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Abstract: Automatic image annotation is an active field of research in which a set of annotations
are automatically assigned to images based on their content. In literature, some works opted for
handcrafted features and manual approaches of linking concepts to images, whereas some others
involved convolutional neural networks (CNNs) as black boxes to solve the problem without external
interference. In this work, we introduce a hybrid approach that combines the advantages of both
CNN and the conventional concept-to-image assignment approaches. J-image segmentation (JSEG)
is firstly used to segment the image into a set of homogeneous regions, then a CNN is employed to
produce a rich feature descriptor per area, and then, vector of locally aggregated descriptors (VLAD)
is applied to the extracted features to generate compact and unified descriptors. Thereafter, the not
too deep clustering (N2D clustering) algorithm is performed to define local manifolds constituting
the feature space, and finally, the semantic relatedness is calculated for both image–concept and
concept–concept using KNN regression to better grasp the meaning of concepts and how they relate.
Through a comprehensive experimental evaluation, our method has indicated a superiority over
a wide range of recent related works by yielding F1 scores of 58.89% and 80.24% with the datasets
Corel 5k and MSRC v2, respectively. Additionally, it demonstrated a relatively high capacity of
learning more concepts with higher accuracy, which results in N+ of 212 and 22 with the datasets
Corel 5k and MSRC v2, respectively.

Keywords: automatic image annotation; image segmentation; region annotation; image content
understanding

1. Introduction

With technological advancement, it is becoming increasingly simple for people to
capture photographs at various locations and activities. There are thousands, if not millions,
of personal photographs that are frequently stored without any form of significant labeling.
As a result, finding desired photographs has become a tedious and time-consuming task.

Image labeling procedure (image annotation) entails giving to a picture one or more
labels (tags) that describe its content. This procedure may be used for a variety of tasks,
including automatic photo labeling on social media [1], automatic photo description for
visually impaired persons [2], and automatic text production from photographs [3]. Since
it takes a lot of time and effort, manual image labeling (tagging) is inconvenient for small
collections and impossible for huge collections. To address these issues, automatic image
annotation (AIA) was developed, and it has since become a vibrant and essential academic
topic. AIA models concepts using preannotated photo collections that are already accessible.
Thereafter, this learned model will be applied to labeling unidentified images or completing
partial labeled ones.
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In the literature, several AIA annotation techniques have been proposed, which may
be divided into visual-based and semantic-based techniques. Visual-based approaches are
mostly used to investigate the link between visual characteristics and textual labels. In
addition to feature–concept relationships, semantic approaches also consider the relations
between the concepts themselves (concept–concept). The majority of AIA approaches focus
on the overall image’s semantic [4–12], ignoring the syntax and regional connotations.
Because the traits and indicators of various regions are not taken into consideration, such
holistic methods cannot discover all important concepts that may be represented within
the image. Other region-based methods [13–19], on the other hand, have emphasized
establishing a one-to-one correlation between concept and region (i.e., each region repre-
sents one concept). Such a region-level semantic is more beneficial for figuring out the
connections between semantic ideas and visual objects in images. Another interesting
classification approach of AIA methods is the one proposed by Chen et al. [20], in which
the methods are divided into three categories, namely: KNN-based, regression-based, and
semantic-hierarchy-based [21,22].

In this paper, we propose a regression-region-based method for AIA. The main objec-
tive is to assign, for a given image, a set of labels that each represent one region (object)
within the image. KNN regression has been employed to enhance both the representation
of regions in the input feature space and the propagation of labels in the output semantic
space. Extensive experiments have been carried out to evaluate the performance of the
proposed method against other related works.

The remainder of this paper is structured as follows: Section 2 categorizes and presents
works that tackle the issue of automatic image annotation. Section 3 introduces our proposal
and the rationale behind each of its phases. Section 4 is dedicated to comprehensively
evaluating the proposed method and comparing it to other works of AIA. Finally, we draw
some conclusions.

2. Related Work

Automatic image annotation (AIA) methods can roughly be categorized into two categories,
global- and local-based methods. Global-based AIA methods, such as [8,10,11,23], are not
able to correctly assign important semantic concepts, since the properties and semantics of
distinct regions are not often taken into account. As a result, local-based techniques have
emerged to overcome this challenge by attempting to capture semantics at the region level
rather than holistically. In this section, we review works that attempt to solve the problem
of AIA at the region level.

Carneiro et al. [24] used a hierarchical model based on Gaussian mixtures to link low-
level visual characteristics and then estimated the shared density of visual characteristics
on the regions with semantic notions. Strict semantic constraints were imposed on training
data to ensure that each keyword is considered as a category. As a result, areas with similar
semantic content are divided into groups based on their content similarity. Blei et al. [25]
proposed three hierarchical probabilistic mixture models, culminating in the Corr-LDA
model, for image annotation in which the joint probabilities between words and regions are
estimated. Later on, the Corr-LDA model was improved in [26] by the addition of a class
variable above the mixing proportion parameter of the former model. In the improved
model, the general scene is classified, each item is recognized and segmented, and the
image is marked with a label list.

Another approach to tackling the issue of AIA is by considering the region–concept
or concept–concept co-occurrence. Brown et al. [27] first uniformly divide the image into
NxM regular grid and then perform vector quantization of the subimages. This leads to
results showing that each subimage may be associated with a collection of labels picked
from words allocated to the entire image. One major drawback of this model is the need
for a large number of training samples to estimate the appropriate likelihood. It also tends
to assign repeated words to the same subimage. Inspired by concept–image co-occurrence
matrix and machine translation models, the cross-media relevance model [28] emerged
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and demonstrated the efficiency of learning the codistribution of blobs and keywords.
Blobs, in this context, are a result of clustering image features extracted from regions after
using some typical segmentation algorithm. Instead of modeling blob-keyword via simple
correlation, authors in [29] modeled word probabilities using a multiple Bernoulli model
and image feature probabilities using a nonparametric kernel density. In [30], authors
proposed a label co-occurrence learning framework based on graph convolution networks
(GCNs) to directly examine the dependencies between pathologies for the multilabel chest
X-ray. The aforementioned works require large numbers of training samples and have
limited generalization ability to new categories. Mori et al. [31] introduced a multilabel
few-shot model for general image recognition. It first correlates different labels, based on
statistical label co-occurrences, using a structured knowledge graph. The graph is then
exploited via network propagation, enabling the learning of contextualized image feature
representations. Duygulu et al. [32] regarded the problem of AIA as analogous to machine
translation in which one representation form (i.e., region) is desired to be translated to
another (i.e., word). By opting for such a model, the correspondence region–label can easily
be modeled via a conventional EM algorithm. Thereafter, the authors presented two classes
of models for the joint distribution of text–blob and showed how they are applied image
annotation [33]

Some other attempts for AIA have been accomplished using machine learning tech-
niques. In [13], images are segmented into regions from which the visual features are
extracted and then used to train a new asymmetrical support vector machine-based MIL
algorithm (ASVM-MIL). SVM was chosen because of its excellent capacity to learn and
distinguish positive from negative examples. After training the SVM and adjusting its
margin constraints, several positive bags were obtained and updated to ensure that all
positive bags follow the MIL setting. This model attempts to reduce false positives by
directly altering SVM’s margin constraints. In [34], images were firstly segmented into
regions (i.e., blobs) using maximum variance intraclustering. The correlation between
image areas and annotations was learned using a multilabel semantic learning model based
on the Bayes classifier which was then applied to predict labels for nonannotated images.

In [18], region-based bag-of-words (RBoW) was used for sparse feature aggregation,
and the resulting descriptor was then fed to second-order conditional random fields (CRFs)
to enhance the accuracy of AIA. In [16], a new framework was proposed using techniques of
semantic analysis, segmentation, and discriminant classification. Images were segmented
into regions using an improved JSEG algorithm after which the content of these regions was
represented through an extended BoW model. Thereafter, multiclass maximal figure-of-
merit (MC-MFoM) was used to build the concept models for image region annotation. This
discriminative model was chosen above others (such as SVM and CRF) because it is more
resilient, especially when learning sparse data. The authors in [35] attempted to perform
scene segmentation using 3D information extracted from the scene, which decomposes a
scene into semantically meaningful regions. This method exploits both label-region and
region-region semantics.

3. Our Proposal

Conventional AIA algorithms consider the image as holistic by analyzing images
globally rather than dealing with each present object. In real cases, however, few concepts
may describe the image holistically, such as ‘joy’ or ‘wild’, but most concepts concern
some specific regions (areas) of the image, such as ‘football’, ‘human’, or ‘cloud’. As a
result, for an AIA system to produce good annotation results, it must account for visual
distinctions across regions as well as semantic interconnections between labels. Given that
a concept–region co-occurrence matrix is derived from an annotated training image subset,
our proposed solution investigates the similarity among characteristics of a candidate
region and the training subset using this concept–region co-occurrence matrix. By doing
so, we ensure that visual correlations among areas are taken into consideration. Thereafter,
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we employ a k-nearest neighbors regression (KNN-r) algorithm to annotate new regions.
Figure 1 depicts a general scheme of the proposed approach.
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Figure 1. The different phases that constitute our proposed AIA approach. Black solid arrows
correspond to training images, whereas the blue ones correspond to test images. All images pass
through a segmentation phase using JSEG algorithm, the segmented regions are fed to a CNN
for feature extraction, features are encoded, a codebook is generated, and then KNN regression is
employed to link blobs with labels and assign new labels.

As the scheme in Figure 1 shows, our model takes a set D of images D = {I1, . . . , IN},
some of which are labeled (for training) and the rest of which are not. It should be men-
tioned that each training image In is labeled with Icn concepts: Icn ∈ C/C = {C1, . . . , CM}.
All images are passed through a preprocessing step in which they are segmented, using
JSEG algorithm, into visually homogeneous regions. An aggregation approach is subse-
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quently used to decrease the large number of areas by codifying comparable areas into
blobs (codebook), with each blob corresponding to one label. Using the generated code-
book and the annotation from the training subset, our model generates a co-occurrence
matrix that codifies the appearance frequency of each blob–concept. Finally, we engage
KNN regression to predict annotations corresponding to blobs extracted from unannotated
images. Each of these steps will be further discussed hereafter.

3.1. Image Segmentation Using JSEG Algorithm

According to [36], the best way to recognize objects from an image is to segment them
and then extract features from those segmented regions. However, object segmentation,
both using supervised and unsupervised approaches, is itself a complex task. Despite the
difficulty of achieving precise and accurate semantic segmentation, it has been proven
on many occasions that segmented areas hold valuable annotation cues regardless of the
quality of segmentation [16,34].

JSEG is a powerful unsupervised segmentation algorithm for color images that proved
its effectiveness and robustness in a variety of applications [37,38]. JSEG has recently
witnessed various improvements to improve its performances, such as in the problem of
oversegmentation [16,39]. In our study, the JSEG proposed in [18] has been employed to
segment the image into a set of semantic regions, as illustrated in Figure 2.
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Figure 2. A general scheme of texture-enhanced JSEG (T-JSEG) segmentation method. At the
preprocessing level, the HSV color space is firstly quantized and all pixels of the image are then
mapped to their corresponding bins. At the segmentation level, the J-image and a class map for each
windowed color region are calculated, and then a clustering/growing algorithm is applied to obtain
distinct regions.
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3.2. Region Representation

In region-based techniques, the visual characteristics of the image, such as color,
texture, and form, are typically extracted from each region. Using local features instead of
global ones has been proven to be more effective in image annotation tasks. Nevertheless,
appropriate features must be selected to represent the essential substance of the image. For
the task of image representation, deep CNNs have recently been shown to outperform, by
a significant margin, state-of-the-art solutions that use traditional hand-crafted features. In
our study, the learning transfer of off-the-shelf features extracted from a pretrained CNN
model has been used to represent the content of each image region. Learning transfer
has shown high efficiency in extracting visual features and demonstrated that features
with sufficient representative strength can be extracted from the last layers [40,41]. We
have opted for a pretrained model for two reasons: the first one is that we do not have a
sufficient amount of data or the necessary resources to train a new CNN model; the second
reason is to speed up the training process of our model. MobileNet [42] model, shown in
Figure 3, has been adopted in the present work since it has proved high performance (both
accuracy and rapidness) in many learning transfer-based methods.
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3.3. Feature Aggregation

The JSEG algorithm does not necessarily generate an equal number of regions per
image. Thus, extracting features from each region usually results in image descriptors
with different sizes. To normalize the sizes of image descriptors, an aggregation method is
generally utilized to produce a codebook that is used later on to codify the descriptors into
equal size descriptors [43].

Vector of locally aggregated descriptors (VLAD) is one of the most powerful aggrega-
tion techniques used to produce fixed-length vectors from local feature sets xi = {xj ∈ RF,
j = 1, . . . , Ni} having different sizes, where Ni is the number of local descriptors extracted
from image i. VLAD generates, from the training set, a codebook C = {ci ∈ RK, i = 1, . . . , M},
where M is the number of estimated clusters and ci are their respective centers. Thereafter,
a subvector vi is obtained via accumulating the residual errors over an image Xi for each
i = 1, . . . , M.

vi = ∑
xj :g(xj ,C)=ci

xj − ci (1)

where g(xj,C) = argminci∈ C ||xj−ci||2 g
(
xj, C

)
= argminci∈ C

∣∣∣∣xj − ci
∣∣∣∣2 maps a descrip-

tor xj to its nearest cluster ci. The descriptor Di of the image Xi is a matrix of size M × F
which is produced by concatenating all the corresponding codes Di = [v1

T, v2
T, . . . , vM

T].
This descriptor is power-normalized and then l2-normalized; i.e.,

vi = |vi|
0.5. sign(vi)/‖v‖2, l = 1, . . . , M. (2)

The overall encoding process can be summarized as a function F that maps a codebook
and a feature set to a global vector v = F (X, C).
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3.4. Calculating Blob–Label Co-Occurrences

After having images segmented and descriptors extracted from regions, a clustering
process must be performed to define local manifolds constituting the feature space. To this
end, we employ the recent deep-clustering N2D algorithm [44]. N2D learns an autoencoder
embedding model and then searches this further for the underlying manifolds. Thereafter,
a shallow network, rather than a deeper one, is used to perform clustering. N2D suggests
that local manifolds learned on an autoencoded embedding are effective for discovering
higher quality clusters.

In our new space, image regions that are visually similar lie within the same manifold.
Let us suppose that N2D has produced a set of clusters C = {c1, c2, . . . , cM} and the
respective set S of label subsets si: S = {s1, s2, . . . , sM}; then, an image that contributes by
at least one region into the cluster cj must contribute all of its labels to sj. In other words,
sj holds labels from images that have at least one region in the cluster cj. By exploiting
both S and R, we can extract some useful complex semantic cues that link region-region,
region-concept, and concept-concept. To do so, we extract a concept-cluster co-occurrence
matrix M in which each cell M(cj, ri) indicates the appearance frequency of a concept (row,
label) l in the cluster, given the label subset si.

M
(
cj, ri

)
=

∑sij∈si
δsij,ci

‖S‖ (3)

where δ is the Kronecker delta function and ‖S‖ is a normalizer that represents the total
number of labels that correspond to all the clusters.

The co-occurrence matrix M can be considered as a relatedness metric that measures
the correlation among concepts and clusters. M will, thereafter, be used to calculate the
conditional probabilities.

3.5. Annotating New Images

Let us suppose that we have a new input image Inew without labels and we want to
assign annotations to it. Similarly, T-JSEG algorithm will be employed to segment the image
Inew and produce a set of regions r̃ = {r̃1, . . . , r̃s}. Since we have assumed that each region
r̃i corresponds to one annotation ci from the annotation space, then we must calculate the
conditional probabilities P(ci|r̃i) to find out the best annotation that fits the region.

To assign a set of annotations, we perform a KNN regression while maximizing a
Bayesian probability as follows:

1. Embed r̃i descriptor into the appropriate manifold using the trained autoencoder
model from N2D.

2. Retrieve k-nearest clusters using a simple Euclidean distance Cri = {c1, c2, . . . , ck} and calcu-
late, for each annotation ai in the dataset, a regression probability: P(ai) = ∑k

l=1 M(ai, cl).
This regressed value will be considered as a representative of the region r̃i.

3. Maximize the following Bayesian probability: arg max P(r̃i) = P(r̃i | ai)P(ai)
P(r̃i)

, where

P(ai) =
1

Number o f annotations , and P(r̃i) =
1
k ∑k

l=1 g(ci), g(ci) calculates the center of the
cluster ci.

4. Assign the top fit concepts C* = {aj} to the input image.

The rationale behind involving a neighborhood of clusters, rather than one cluster,
to annotate one region is to ensure that we are taking into account information about
blob-to-blob relationships, which grants higher error tolerance.

4. Experiments and Result Analysis

This section is devoted to proving the efficiency of the proposed scheme across three
scenarios. In the first scenario, we examine the impact of altering the parameters’ values
of our algorithm and try to tune them. In the second scenario, a comparison against
state-of-the-art methods is conducted in an attempt to demonstrate the superiority of our
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proposed algorithm. Finally, we investigate the complexity of our proposal by estimating
the time consumed in the annotation process.

4.1. Experiment Setup

All experiments in this section have been carried out using the following configurations:

• Datasets:

We have used two well-known datasets, namely Corel-5K and MSRC v2.
Corel 5K: This is a publicly available dataset that is commonly used for the task of

image annotation. It is composed of 5000 images from 50 photo stock CDs annotated
with 374 labels in total. Each CD includes 100 images on the same topic, annotated with
1–5 keywords per image. Due to the unbalanced nature of label distribution over images,
most previous works consider using a few numbers of concepts (i.e., a subset of images)
that appear frequently. However, we evaluate our proposed algorithm on both subset and
complete datasets to prove its effectiveness and tolerance to the problem of unbalanced
label distribution. Corel-5K is already split into train and test subsets comprising 4500 and
500 images, respectively.

MSRC v2: This dataset contains 591 images grouped into categories having 23 con-
cepts, each image explained using 1–7 keywords. MSRC v2 is split into train and test
subsets comprising 394 and 197 images, respectively.

Table 1 lists the essential characteristics of the two datasets used.

Table 1. Specifications of the two datasets used, Corel-5k and MSRC v2.

Corel-5k MSRC v2

Dataset size 5000 591
Train set size 4500 394
Test set size 500 197

Number of labels 371 23
Mean labels per image 3.4 2.5
Mean images per label 58.6 28.15

• Evaluation Metrics:

To evaluate the performance of the proposed scheme, four widely known metrics
for image annotation tasks have been opted for, namely precision (P), recall (R), F1-score
(F1), and N+. The formulas to calculate these quantities are given respectively by the
following equations:

P =
1
|S| ∑

s∈S

|images annotated correctly with label s|
|images annotated with label s| × 100% (4)

R =
1
|S|∑∈S

|images annotated correctly with label s|
|images having label s in the ground truth| × 100% (5)

F1 = 2× P× R
P + R

(6)

N+ = the number of concepts assigned correctly at least once. (7)

It must be mentioned that region features are extracted from the final fully connected
layer of the CNN model. This is because the information collected from the final FC layer
is more suited to characterizing areas, especially when there is no stable color distribution
(i.e., objects rather than textures) [45]

4.2. Scenario 1: Parameter Tuning

This first scenario aims at tuning the values of our method’s parameters that ensure
sufficient performance. We firstly tune the most suitable aggregation method among the
three well-known methods: bag of visual words (BoVW), vector of linearly aggregated
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descriptors (VLAD), and Fisher vector (FV). Figure 4 represents the precision and recall
yielded using features encoded by each of the aforementioned aggregation methods.
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Figure 4. Precision and recall yielded using the three aggregation methods: BoVF, VLAD, and FV.

From Figure 4, it appears that VLAD has the best performance among the others. FV,
on the other hand, has yielded the worst performance due to the second-order information
it takes into account which is not helpful in cases of segmented homogeneous regions. We
opted for VLAD in the remainder of this section because of the sufficient performance and
the fast vector quantization it provides.

The K parameter of the KNN regression algorithm might be affected by different
factors such as the task it is used for, the length of the feature vector, and the number of
classes. To determine which value fits most for our task of automatic image annotation, we
have evaluated the KNN algorithm with K values ranging from 1 to 50. Figure 5 shows the
impact of changing K values on the final precision and recall.
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Figure 5. The impact of changing the value of K of KNN regressor on (a) the precision and (b) the recall of our
proposed method.

From Figure 5, it appears that our method grants the best performance at K = 40.
However, K = 17 has rather been chosen to provide a trade-off between precision and
computation speed.
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Since our method engages off-the-shelf CNN-based features, we evaluate several
CNN models to determine which is the best for our task. The performance is determined
not only in terms of precision and recall, but also in terms of time consumed in image
processing. Figure 6 shows the impact of using different CNN models on the precision and
recall of our proposed method.
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Figure 6. The impact of using different CNN models on our proposed method. The impact is
measured in terms of precision, recall, and complexity.

From Figure 6, it appears that the best two CNN models are Vgg-16 and MobileNet.
However, the latter suffers from the high complexity (huge number of parameters) which
requires far more time of calculation (30 times slower) compared to the former. In our
model, we have opted for MobileNet to achieve a better trade-off between accuracy and
computation time.

In this first scenario, we aimed at tuning parameters to obtain, to some extent, satisfac-
tory results. Thus, VLAD aggregation method, K = 17, and MobileNet model have been
considered in the following experiments.

4.3. Scenario 2: Comparing Our Method to the State of the Art

In this second scenario, our proposed method has been compared to a wide range of
AIA methods in the literature. For the sake of clarity, these methods have been categorized
into region-based and holistic-based, each of which contains CNN- and handcrafted-based
features [46]. It is worth noting that some works in literature use the full set of dataset’s
annotations (e.g., 374 concepts for Corel-5K), whereas some others pick only a subset of
260 concepts. In our experiments, however, we engaged both two scenarios: 374 and
260 concepts. One must know that a good AIA system should achieve equivalence in the
proportion of correctly assigning different concepts. In other words, the standard deviation
of correctly assigning concepts needs to be minimized. Unfortunately, we were not able to
find statistics, such as standard deviations and medians, about the obtained results in most
of the related works for comparison.

Corel-5K has had the major share of experiments for AIA tasks. Since there are many
related works for which there is no room to mention here, we have involved the more
recent ones in our comparison (those proposed after 2015). Table 2 presents results obtained
from our method compared to those of the related works using the Corel-5K dataset.
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Table 2. A comparison between our method and other recent related works in terms of precision (P), recall (R), F1, and N+.
The involved works adopt one of the following scenarios: considering 260 concepts or considering 374 concepts, as shown
in the ‘No. Cpt’ column.

Method No. Cpt P R F1 N+

Holistic
approach

CNN-R (2015) [7] 374 32 41.3 36.1 166
KCCA (2015) [7] 374 39 53 44.9 184

CCA-KNN (2015) [7] 374 42 52 46.5 201
Group Sparsity (2015) [47] 260 30 33 31.4 146

GLKNN (2015) [48] 260 36 47 40.8 184
MIAPS (2015) [49] 260 39.98 42.66 41.28 177
MVSAE (2015) [50] 260 37 47 42 175
LJNMF (2015) [51] 260 35 43 39.1 175
SLED (2015) [52] 260 35 51 41.5 -

AWD-IKNN (2016) [53] 260 42 55 47.7 198
CNN-AT (2016) [54] 374 26 17 21 88
NSIDML (2016) [55] 260 44.12 51.76 47.76 194

MLDL (2016) [56] 260 45 49 47 198
LDMKL (2017) [57] 200 29 44 35 179
SDMKL (2017) [57] 200 25 38 158
L-ADA (2017) [58] 260 31 38 34 164

NL-ADA (2017) [58] 260 32 40 36 173
MVG-NMF (2017) [59] 260 44 47.5 45.6 197

PRM (2017) [60] 260 40.78 53.64 46.33 205
VSE-2PKNN-ML (2018) [61] 260 41 52 46 205

PRM DEEP (2018) [62] 260 45.3 51.73 48.3 201
CCAKNN (2018) [63] 260 41 43 42 185

IDFRW (2018) [64] 260 38 49 43 185
CDNI (2018) [65] 260 29.8 32.1 30.9 162
OPSL (2018) [66] 260 38.3 55 45.2

E2E-DCNN (2019) [67] 260 41 55 47 192
SEM (2019) [68] 260 37 52 43 -

L-Global CA (2019) [69] 260 36 45 189
S-Global CA (2019) [69] 260 36 46 194

L-Classwise CA (2019) [69] 260 36 45 192
LL-PLSA (2020) [70] 260 37 48 42 -

RDPGKNN (2020) [71] 260 40 45 40 195
Weight-KNN (2020) [23] 260 22 15 18 -

Khatchatoorian et al. (2020) [72] 260 55.46 56.55 56 212
GCN (2020) [73] 260 48 52 49 200

CNN-THOP (2020) [74] 260 52.7 58.3 55.3 -
SSGL (2020) [75] 260 34 47 40 190

Zhang et al. (2020) [76] 374 60 68 64 228
PLSA-MB (2020) [77] 260 26 30 27.9

TAIA (2020) [78] 260 38.4 48.6 42.9 177
Y.chen et al. (2021) [79] 260 26.93 41.43 32.64 161

TSEM (2021) [80] 260 38 46 42 -
TSEM+LQP (2021) [80] 260 45 40 43 -

SSL-AWF (2021) [81] 260 51 48 49.5 203
CNN-SPP (2021) [81] 260 46 43 44.4 196

HMAA (2021) [1] 260 43 54 48
MVRSC (2021) [82] 260 54.3 42.9 47.9

LDA-ECC (2021) [81] 260 35 36 35.5 148

Region-based
approach

MLSIA (2015) [19] 374 23.35 26.24 23.54 -
ANNOR-G (2015) [83] 260 22 29 25 129
Zhang et al. (2016) [16] 374 57.61 53.04 53.85 -

BG (2019) [84] 374 33 41 170
TG (2019) [84] 374 36 45 189

Vatani et al. (2020) [85] 260 28 96 43 -
Our method 374 48.63 64.94 54.85 236
Our method 260 59.45 65.01 58.89 212
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From Table 2, it appears that our proposed segmentation-based AIA method outper-
forms the majority of the stated related works in both scenarios of 274 and 260 concepts. If
we take as an instance the top two F1 scores yielded by the related works Khatchatoorian
et al. (2020) [72] and CNN-THOP (2020) [74] in the scenario of 260 concepts, we can clearly
see that the outcomes of our method exceed those of both methods by 5% at least. Further-
more, the F1 score obtained by our method is at least 10% higher than that obtained by
other recent studies such as GCN (2020) [73], SSL-AWF (2021) [81], and MVRSC (2021) [82].
Now, if we look at the scenario of 374 concepts, we can see that our proposed method
has surpassed all other methods except for that of Vatani et al. (2020) [85]. However,
if we consider the method of Vatani et al. in terms of N+, we can see that our method
outperforms it by eight concepts. This means that our method is capable of appropriately
assigning eight more concepts than the method of Vatani et al. As previously said, it is
not sufficient for a technique to achieve high accuracy alone; it should also acquire the
meaning of the greatest number possible of concepts.

To further analyze the outcomes of our method, we have calculated statistics of P, R,
and F1 and presented them using a box plot. Figure 7 presents some statistics about how
our proposed method learns the meaning of concepts.
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Figure 7. Statistical description of how our proposed method learns the meanings of concepts
accurately and in a balanced manner. Precision and recall are denoted by the letters P and R,
respectively, and the following number denotes the number of concepts utilized in the experiment.

From the first glance, it appears that there is a compromise between precision and
recall based on the used number of concepts. With 374 concepts, for instance, our system
achieved a recall that is far higher than the precision. When it comes to 260 concepts,
however, the precision remarkably improved whereas the recall slightly decreased. As
the depicted standard deviation (≈14 in both cases) indicates, our proposed technique
aids in the balanced learning of various concepts. With a median of 45.7 in the scenario
of 374 concepts, our findings indicate that more than half of the images were annotated
with at least two to three accurate concepts, which is a significant number given a large
number of concepts (374 concepts). Nonetheless, the number of correctly annotated images
with two to three concepts increases substantially in the case of 260 images, resulting in a
75% rate. It should be noted that manually annotating images involves some subjectivity
or mistakes, which results in the appearance of certain outliers, as seen in Figure 7.

On one hand, the approach proposed in the work of Zhang et al. (2016) [16] relies
totally on finding the semantic relatedness among presegmented regions based on a wide
range of handcrafted features [86,87]. By understanding the logic that connects different
concepts, the system became able to learn concepts regardless of their narrow use. On
the other hand, the idea in the work of Khatchatoorian et al. (2020) [72] revolves around
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employing CNN as a black box and letting it learn everything by itself. However, we
have taken advantage of both the methods by applying a CNN to obtain a rich set of
features representing the concepts and employing KNN regression to understand how
these concepts are related. By doing so, we have exceeded the performance of both
previous techniques.

MSRC v2 dataset has also been used to assist the performance of AIA systems in
various literature works, in particular those based on regions. We have conducted a
comparison against some recent works on the same dataset using the same 22-concept
scenario. Due to the limited number of annotations (22 concepts only), the metric N+
has been disregarded in this comparison since it always produces the perfect result (i.e.,
N+ = 22). Figure 8 presents F1 in terms of precision and recall using the MSRC v2 dataset.
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Figure 8. A blob chart of F1 in terms of precision and recall. The experiments were conducted on MSRC dataset, with
22 concepts, between MBRM [27], CNN-THOP [74], SMK+GRM [88], CNN-AT [54], and Zhang et al. [76] on one hand and
our proposed method on the other hand.

Figure 8 clearly shows that our proposed method outperforms the others by yielding
precision = 78.01% and recall = 82.6% which produce the highest F1 score of 80.24%.
However, assessing the method’s performance based on a sample mean of precisions is, in
many cases, deceptive. Therefore, it is a common practice in AIA performance assessment
procedure to evaluate the performance on each concept individually. Figure 9 presents a
precision heatmap yielded by our method compared to the others.

As it appears from Figure 9, CNN-THOP and our method have outperformed the
others by yielding perfect precisions with four concepts. Furthermore, our method has
achieved more than 0.98 for another three concepts, namely grass, airplane, and bike. If we
take the third quantile for both methods (≈0.93 for CNN-THOP and ≈0.99 for our method)
as an example, we can deduce that far more concepts have been appropriately grasped by
our method than by CNN-THOP. Furthermore, our approach has a standard deviation of
0.7, whereas CCN-THOP has a standard deviation of 0.14, indicating that the former has a
better balance in learning concepts, whilst the latter only concentrates on a few of them.
The outcomes of this experiment prove that guiding a CNN-based AIA system through a
preprocessing of image segmentation could highly improve the results.
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Figure 9. Precision heatmap generated from the precision per concept produced by each method.
Lower precisions are indicated by darker cells. The methods involved in this experiment are
MBRM [27], SSK-CBKP [89], CNN-AT [54], CNN-ECC [90], E2E-DCNN (2019) [66], CNN-THOP [74],
Zhang et al. [76], and our method.

Poor performance of an AIA system does not always reflect inefficiency; in many
cases, it is a result of a poorly annotated dataset. To further clarify this last argument,
we have collected some images in which the ground truth does not accurately reflect the
content of the image. Table 3 shows a list of test images with their respective ground truths
and annotations given by AIA systems.

Table 3. A list of images with their respective ground truths and given annotations. Concepts in bold indicate that they are
parts of the ground truth.

Ground Truth CMRM [26] Our Method

1.

Appl. Sci. 2021, 11, 10176 14 of 20 
 

 

Figure 9. Precision heatmap generated from the precision per concept produced by each method. 

Lower precisions are indicated by darker cells. The methods involved in this experiment are MBRM 

[27], SSK-CBKP [89], CNN-AT [54], CNN-ECC [90], E2E-DCNN (2019) [66], CNN-THOP [74], Zhang 

et al. [76], and our method. 

As it appears from Figure 9, CNN-THOP and our method have outperformed the 

others by yielding perfect precisions with four concepts. Furthermore, our method has 

achieved more than 0.98 for another three concepts, namely grass, airplane, and bike. If 

we take the third quantile for both methods (≈0.93 for CNN-THOP and ≈0.99 for our 

method) as an example, we can deduce that far more concepts have been appropriately 

grasped by our method than by CNN-THOP. Furthermore, our approach has a standard 

deviation of 0.7, whereas CCN-THOP has a standard deviation of 0.14, indicating that the 

former has a better balance in learning concepts, whilst the latter only concentrates on a 

few of them. The outcomes of this experiment prove that guiding a CNN-based AIA sys-

tem through a preprocessing of image segmentation could highly improve the results.  

Poor performance of an AIA system does not always reflect inefficiency; in many 

cases, it is a result of a poorly annotated dataset. To further clarify this last argument, we 

have collected some images in which the ground truth does not accurately reflect the con-

tent of the image. Table 3 shows a list of test images with their respective ground truths 

and annotations given by AIA systems. 

Table 3. A list of images with their respective ground truths and given annotations. Concepts in 

bold indicate that they are parts of the ground truth. 

 Ground Truth CMRM [26] Our Method 

1. 

 

car, tracks, grass 
water, tree, sky, 

people, grass 

car, tracks, turn, 

prototype 

2. sky, tree, castle 
people, building, ohau, 

water, tree 

sky, clouds, tree, 

house 

car, tracks, grass water, tree, sky, people, grass car, tracks, turn, prototype

2.

Appl. Sci. 2021, 11, 10176 15 of 20 
 

 

3. 

 

flowers, petals, 

leaf 

sky, water, people, 

tree, grass 

leaf, flowers, petals, 

stems 

4. 

 

flowers, tree, sky 
flowers, tree, grass, 

lawn, sky 
sky, tree, flower, tulip 

5. 

 

sky, plane, 

runway 

plane, jet, sky, cars, 

tracks 
plane, runway, prop 

Table 3 shows that, compared to the ground truth, some annotations have been in-

deed assigned, some have been replaced with their synonyms, and some others have been 

completely omitted. If we take image number 3 as an example, we can see that the preci-

sion of the annotation process is 50% (i.e., two out of three concepts from the ground truth 

have been assigned to the image by the AIA). However, a careful inspection reveals that 

all the assigned concepts do indeed describe the image (image 2 contains clouds and a 

house). The same goes for the rest of the images.  

4.4. Scenario 3: Computing Cost 

When an algorithm is dedicated to being utilized with entities with restricted sources 

of power or poor processing capacity, its speed is an essential factor in determining its 

performance. In this experiment, we evaluate and compare our method to other common 

AIA methods in terms of time consumed in the annotation process. Table 4 shows the 

result of comparing our method to other famous methods in terms of time consumption 

during annotation. 

Table 4. Time consumed, in seconds, for annotating one image with five concepts. 

 Our Method SKL-CRM [91] MLDL [56] 2PKNN [11] tagProp [6] 

Consumed time 1.2 27 24.6 0.6 0.6 

From Table 4, it appears that our method has a relatively acceptable time for anno-

tating images. This can be attributed to the simple scheme we adopt that does not require 

complicated calculations such as those required for MLDL [55] and SKL-CRM [91]. This 

sky, tree, castle people, building, ohau, water,
tree sky, clouds, tree, house

3.

Appl. Sci. 2021, 11, 10176 15 of 20 
 

 

3. 

 

flowers, petals, 

leaf 

sky, water, people, 

tree, grass 

leaf, flowers, petals, 

stems 

4. 

 

flowers, tree, sky 
flowers, tree, grass, 

lawn, sky 
sky, tree, flower, tulip 

5. 

 

sky, plane, 

runway 

plane, jet, sky, cars, 

tracks 
plane, runway, prop 

Table 3 shows that, compared to the ground truth, some annotations have been in-

deed assigned, some have been replaced with their synonyms, and some others have been 

completely omitted. If we take image number 3 as an example, we can see that the preci-

sion of the annotation process is 50% (i.e., two out of three concepts from the ground truth 

have been assigned to the image by the AIA). However, a careful inspection reveals that 

all the assigned concepts do indeed describe the image (image 2 contains clouds and a 

house). The same goes for the rest of the images.  

4.4. Scenario 3: Computing Cost 

When an algorithm is dedicated to being utilized with entities with restricted sources 

of power or poor processing capacity, its speed is an essential factor in determining its 

performance. In this experiment, we evaluate and compare our method to other common 

AIA methods in terms of time consumed in the annotation process. Table 4 shows the 

result of comparing our method to other famous methods in terms of time consumption 

during annotation. 

Table 4. Time consumed, in seconds, for annotating one image with five concepts. 

 Our Method SKL-CRM [91] MLDL [56] 2PKNN [11] tagProp [6] 

Consumed time 1.2 27 24.6 0.6 0.6 

From Table 4, it appears that our method has a relatively acceptable time for anno-

tating images. This can be attributed to the simple scheme we adopt that does not require 

complicated calculations such as those required for MLDL [55] and SKL-CRM [91]. This 

flowers, petals, leaf sky, water, people, tree, grass leaf, flowers, petals, stems



Appl. Sci. 2021, 11, 10176 15 of 19

Table 3. Cont.

Ground Truth CMRM [26] Our Method

4.

Appl. Sci. 2021, 11, 10176 15 of 20 
 

 

3. 

 

flowers, petals, 

leaf 

sky, water, people, 

tree, grass 

leaf, flowers, petals, 

stems 

4. 

 

flowers, tree, sky 
flowers, tree, grass, 

lawn, sky 
sky, tree, flower, tulip 

5. 

 

sky, plane, 

runway 

plane, jet, sky, cars, 

tracks 
plane, runway, prop 

Table 3 shows that, compared to the ground truth, some annotations have been in-

deed assigned, some have been replaced with their synonyms, and some others have been 

completely omitted. If we take image number 3 as an example, we can see that the preci-

sion of the annotation process is 50% (i.e., two out of three concepts from the ground truth 

have been assigned to the image by the AIA). However, a careful inspection reveals that 

all the assigned concepts do indeed describe the image (image 2 contains clouds and a 

house). The same goes for the rest of the images.  

4.4. Scenario 3: Computing Cost 

When an algorithm is dedicated to being utilized with entities with restricted sources 

of power or poor processing capacity, its speed is an essential factor in determining its 

performance. In this experiment, we evaluate and compare our method to other common 

AIA methods in terms of time consumed in the annotation process. Table 4 shows the 

result of comparing our method to other famous methods in terms of time consumption 

during annotation. 

Table 4. Time consumed, in seconds, for annotating one image with five concepts. 

 Our Method SKL-CRM [91] MLDL [56] 2PKNN [11] tagProp [6] 

Consumed time 1.2 27 24.6 0.6 0.6 

From Table 4, it appears that our method has a relatively acceptable time for anno-

tating images. This can be attributed to the simple scheme we adopt that does not require 

complicated calculations such as those required for MLDL [55] and SKL-CRM [91]. This 

flowers, tree, sky flowers, tree, grass, lawn, sky sky, tree, flower, tulip

5.

Appl. Sci. 2021, 11, 10176 15 of 20 
 

 

3. 

 

flowers, petals, 

leaf 

sky, water, people, 

tree, grass 

leaf, flowers, petals, 

stems 

4. 

 

flowers, tree, sky 
flowers, tree, grass, 

lawn, sky 
sky, tree, flower, tulip 

5. 

 

sky, plane, 

runway 

plane, jet, sky, cars, 

tracks 
plane, runway, prop 

Table 3 shows that, compared to the ground truth, some annotations have been in-

deed assigned, some have been replaced with their synonyms, and some others have been 

completely omitted. If we take image number 3 as an example, we can see that the preci-

sion of the annotation process is 50% (i.e., two out of three concepts from the ground truth 

have been assigned to the image by the AIA). However, a careful inspection reveals that 

all the assigned concepts do indeed describe the image (image 2 contains clouds and a 

house). The same goes for the rest of the images.  

4.4. Scenario 3: Computing Cost 

When an algorithm is dedicated to being utilized with entities with restricted sources 

of power or poor processing capacity, its speed is an essential factor in determining its 

performance. In this experiment, we evaluate and compare our method to other common 

AIA methods in terms of time consumed in the annotation process. Table 4 shows the 

result of comparing our method to other famous methods in terms of time consumption 

during annotation. 

Table 4. Time consumed, in seconds, for annotating one image with five concepts. 

 Our Method SKL-CRM [91] MLDL [56] 2PKNN [11] tagProp [6] 

Consumed time 1.2 27 24.6 0.6 0.6 

From Table 4, it appears that our method has a relatively acceptable time for anno-

tating images. This can be attributed to the simple scheme we adopt that does not require 

complicated calculations such as those required for MLDL [55] and SKL-CRM [91]. This 

sky, plane, runway plane, jet, sky, cars, tracks plane, runway, prop

Table 3 shows that, compared to the ground truth, some annotations have been
indeed assigned, some have been replaced with their synonyms, and some others have
been completely omitted. If we take image number 3 as an example, we can see that the
precision of the annotation process is 50% (i.e., two out of three concepts from the ground
truth have been assigned to the image by the AIA). However, a careful inspection reveals
that all the assigned concepts do indeed describe the image (image 2 contains clouds and a
house). The same goes for the rest of the images.

4.4. Scenario 3: Computing Cost

When an algorithm is dedicated to being utilized with entities with restricted sources
of power or poor processing capacity, its speed is an essential factor in determining its
performance. In this experiment, we evaluate and compare our method to other common
AIA methods in terms of time consumed in the annotation process. Table 4 shows the
result of comparing our method to other famous methods in terms of time consumption
during annotation.

Table 4. Time consumed, in seconds, for annotating one image with five concepts.

Our Method SKL-CRM [91] MLDL [56] 2PKNN [11] TagProp [6]

Consumed time 1.2 27 24.6 0.6 0.6

From Table 4, it appears that our method has a relatively acceptable time for annotat-
ing images. This can be attributed to the simple scheme we adopt that does not require
complicated calculations such as those required for MLDL [55] and SKL-CRM [91]. This is
because the present method places a strong emphasis on speed and minimal computation,
which can be proved by the used sample region growing JSEG algorithm for image seg-
mentation and off-the-shelf features extracted from the fastest network MobileNet that is
dedicated for mobiles. The pretrained CNN is employed in a manner that does not require
any further training or finetuning, which reduces the amount of computing needed. These
criteria grant rapidity and low consumption of resources and make our method suitable
for mobiles or other small entities.

5. Conclusions

This paper introduced an automatic image annotation system in which segmentation
JSEG algorithm, a convolutional neural network named MobileNet, and KNN regression
methods have been employed. MobileNet has been adopted to grant a rich representation
of regions generated by JSEG, and KNN regressor is employed to understand how these
concepts are related. After tuning the best values of our method, it has been compared
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against other methods in terms of precision, recall, F1, N+, and computing time. The
two common scenarios of 374 and 260 concepts have been taken into account for the
dataset Corel-5K. F1 of 54.85% and N+ of 236 for the first scenario and F1 of 58.89% and N+
of 212 for the second scenario have been achieved. These results indicate the superiority
of the proposed approach compared to a wide range of related works. Furthermore, a
statistical analysis has been carried out on the outcoming of our method and has proved
that our proposed method aids in more balanced learning of different concepts. To further
prove the superiority of our method, it has been compared against other region-based
works on the MSRC v2 dataset. Results proved that the concepts corresponding to the
third quartile achieve more than 99% precision, which is an important amount of concepts.
Since the present method places a strong emphasis on speed and minimal computation,
we compared it against other common methods in terms of time consumption. Results
proved its rapidity and low consumption of resources which make it suitable for mobiles
or other small entities. The experiments also demonstrated that the precision yielded by
our method is somewhat biased due to the poor quality of the ground truth. Therefore, our
method should be exploited in enhancing the ground truth of manually annotated datasets
by eliminating the problems of missing data and noise.
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