p

p

∑
i=1

Cross Entropy
(

Ai, Bi, B′i
)

(6)

The goal of the model is to minimize the binary cross-entropy loss and the model is
trained using the Adam optimizer [61]. The Adam optimizer adaptively computes different
learning rates for different parameters from estimates of the first and second moments
of the gradients. All the models, used in this research, were trained up to 120 epochs
since 120 epochs were found to be the saturation point for model accuracy, and no further
progress was observed beyond this point. Finally, 3-fold cross-validation of the dataset was
used to validate the consistency of the model.

3.4. Evaluation Metrics

For quantitative performance evaluation, four very popular evaluation indices were
employed: Jaccard similarity (JS) [62], DICE coefficient (DC) [63], F1 score [64], and pixel accuracy:

Jaccard Similarity =
J ∩ Ĵ
J ∪ Ĵ

(7)

Dice coe f f icient = 2

(
J ∩ Ĵ
J + Ĵ

)
(8)

F1 Score =
2TP

2TP + FP + FN
(9)

Accuracy =
TP + TN

TP + TN + FP + FP
(10)

where Ĵ is the predicted segmentation output from the method to be evaluated, and J is
the expert suggested truth mask. The J contours are references for further segmentation
analysis [65]. TP, TN, FP and FN are the truly positive, true negative, false positive, and
false negative, respectively. True positive denotes the pixels present in both the truth
mask and predicted segmented region. True negative denotes the pixels present in neither
segmented truth mask nor predicted segmented region. False positive signifies the pixels
present only in the predicted segmented region and false negative signifies the pixels
present in the suggested truth mask only.

4. Results

This section is presented in two parts. In the first part, quantitative and qualitative
comparisons of the LD model (light dense model), LDI model (light-dense inception model),
and LCS model (light convolution selection model) are shown together with the Light-
Convolution Dense Selection U-Net (LDS U-Net) model to evaluate the importance of key
features used in the segmentation of spine ultrasound images with variable shapes and
sizes of bony features and to assess the overall effectiveness of the proposed network. In
the second part, an extensive analysis for the newly proposed model and comparisons with
basic U-Net, Attention U-Net, and MultiResUNet are made to evaluate the performance of
LDS U-Net to other contemporary models.

4.1. Evaluation of Performance of Key Features

Three key features are used in the proposed LDS U-Net model–light dense blocks,
multi-scale paths, and selection gates. At the onset, it is important to assess whether these
features play an important role in achieving the objectives. Hence, during the ablation
study, models were made by isolating the desired key features and comparing the semantic
segmentation performance. At first, both the multi-scale paths and selection gates were
removed from the main model. The model is named as the light dense (LD) model and
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it successfully segments the thoracic and lumbar bony features. Next, the selection gates
are added with the LD model, and named as the light convolution selection (LCS) model.
As an alternate improvement to the LD model, the conventional shortcut connection was
replaced with the inception skip path to form the light dense inception (LDI) model. Finally,
all of the above models were implemented together as the light dense selection U-Net (LDS
U-Net) model.

4.1.1. Quantitative Evaluation (Ablation Study)

Table 1 outlines the segmentation performances for the ablation study. The LCS model
generated better segmentation than the LD model (1.07% better Dice score). It implies that
the model with a selection gate can detect the target lateral bony features better than the LD
model. The LDI model further improves the performance by introducing the multi-scale
path with a 1.53% higher Dice score than the LCS model. Finally, both the selection gate
and multi-scale paths were included in the LDS U-Net model, and it generates a Dice
score of 3.26% higher than that of the LDI model. In terms of Jaccard index, F1 score, and
accuracy, the proposed LDS U-Net performed the best. Hence, the LDS U-Net model was
chosen as the proposed model. This model also obtained the smallest standard deviations
in the four evaluation indices.

Table 1. Quantitative evaluation of ablation study.

Method Avg. Jaccard Index
(Std Dev)

Avg. Dice Score
(Std Dev)

Avg. F1 Score
(Std Dev)

Avg. Accuracy
(Std Dev)

LD 0.7123 (±0.039) 0.8204 (±0.036) 0.8412 (±0.030) 0.9108 (±0.025)
LCS 0.7280 (±0.037) 0.8292 (±0.033) 0.8532 (±0.031) 0.9203 (±0.021)
LDI 0.7339 (±0.034) 0.8419 (±0.032) 0.8704 (±0.029) 0.9367 (±0.020)

Proposed LDS U-Net 0.7415 (±0.03) 0.8694 (±0.028) 0.8885 (±0.025) 0.9592 (±0.020)

LD: light dense; LCS: light convolution selection; LDI: light dense inception; LDS: light dense selection.

4.1.2. Qualitative Evaluation (Ablation Study)

The aim was to segment and identify the bony features from the ultrasound spine
image for automatic scoliosis detection. The LD model successfully segmented the thoracic
and lumbar bony features, as shown in Figure 11c. Figure 11d shows the LCS model, which
provided better results in the segmentation of the left thoracic bony features (Nos. 5, 6, 7,
8, and 9) compared to Figure 11c. It implies that the model with a selection gate detects
the target bony features better than the LD model. To further improve the LCS model, the
conventional shortcut connection is replaced with the inception skip path to form the LDI
model. From Figure 11e, it is clear that the LDI model produces better segmentation of the
left thoracic bony features compared to the LD and LDC models. Finally, the proposed LDS
U-Net model, as shown in Figure 11f, generated more accurate boundary segmentation of
the left thoracic bony features than the LD, LCS, or LDI models. Figure 12 shows several
more qualitative visual comparisons of bony feature segmentation using the LD, LCS, LDI,
and proposed LDS U-Net models.
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Figure 11. Individual segmentation result of the spine ultrasound image: (a) Raw image, (b) truth
mask, (c) LD model, (d) LCS model, (e) LDI model, and (f) proposed LDS U-Net model.

Figure 12. Qualitative comparison of 6 different case models: (a) Raw image (b) truth mask, (c) LD model, (d) LCS model,
(e) LDI model, and (f) proposed LDS U-Net model.
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4.2. Comparison of LDS U-Net with Other Contemporary Models

The LDS U-Net was compared with three architectures, namely U-Net, Attention
U-Net, and MultiResUNet. Each of these models has its unique advantages. However,
when it comes to the segmentation of a noisy ultrasound image, these architectures might
not support deep-level data extraction and high image variability.

4.2.1. LDS U-Net Outperforms U-Net, Attention U-Net, and MultiResUNet in the
Segmentation of Ultrasound Spine Image Dataset

In Table 2, the segmentation output of the proposed LDS U-Net is compared with
other models using four segmentation evaluation indices: Jaccard index, Dice score, F1
score, and pixel accuracy. Dice score is the most direct evaluation index. The average
Dice score of LDS U-Net was 0.8964, which was 2.79%, 4.57% and 6.89%, higher than
MultiResUNet, Attention U-Net, and U-Net, respectively. In terms of the Jaccard index,
F1-score, and pixel accuracy, the results of LDS U-Net were much better than the other
mentioned networks. The standard deviations of the results of the proposed LDS U-Net
also showed a smaller spread. The proposed LDS U-Net is more capable of learning almost
all the features from the training dataset.

Table 2. Quantitative performance evaluation of various architectures.

Method Avg. Jaccard Index
(Std Dev)

Avg. Dice Score
(Std Dev)

Avg. F1 Score
(Std Dev)

Avg. Accuracy
(Std Dev)

U-Net 0.7015 (±0.035) 0.8133 (±0.039) 0.8327 (±0.0296) 0.8919 (±0.0271)
Attention U-Net 0.7189 (±0.033) 0.8297 (±0.037) 0.8401 (±0.0296) 0.9195 (±0.0269)
MultiResUNet 0.7264 (±0.032) 0.8458 (±0.033) 0.8658 (±0.0289) 0.9398 (±0.0258)

Proposed LDS U-Net 0.7415 (±0.03) 0.8694 (±0.0285) 0.8885 (±0.0256) 0.9592 (±0.020)

4.2.2. LDS U-Net Gives the Best Identification of Bony Features

The detection of exact locations of lateral bony features (thoracic and lumbar) is very
crucial for UCA calculation. However, the associated speckle noise makes the identification
process more challenging because it suppresses many important features. Four sets of
images are shown in Figure 13. Each set consists of an input image, a truth mask, and the
segmentation results using U-Net, Attention U-Net, and MultiResUNet and the proposed
LDS U-Net model.

From the set shown in Figure 13a, it is clear that the right side upper TBFs of the
spine image are missing in the U-Net segmentation. For Attention U-Net, these are just
visible, and for MultiResUNet, and LDS U-Net, they are more prominent. In the case of
LBFs, identification is not as straightforward. The T12 region and six LBFs are visible
in the truth mask. U-Net can identify the T12 region and five LBFs. The Attention U-
Net and MultiResUNet could identify only four of the LBFs. The proposed LDS U-Net
could identify all LBFs and the T12 region, which indicates that this model is capable of
segmenting LBFs correctly.

From Figure 13b, it is clear that U-Net is not capable of segmenting all the bony
features in the six different segments of LBFs. Attention U-Net and MultiResUNet were
somehow able to distinguish the six features, but some features were unclear and provided
misleading information. On the other hand, LDS U-Net provided a clearer identification of
the T12 region and six LBFs, although the last two features were still conjoined.
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Figure 13. Four spine image sets (a–d) consisting of the input image, truth mask, and segmentation
results using U-Net, Attention U-Net, MultiResUNet, and the proposed LDS U-Net model.

Similar observations about TBFs and LBFs can be made in Figure 13c. In U-Net, the
two uppermost LBFs were not segmented correctly, but appeared to be fragmented, while
in Attention U-Net and MultiResUNet, they appeared to be elongated. LDS U-Net clearly
distinguished all the thoracic and lumbar bony features.

Figure 13d shows that U-Net and MultiResUNet were unable to segment the T12
region and all LBFs from the ultrasound spine image. On the other hand, Attention U-Net
could identify all six LBFs. However, in both cases, the T12 region was conjoined with the
uppermost lumber bony feature. The proposed LDS U-Net could segment the T12 region
and all the lumbar bony features consistently.

4.2.3. Evaluation of the Number of Bony Features Identified

Identification of distinct bony features is a key criterion for evaluating the performance
of various segmentation models. In a truth mask of a spine ultrasound, depending on
the scanning coverage area, there are nine pairs of TBFs, a T12 region (one pair of bones),
and six LBFs, making a total of 26 bony features. The total number of distinguishable
bony features in the outputs of each model is manually recorded. In many cases, the bony
features are either conjoined or fragmented and are not recorded as meaningful features.
Table 3 shows that LDS U-Net provides a larger number of meaningful bony features when
compared to other models. The proposed LDS U-Net could provide the highest percentage
of segmented images with all 26 features fully detected (76.59%).
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Table 3. Comparison between number of bony features identified (avg).

Truth Mask U-Net Attention U-Net MultiResUNet LDS U-Net

9 pairs of TBF, T12 region, and
6 LBFS—Total: 26 bony

features
25.11 25.23 25.30 25.45

% of images where all 26
features were fully detected 69.72% 71.56% 73.23% 76.59%

4.2.4. Evaluation of Computational Requirement

In Table 4, the computational requirement of the contemporary models and the pro-
posed model are compared in terms of the total number of parameters and program storage
requirements. LDS U-Net architecture offers advantages such as (i) low computational
requirements due to the usage of depthwise separable convolution layers; (ii) feature reuse
enabled through the application of novel light dense block; and (iii) enhancement of the
depth and width of the network, with no incremental computational budget, through
the redesigned multi-scale inception layer. As shown in Table 4, these advantages of the
proposed model translate to a lower parameter requirement and smaller memory foot-
print when compared to U-Net and Attention U-Net. Although MultiResUNet requires a
fewer number of parameters than LDS U-Net, the overall segmentation performance of
MultiResUNet was lower, as discussed in the previous sections.

Table 4. Evaluation of computational requirement.

Method Total Number of
Parameters Size in Megabytes (MB)

U-Net 31 Mil 355 MB
Attention U-Net 37.1 Mil 433.49 MB
MultiResUNet 7.2 Mil 146.01 MB

Proposed LDS U-Net 9.1 Mil 127.5 MB

5. Discussion

Being a radiation-free and economic imaging modality, the 3D ultrasound imaging
system has the potential to become a very popular diagnosis technique to detect scolio-
sis [15]. However, this necessitated the establishment of new measurement indices as,
in the X-ray and Cobb angle method, scanning is conducted to assess anterior spinal de-
formity. A new index called spinous process angle (SPA) was developed exclusively for
ultrasound scanning to measure the posterior spinal deformity. In a nutshell, if lines are
drawn through the most tilted parts of the spinous column profile of coronal ultrasound
images, then the angle that is formed is known as the SPA. The SPA measurement focuses
on the middle dark line of the spine ultrasound image as the main region of interest. Sub-
sequently, several scoliosis assessment techniques, both manual and automatic, have been
researched to measure SPA and to demonstrate its equivalence to the gold-standard Cobb
angle [16,18]. However, there is an overall drawback in the SPA measurement approach
as there was a high inherent tendency of the technique to underestimate the severity of
the curvature of scoliosis compared to the Cobb angle [1,15]. Subsequently, an alternate
index was developed called the ultrasound curvature angle (UCA). Unlike SPA, in the
UCA technique, the lateral bony features are the main regions of interest and further
research was undertaken to demonstrate that it is equivalent to the X-ray Cobb angle [20].
Though a manual method of UCA measurement is established [20], there is a need to find
a suitable method to automate the UCA measurement so that the technique can be made
fast and scalable.

Clear demarcation of lateral bony features is a vital step in UCA measurement. In
traditional X-ray, the images are relatively noise-free and clear features can be identified
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easily. However, in the case of ultrasound modality, scanned images have low contrast,
and are often plagued by speckle noise. This makes the differentiation of the bony features
challenging. In addition, the fact that the lateral bony features are numerous and can
significantly vary in shape, size, and location, adds to the overall complexity of the problem.
The first step of automatic UCA measurement is clear segmentation of the lateral bony
features and this paper attempted to accomplish this first step of image segmentation using
deep learning.

U-Net is one of the most successful architectures for biomedical image processing.
As a starting point, the ultrasound spine images were segmented using basic U-Net [26].
However, the segmentation output was not satisfactory (Avg. Dice score: 0.8133) as the
output images had many missed or conjoined bony features and the architecture required
a large number of parameters, which directly increased the computation cost and memory
size [66]. As the first modification, the conventional convolution layers of U-Net were
replaced with proposed light dense block and depthwise convolutional operations that
replaced the conventional convolution operations. The new architecture was called the light
dense (LD) model. In LD model, each depthwise convolution unit is densely connected
with another depthwise convolution unit within the same light dense block (shown in
Figure 6). This architecture incorporates feature propagation and boosts feature reuse while
effectively reducing the number of parameters. Though the LD model obtained better
segmentation accuracy (Avg. Dice score: 0.8204) with a fewer number of parameters, it was
still unable to adequately distinguish the TBFs and LBFs and generated conjoined bony
features in the output as the input images were noisy. The two issues, high noise in images
and variability of bony features, were tackled separately as follows:

(a) To improve the segmentation clarity and tackle the ‘noisy’ information, trainable
selection gates were employed in the LD model as the next modification and the new
architecture was called the light convolution dense selection (LCS) model. Through this
modification, it was anticipated that the gating mechanism [43] would smartly suppress
irrelevant information such as noise from the feature maps and be able to identify a greater
number of bony features from the useful information in the image. Past research shows
that the gating mechanism can be effectively used to extract the selective features from
the noisy ultrasound images as it suppresses noise and enables the network to make
segmentation predictions based on class-specific features [67]. In effect, the selection gate
blocked extraneous information from information-rich feature maps and thereby improved
the segmentation output for noisy ultrasound images (Avg. Dice score: 0.8292).

(b) To handle the problem of large variabilities in shape, size, and locations of the TBFs
and LBFs, the conventional skip-pathways were replaced by multi-scale [41] skip-paths and
the architecture was named as the light-dense inception (LDI) model. Feature fusion was
enhanced by using this skip-path as the inconsistencies between encoder–decoder features
were bridged. This path solves the problem of the semantic gap between the encoder and
decoder side and enhances the feature fusion and improves the segmentation output [41].
Through this modification, the low-level features underwent additional processing and
the multi-scale inception layers, adapted in this skip-path, enabled the network to extract
more features from different scales. This provided a significant boost to the segmentation
performance (Avg. Dice score: 0.8419) compared to the initial LD model.

As a final step, the two sub-models were combined into the final architecture and
called the Light-Convolution Dense Selection U-Net (LDS U-Net) model. As anticipated,
the combination of selection gates and multi-scale skip pathway gave a much improved
segmentation accuracy (Avg. Dice score: 0.8694) compared to both the LD model and basic
U-Net model.

To understand the performance of LDS U-Net vis-a-vie other contemporary models,
the proposed model was compared with the basic U-Net, MultiResUNet, and Attention
U-Net using the same 109 volume projection ultrasound spine image datasets. First, LDS
U-Net quantitatively outperformed the other models with 0.7415 Jaccard index, 0.8694 Dice
coefficient, 0.8885 F1 score, and 0.9592 pixel accuracy. Second, it is able to better identify
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the thoracic and lumbar bony features most consistently when qualitatively compared to
other models. The segmentation outcomes of LDS U-Net, through manual observation
and measurement of distinguishable bony features, are also very promising. Third, as it
is constructed using light dense block, LDS U-Net was also found to be computationally
efficient with the least number of parameters and smallest program memory size. Finally,
in handling noisy ultrasound images with high variability, the LDS U-Net was successful in
correctly segmenting 76.59% of total images (shown in Table 3) with complete identification
of all 26 bony features, which is more consistent than any of the other models.

During the research, it was also observed that there were few cases where the LDS
U-Net did not perform well. For instance, in Figure 14, the demarcation between the
T12 level and 1st LBF is obscure. In these scenarios, even the other architectures failed
to give proper segmentation of this section. Upon closer scrutiny, it was found that the
quality of the input image was not adequate for automatic segmentation and experts were
able to generate the truth mask only due to their prior knowledge on six lumbar bony
features. Hence, in such cases, the image segmentation becomes quite challenging both by
the human eye and by machine learning algorithms. As an improvement and for a clearer
demarcation of the T12 level and 1st LBF region, the authors postulate that other images,
from different depths, can be included in the segmentation process. Second, as an overall
improvement in segmentation performance, future work should be aimed at better removal
of the excessive noise by making the architecture denser. Additionally, as the research is
restricted to the availability of 109 image datasets, the consistency of the performance can
be improved by including more image datasets from diverse patient groups.

Figure 14. LDS U-Net is unable to distinguish the T12 level and 1st LBF.

6. Conclusions

In this work, a novel CNN architecture, LDS U-Net, was developed to identify and
segment lateral bony features from spine ultrasound images. As ultrasound images are
contaminated with noise and are of low contrast, segmentation work is more challenging
in this case when compared to other imaging modalities. The research establishes that
LDS U-Net was successful in segmenting lateral bony features and can be included as
a step prior to the actual UCA calculation. In a nutshell, the proposed LDS U-Net has
three main elements: (a) light dense blocks that reduce the number of parameters used in
the architecture and thereby reduce the computation time; (b) selection gates that smartly
discard the extraneous regions and ensure explicit flow of only the relevant information
within the network; and (c) multi-scale paths that help with clearer identification of lateral
bony features through improved feature propagation. The next step, post automatic
segmentation, would be to work on automating the process of the ultrasound curvature
angle (UCA) measurement using segmented bony regions as input and validating the
results with extensive clinical trials and evaluations.
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