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Abstract: While most of the existing topic models perform a full analysis on a set of documents to
discover all topics, it is noticed recently that in many situations users are interested in fine-grained
topics related to some specific aspects only. As a result, targeted analysis (or focused analysis) has
been proposed to address this problem. Given a corpus of documents from a broad area, targeted
analysis discovers only topics related with user-interested aspects that are expressed by a set of
user-provided query keywords. Existing approaches for targeted analysis suffer from problems such
as topic loss and topic suppression because of their inherent assumptions and strategies. Moreover,
existing approaches are not designed to address computation efficiency, while targeted analysis is
supposed to provide responses to user queries as soon as possible. In this paper, we propose a core
BiTerms-based Topic Model (BiTTM). By modelling topics from core biterms that are potentially relevant
to the target query, on one hand, BiTTM captures the context information across documents to
alleviate the problem of topic loss or suppression; on the other hand, our proposed model enables the
efficient modelling of topics related to specific aspects. Our experiments on nine real-world datasets
demonstrate BiTTM outperforms existing approaches in terms of both effectiveness and efficiency.

Keywords: AI; text analysis; topic model; biterm; content analysis; targeted modeling

1. Introduction

Topic modelling as unsupervised learning has become a prevalent text mining tool for
discovery of hidden semantic structures in a text body. Given a collection of documents,
most of the existing topic models perform a full analysis to discover all topics occurring in
the corpus. However, it was recently noticed [1] that in many situations users are interested
in focused topics related to some specific aspects only. For example, given a set of Amazon
product reviews, a user might be interested only in bedding products. A conventional
topic model performing full analysis will identify all topics from the entire corpus such
as “furniture”, “food” and “clothing”. Although the topic of “furniture” is related to the
user interested aspect of “bedding products”, it is too coarse as the user might be more
interested in fine-grained topics like “bed frames” and “mattress”. As a result, targeted
(or focused) analysis is proposed by Wang et al. [1] to discover topics relevant to targeted
aspects only. Particularly, given a corpus of documents from a broad domain and a set of
user-provided keywords representing user-interested aspects, targeted analysis aims to
discover topics related with the queried aspects only.

Methods for targeted analysis can be generally categorised into two groups:
(1) conventional topic models incorporating filtering strategies and (2) specialised topic
models. However, methods of both categories suffer from problems such as topic loss and
topic suppression, because of the limitations of their respective assumptions and strategies.
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For algorithms in the first group, both pre-filtering and post-filtering strategies can be
adopted to empower full-analysis topic models to find topics related to queried aspects.
Basically, the pre-filtering strategy retains only documents containing the query keywords
and extracts topics from the retained “partial data”. The quality of the discovered topics
thus heavily depends on user-supplied query keywords. If the keywords are not appropri-
ate or comprehensive enough, many relevant documents will be filtered, which incurs a
significant topic loss. For example, if a user provides “bath” as a query keyword, documents
without the keyword but containing the synonyms like “shower” and similar words like
“bathtub” will be filtered although such documents are actually relevant. Consequently,
there is a great possibility to lose topics if modelling from the retained partial data. A
post-filtering strategy applies conventional topic models to identify first all topics in the
corpus and then filter the topics that do not contain the query keywords in the results.
However, as analysed in [1], such a strategy may result in topic suppression when the query
keywords are infrequent in the database. Topic suppression means that topics related to the
user interested aspect are suppressed by general topics.

For algorithms in the second group, TTM [1] is the first and the state-of-the-art. TTM
is a sparse topic model designed to directly mine focused topics based on user-provided
query keywords. TTM simulates two topic-word distributions: φr for relevant topics and
φir for irrelevant topics. It considers documents at the sentence level and introduces a
variable r to indicate the status of a sentence (e.g., relevant or irrelevant). Words are then
sampled from φr or φir according to the sentence status. Although TTM can accomplish the
targeted analysis to a certain extent, the effectiveness of TTM is handicapped by its scheme
of processing at the sentence level and its assumption that each sentence focuses on only
one topic. By considering sentences individually and separately, topic information between
consecutive sentences may be lost, which results in inferior topic qualities and possible
topic loss. By assuming that each sentence is related with only one aspect, it is very likely
for TTM to mistakenly assign relevance status for sentences related with multiple topics,
which is often the case for long sentences. The wrong assignment of sentence statuses will
in turn lead to possible missing of meaningful topics.

A common challenge faced by algorithms of both categories is the computation
efficiency, while full analysis of topics is largely performed offline, targeted analysis is more
likely an online module that is supposed to respond to user queries as soon as possible.
However, existing algorithms for targeted analysis, especially the post-filtering strategy
and the specialised topic models, are not devised to address this issue. The pre-filtering
strategy may gain efficiency by modelling topics from a reduced set of “partial data”, but it
achieves this at the cost of losing important topics.

To address the aforementioned issues, we propose a novel Core BiTerm-based Topic
Model (BiTTM) for targeted analysis, which directly models fine-grained topics related to
the queried aspect from a set of core biterms. Biterm, proposed in BTM [2], is a word-pair
consisting of two different words that appear together in a fixed-size window and represent
co-occurrence information. Improving biterms, we introduce core biterms as a set of selected
biterms that have strong connections with query keywords. By modelling topics from
the set of core biterms, BiTTM is expected to achieve better performance than existing
specialised topic models in terms of the following aspects:

1. The existing specialised topic models for targeted analysis (i.e., TTM and AP-
SUM [3]) process at either the sentence level or the word level so that the semantic informa-
tion between consecutive sentences will be lost. In contrast, since a biterm may consist of
two words coming from two successive sentences, information across the whole document
can be captured by BiTTM to alleviate the issue of losing topics.

2. The TTM model samples relevance status at the sentence level which may be too
coarse. When a sentence is related to multiple topics, it would be difficult to infer the
relevance status of the sentence as a binary value. In contrast, the APSUM model [3]
samples relevance status for individual words which may be too specific, because it cannot
handle phrases that make sense when multiple words are considered together. Biterms, as
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a scheme in-between sentences and words, are expected to achieve more accurate inference
of relevance status.

3. Existing specialised topic models do not have any finesse to accelerate the calcula-
tion without significant semantic information losing. Instead, BiTTM introduces a heuristic
preprocessing based on core biterms for speeding topic modelling while alleviating infor-
mation loss, which makes it a more pragmatic solution for targeted analysis according to
user queries.

To comprehensively evaluate the performance of BiTTM, extensive experiments have
been conducted on real-world datasets including short texts, medium texts and long texts.
Moreover, we select a large number of targets with different word and document frequen-
cies to explore the adaptability of BiTTM to various types of queries. The experimental
results show that (1) BiTTM improves the quality of topics, alleviates topic losing, and
outperforms baselines especially for query keywords of low frequencies; (2) the time
cost of BiTTM is most outstanding and stable compared to those of the baselines, which
demonstrates the high applicability of BiTTM on datasets with different characteristics.

The remainder of this paper is organised as follows. Prior research and related works
are reviewed in Section 2. We provide technical details of BiTTM in Section 3, and dis-
cuss the experimental results in Section 4. Finally, Section 5 closes this paper with some
conclusive remarks.

2. Related Work

In this section, we introduce works related to our research in three parts. Firstly, we
review existing specialised topic models for targeted topic analysis. Secondly, we describe
the model of BTM that introduces the concept of biterms for topic modelling. Thirdly, we
discuss other topic models relevant to our proposed BiTTM.

2.1. Targeted Topic Models

Specialised topic models for targeted analysis are still rarely seen, which are mainly
used for information retrieval [4], abstract extraction [3,5] and opinion mining [1,6]. TTM [1]
and APSUM [3] are the two most representative models.

Wang et al. first study the problem to detect relevant and user-concerned topics from
a given dataset [1] and propose the model TTM as illustrated in Figure 1. The main idea of
TTM is to introduce a relevance variable r to indicate whether a sentence is related with a
specified aspect. The variable r determines whether each word in a sentence is generated
by a related topic or an irrelevant topic. Moreover, the relevant topic-word distribution ϕr

is sparse because the number of words related to the target is usually less than that of the
irrelevant words.

Figure 1. The graphical model of TTM.

The steps of generative process are illustrated as follows:

1. Draw ϕir ∼ Dirichlet(βir)
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2. For each relevant topic k ∈ {1, 2, · · · , T}
(a) Draw k ∼ Beta(p, q).
(b) For each word v ∈ {1, 2, · · · , V}

i. Draw βr
t,v ∼ Bernoulli(ωt).

(c) Draw ϕr
t ∼ Dirichlet(βr

tδ + ε).

3. For each document m ∈ {1, 2, · · · , M}
(a) Draw πm ∼ Beta(γ).
(b) raw relevance status r based on keyword indicator x and Bernoulli(πm).
(c) If the document is relevant

i. Draw z ∼ Multinomial(θr).
ii. Draw wi ∼ Multinomial(ϕr

z)

(d) If the document is irrelevant

i. Draw wi ∼ Multinomial(ϕir).

Therefore, TTM considers the status r at the sentence-level. It is difficult to determine
whether a sentence is related to the target when a sentence contains multiple topics. The
wrong assignment of sentence status will negatively affect the quality of topics.

APSUM [3] is a generative aspect summarisation model designed for fine-grained
summaries of online reviews. Compared with TTM, APSUM is different in terms of the fol-
lowing two aspects. Firstly, while TTM models the relevance at the sentence level, APSUM
considers at the word level. As discussed in Section 1, the former might be too coarse to
determine the relevance status for sentences appropriately; the latter is not able to handle
phrases where it makes sense only when multiple words are considered together. Secondly,
APSUM introduces an additional component called document aggregator to mitigate the
issue of aspect sparsity, which refers to the circumstances where there are not enough text
data related with specific aspects. The basic idea is to cluster similar documents through
document aggregator and sample topics for documents at the document aggregator level.

Essentially, both TTM and APSUM try to identify potentially related words that can
serve as bridges to link relevant documents, especially those without containing query
keywords. TTM searches such related words from sentences containing query keywords;
APSUM attempts from semantically similar documents through document aggregator.
However, both models fail to capture the semantic information between neighbouring
sentences, which does exist in natural language [7].

2.2. BTM

BTM [2] is a topic model for short texts. To alleviate the problem of insufficient infor-
mation with short texts, this model extracts topics by modelling from biterms representing
word co-occurrences. A biterm is an unordered word pair consisting of two different words
in a fixed-length text window. BTM replaces documents with a biterm set that can reveal
the correlation between words in depth.

The graphical model of BTM is depicted in Figure 2 with a generative process as follows:

1. Draw θ ∼ Dirichlet(α)
2. For each topic k ∈ {1, 2, · · · , K}

(a) Draw φk ∼ Dirichlet(β).

3. For each biterm bi ∈ B

(a) Draw zi ∼ Multinomial(θ)
(b) Draw wi,1, wi,2 ∼ Multinomial(φzi )

BTM is designed for full analysis on short texts, while the concept of biterms is used
by BTM to seize word occurrences to alleviate data sparsity, we borrow the idea in our
targeted analysis model to capture words closely related with the query keywords provided
by users.
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Figure 2. The graphical model of BTM.

2.3. Other Topic Models

Topic models have been widely studied and used in different applications, such as
analysing public opinions and trends [8–12], providing personalised user services [13–15]
and news tracking [16–18]. Among a wide range of existing topic models, in this subsection,
we discuss two types of topic models that are related with our BiTTM.

Firstly, since we consider user queried aspects, our model is linked with topic mod-
els considering user information (e.g., user profiles and behaviours). In the literature,
there are many topic models that take into account user information to obtain in-depth
analysis [19–24]. For example, Viet et al. exploit users’ browsing histories to propose
a keyword-topic model [19] for contextual advertising. Kalyanam et al. [20] simultane-
ously consider textual data and user behaviours, such as forwarding and commenting,
to explore the evolution of topics. Sordo et al. [21] consider the topological changes of
users’ co-authorship network to identify groups of researchers. Although these models can
incorporate user information into topic analysis, they cannot extract fine-grained topics
related with user-interested specific aspects.

Secondly, BiTTM is also connected with sparse topic models [25–32]. The notable
feature of these models is the consideration of distribution skewness that can be divided
into two categories. Firstly, a document is related with only a few topics among all topics
available in the data set. Secondly, a topic involves only a small part of the dictionary. A lot
of sparse topic models have been devised based on the two types of distribution skewness.
For example, Williamson et al. [30] and Chen et al. [28] address the document skewness,
while Wang et al. [33] take into account the topic skewness. Moreover, the method
called “dual-sparse topic model” [25] implements both types of skewness simultaneously.
Generally speaking, the sparsity is addressed by incorporating the “Spike and Slab” priors:
the “Spike” is used to control the selections of words; and the “Slab” is used to smooth
distributions to avoid ill-defined distributions where some words never appear. Our BiTTM
also considers both document skewness and topic skewness through the spike and slab.
Differently, we address the sparsity by taking into account user-interested aspects at the
same time.

3. BiTTM

In this section, we describe BiTTM for efficient topic analysis of targeted aspects. In
Section 3.1, we introduce the concept of core biterms and the process to generate core biterms.
Sections 3.2 and 3.3 discuss the generative process and inference of BiTTM, respectively.

3.1. Core Biterms

Considering the user-specified aspect usually involves only part of the data, we believe
data preprocessing is an indispensable step for efficient targeted analysis. However, existing
specialised topic models perform directly on the entire dataset ignoring the efficiency
issue. Existing methods incorporating pre-filtering strategies, as discussed before, achieve
certain efficiency by modelling topics from a reduced data set; nevertheless, the reduced
data set may lose relevant documents if the targets are not expressed appropriately or
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comprehensively. For example, Table 1 enumerates three situations where query keywords
may easily be incomplete, resulting in possible loss of relevant documents and topics.

Table 1. Three examples where targeted aspect can be expressed by multiple different keywords.

Example 1 Synonyms Two candidate query keywords: “bath” and “shower”.

Example 2 Domain
restriction

Two candidate query keywords, “crib” and “bed”, in
the Amazon review dataset Baby.

Example 3 Event Descrip-
tion

Two candidate query keywords, “mistake” and “osars-
fail”, in the Twitter dataset Oscars.

1. Synonyms. For example, if the supplied query keyword is “bath”, relevant documents
containing words representing similar semantics, such as “shower”, may be missed.

2. Words referring to the same targeted aspect in a particular domain. For example,
when the domain is confined to Amazon reviews of baby products, the keywords
“crib” and “bed” represent the same aspect, although they are not exactly synonyms.

3. Words describing the same event. Users often use diverse words to refer to the same
event, especially in social networks. For example, considering the Twitter dataset of
Oscars, both “mistake” and “oscarsfail” are used to describe the event of a wrong
envelope for the Best Picture Award.

To address the aforementioned issues, we propose an efficient data preprocessing
method based on core biterms.

As introduced in BTM [2], a biterm consists of any two distinct words in a fixed-
length window so that it captures the co-occurrence information in the document. As the
window may span two or more sentences, the semantic information between consecutive
sentences can be captured. Compared with TTM and APSUM, processing at the level of
biterms addresses potential loss of information between successive sentences. Therefore,
we consider biterms as the base unit of our preprocessing.

To handle the situations exemplified in Table 1, we consider to use “core words” to
complement query keywords so that relevant documents that do not explicitly contain
query keywords can be considered. Intuitively, if core words represent the same aspect
indicated by query keywords, they should appear together with query keywords very often.
Hence, we first extract “core words” that frequently co-occur with query keywords from
biterms, and then extract frequent biterms containing core words as “core biterms”. The
algorithm is illustrated in Algorithm 1, which can be summarised in three steps as follows:

Step 1: Calculate the desired size of the set of core words, scw, and rank all biterms
∈ Ball in descending order according of frequency (Lines 1–2).

Step 2: Acquire core words from top frequent biterms containing target, and then
calculate the average frequency of biterms containing core words as threshold (Lines 3–15).

Step 3: Select core biterms according to two conditions. Firstly, the biterm has at least
one core word. Secondly, the frequency of the biterm has to be greater than threshold (Lines
16–20).

We will then model targeted topics from the generated core biterms, which yields
a threefold benefit as follows: (1) the context information between neighbouring sen-
tences is preserved; (2) sampling relevance status based on biterms is more accurate; and
(3) modelling topics from core biterms is more efficient.
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Algorithm 1: Preprocessing based on biterms
Input: size of dictionary W, biterms Ball
Output: biterms Bcore with semantic links to the target

1 scw = W ∗ 2.5% ;
2 Ball = sort(Ball);
3 for biterm bi(wi1, wi2) ∈ Ball do
4 if coreWords.size >= scw then
5 break;

6 if wi1 == target||wi2 == target then
7 coreWords.add(wi1);
8 coreWords.add(wi2);

9 threshold = 0;
10 sum = 0;
11 for biterm bi(wi1, wi2) ∈ Ball do
12 if coreWords.contains(wi1)||coreWords.contains(wi2) then
13 threshold+ = bi. f eq;
14 sum ++;

15 threshold = Math.ceil(threshold/sum);
16 for biterm bi(wi1, wi2) ∈ Ball do
17 if coreWords.contains(wi1)||coreWords.contains(wi2) then
18 if bi. f eq > threshold then
19 Bcore.add(bi);

20 return Bcore

3.2. Model Description & Generative Process

In this subsection, we describe the model and the generative process of BiTTM. Table 2
lists the notations used in this paper.

The generative process is as follows:

1. Draw θ ∼ Dirichlet(α).
2. Draw φir ∼ Dirichlet(βir).
3. For each target-relevant topic k ∈ {1, 2, · · · , K}

(a) Draw k ∼ Beta(p, q).
(b) For each word w ∈ {1, 2, · · · , W}

i. Draw βr
k,w ∼ Bernoulli(ωk).

(c) Draw φr
k ∼ Dirichlet(βr

kδ + ε).

4. For each biterm bi(wi,1, wi,2) ∈ B

(a) Draw πb ∼ Beta(γ).
(b) Compute r based on x and Bernoulli(πb).
(c) If bi is relevant to the target

i. Draw z1, z2 ∼ Multinomial(θ).
ii. Draw wi,1 ∼ Multinomial(φr

z1
), and

iii. Draw wi,2 ∼ Multinomial(φr
z2
).

(d) If bi is irrelevant

i. Draw wi,1, wi,2 ∼ Multinomial(φir).

Graphical representation of BiTTM is shown in Figure 3. Following the above pro-
cedure, the generative process can be summarised into three parts. Firstly, we draw two
global parameters θ and φir. The former is a topic distribution which models on the entire
corpus instead of one document, and the latter is a topic-word distribution of irrelevant
topic. In other words, two words in an irrelevant biterms are drawn from only one irrele-
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vant topic. Secondly, φr
k is drawn for each target-relevant topic k ∈ {1, 2, · · · , K}. Please

note that two smoothing parameters, smoothing prior δ and weak smoothing prior ε, are
used for dual-sparsity [25]. Thirdly, status r of bi is determined by both target indicator x
and Bernoulli(πb). According to two different types of status, relevant or irrelevant, we
draw a word from φr or φir.

Figure 3. The graphical model of BiTTM.

Table 2. Symbol description.

Notation Meaning

B the set of (core) biterms
W the set of words
D the set of documents
πb the bernoulli distribution over biterm b
γ, βir, α beta prior of πb, Dirichlet prior of φir, θ

φir topic-word distribution over the irrelevant topic
φr

k topic-word distribution over the kth relevant topic
p, q beta prior of ω
δ, ε word smoothing prior, weak word smoothing prior
ωk bernoulli distribution of word selector βr

k
x, w, z, r target indicator, word, topic, status
βr

w|k, βr
∗|k word selector of word w under topic k, the sum of word selector βr

w|k.
βr

w, βr
∗ word selector of word w, the sum of word selector βr

w
βr
−w,∗ the sum of word selector except the word w

βr
−w,∗|k the sum of word selector under topic k except the word w

nr
−i,w, nir

−i,w the number of times word w is relevant (irrelevant) excluding biterm bi
nr
−i, nir

−i the number of relevant (irrelevant) biterms excluding biterm bi.
wi,m the mth word in biterm bi, where m = 1, 2
nr,−im

wi,m |k
the number of times that word wi,m assigned to topic k under relevant
status excluding wi,m

nr,−im
∗|k the total number of words assigned to topic k under relevant status

excluding wi,m
nir,−i

wi,m |k
the number of times that word wi,m assigned to topic k under irrelevant
status excluding biterm bi

nir,−i
∗|k the total number of words assigned to topic k under irrelevant status

excluding biterm bi
nr

w the number of times that word w is relevant
nr
−w,∗ the total number of words that are relevant excluding word w
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Different from the generative process of BTM, BiTTM draws two topics for a relevant
biterm and each word in the biterm may be assigned a different topic. The reason why we
choose this strategy is that it is inappropriate to assume that the two words in a biterm share
the same topic for targeted analysis, while for BTM, it is probably sufficient to draw one
topic for a biterm as it is a full-analysis model which aims to mine coarse-grained topics.

Here is an example to elaborate the difference between full-analysis and targeted
analysis. When dealing with the biterms b1(battery, larger) and b2(lens, larger), BTM is
prone to assign the same topic to the two biterms because of the shared word “larger”.
This allocation might be fine for full analysis since it does not pursue fine-grained topics so
that it is not necessary to distinguish between “battery” and “lens”. However, for targeted
analysis, “battery” and “lens” represent two different aspects and should be recognised
distinctively. Note that, although the sampling process of the two words in a biterm is
independent to each other, their combined effects determine the status (i.e., relevant or
irrelevant) of the biterm.

3.3. Inference

Following BTM [2] and TTM [1], we choose Gibbs Sampling [34] to infer the model
parameters. All notations used in this section are shown in Table 2.

We first sample the status of every biterm. Intuitively, if a biterm contains a query
keyword, then it is relevant with the target aspect. Let d be a binary variable and d = 1
indicates a biterm contains the keyword provided by users. Then, we define the probability
that a biterm is relevant as P(r|x = d, βr, βir, γ) = 1 if d = 1. Otherwise, we define the
probability as shown below:

P(r|x = d, βr, βir, γ) = (1)



1 d = 1
nr
−i+γ

|B|+2γ−1∗
∏w∈bi

Γ(βr
wnr
−i,w+βr

wδ+ε+1)

Γ(∑W
w (βr

wnr
−i,w+1)+|βr∗ |δ+|W|ε)

d = 0, r = relevant

nir
−i+γ

|B|+2γ−1∗
∏w∈bi

Γ(nir
−i,w+βir

w+1)

Γ(∑W
w nir
−i,w+1+|βir∗ |)

d = 0, r = irrelevant

Next, we sample word selector βr
w for all words w ∈ W. Applying Gibbs Sampling

similar to TTM [1], we can obtain the equation P(βr
w|βr
−w, w, δ, ε, p, q|) ∝ P(βr, w|δ, ε, p, q).

Then,

P(βr
w|βr
−w, δ, ε, p, q|)∝

∫∫
P(βr, w, ω, φ|δ, ε, p, q)dwdφ (2)

∝


Γ(nr

w + δ + ε) ∗ Γ(|βr
−w,∗|δ + |W|ε + nr

−w,∗)∗
Γ(|βr

−w,∗|δ + δ + |W|ε) ∗ (p + |βr
−w,∗|) βr

w = 1
Γ(δ + ε) ∗ Γ(|βr

−w,∗|δ + δ + |W|ε + nr
−w,∗)∗

Γ(|βr
−w,∗|δ + |W|ε) ∗ (q + |W| − |βr

−w,∗| − 1) βr
w = 0

For a biterm bi(wi,1, wi,2), the probability of sampling k as the topic for wi,m can be
computed as Equation (3).

P(zi,m = k|α, βr, βir, δ, ε) ∝ (3)

{
P(zi,m = k|α, βr, δ, ε) rbi

= relevant
P(zi,m = k|α, βir) rbi

= irrelevant
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As mentioned before, two words in a biterm may be assigned different topics if the
biterm is relevant. Therefore, we can have

P(zi,m = k|α, βr, δ, ε) ∝ (4)∫
P(zi,m = k|θ)P(θ|α)dθ

∫
P(wi,m|φk)P(φk|βr

kδ + ε)dφ

∝
nr,−im
∗|k + α

∑K(n
r,−im
∗|k + α)

βr
wi,m|k

nr,−im
wi,m|k + βr

wi,m|k
δ + ε

∑W(βr
wi,m|k

nr,−im
wi,m|k + βr

wi,m|k
δ + ε)

∝
nr,−im
∗|k + α

∑K nr,−im
∗|k + Kα

βr
wi,m |k

nr,−im
wi,m |k

+ βr
wi,m |k

δ + ε

nr,−im
∗|k + βr

∗|kδ + |W|ε

If a biterm bi is irrelevant (i.e., rbi
= 0), then we directly sample a topic from φir for

two words wi,m. Therefore, we can obtain the conditional probability:

P(zi,m = k|α, βr, βir, δ, ε) ∝ (5)


nr,−im
∗|k +α

∑K nr,−im
∗|k +Kα

βr
wi,m |k

nr,−im
wi,m |k

+βr
wi,m |k

δ+ε

nr,−im
∗|k +βr

∗|kδ+|W|ε
rbi

= 1

nir,−i
∗|k +α

∑K nir,−i
∗|k +Kα

(nir,−i
wi,1 |k

+βir)(nir,−i
wi,2 |k

+βir)

(nir,−i
∗|k +|W|βir)(nir,−i

∗|k +|W|βir+1)
rbi

= 0

At last, we sample a word selector βr
w|k for a topic k, where w ∈W and k ∈ K.

P(βr
k,w = s|βr

k, k, δ, ε, p, q|) ∝ (6)


Γ(|βr

−w,∗|k|δ + |W|ε + nr
−w,∗|k) ∗ (p + |βr

−w,∗|k|)
∗Γ(|βr

−w,∗|k|δ + δ + |W|ε) ∗ Γ(nr
w|k + δ + ε) s = 1

Γ(|βr
−w,∗|k|δ + |W|ε) ∗ (q + |W| − |β

r
−w,∗|k| − 1)

∗Γ(|βr
−w,∗|k|δ + δ + |W|ε + nr

−w,∗|k) ∗ Γ(δ + ε) s = 0

4. Experimental Results
4.1. Baselines and Metrics

Baselines . Three methods are chosen to be compared with BiTTM, including Targeted
Topic Model (TTM), Biterm Topic Model-Partial Data (BTM-PD), and Biterm Topic Model
with a post-filtering strategy (BTM?).

• TTM. Targeted Topic Model is the first method for focused analysis that extracts
related topics according to a target keyword provided by users. We select TTM rather
than APSUM as the baseline of specialised topic models for targeted analysis because
TTM outperforms APSUM in terms of topic coherence when the number of topics is
less than 50 [3]. For targeted analysis of fine-grained topics, we believe the number
of topics in a given corpus is usually less than 50. Moreover, TTM serves as the most
valuable comparison because APSUM is not exactly designed for targeted analysis.

• BTM?. As our model is developed based on biterms, we also compare with two
variations of BTM that are adapted for targeted analysis. BTM is a state-of-the-art
topic model for short texts, which also applies to long texts [2]. As a typical full-
analysis model, BTM aims to find all topics (or all aspects) from the entire corpus. We
then use a filtering strategy to eliminate topics that do not contain the target keywords.
This approach is named as BTM? for simplicity.
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• BTM-PD. This is another variation of BTM which applies the pre-filtering strategy
to perform focused analysis. We use only the subset of documents containing the
target keywords to model topics. As discussed before, the pre-filtering strategy is
handicapped by the variability of target keyword—relevant documents may be filtered
so that topics may be missed out.

Metrics. We adopt two techniques to evaluate the quality of topics: topic coherence [35]
and precision@n [1] (P@n for short). The former is a popular evaluation method to eval-
uate the quality of discovered topics [36–40]. As an automated evaluation metric, topic
coherence mainly measures the interpretability of topics instead of target-relevance. More
specifically, topic coherence measures document-level mutual information of keywords in
topics, however, it does not reflect the relationship between topics and targets. In order
to evaluate whether topics are target-relevant, we employ the metric P@n, also used by
TTM [1], which is an evaluation based on human judgment to assess the relevance between
the target and topics.

Considering the M most probable words in topic k, the topic coherence of k is defined
as Equation (7).

TC(k) =
M

∑
m=2

m−1

∑
l=1

log
|{doc(wk,m, wk,l)}|+ 1
|{doc(wk,l)}|

(7)

where |{doc(wk,m, wk,l)}| is the number of documents containing both wk,m and wk,l ;
|{doc(wk,l)}| is the number of documents containing wk,l , and wk,l is the lth most prob-
able word in topic k. Basically, for the mth probable word, the measure considers its
co-occurrence with the m− 1 more probable words. A smoothing count of 1 is added to
avoid leading the logarithm to zero. Basically, the more the measure approximates to zero,
the more coherent the discovered topics are.

Given the set of topics discovered by all models, suppose there are Ku topics that
have been verified by users to be related with the target aspect. Moreover, from all topics
discovered by a particular model m, suppose there are Km topics related with the target.
Then, the precision of model m at rank position n is defined as follows:

Pm@n =
∑Km

z=1 |{CorrectWords(z)}|
∑Ku

z=1 |{CorrectWords(z)}|
(8)

where |{CorrectWords(z)}| is the number of words, among the top n words of topic z,
which are relevant to the target (Note that, if a discovered topic is potentially related
with multiple semantic topics, the best semantic topic based on the top 20 words will
be adopted).

Therefore, the two evaluation methods have different merits and objectives. For
example, topic coherence is an automated evaluation metric reflecting the interpretability of
topics. P@n demands human judgement and assesses the relevance between the discovered
topics and the queried target. For the sake of fairness, we use P@n to evaluate all comparing
models (i.e., BiTTM, TTM, BTM-PD and BTM?) to find out the effectiveness of the models
in performing focused analysis. However, we only compare BiTTM and TTM in terms of
topic coherence to evaluate the topic quality since the other two models are variations of
BTM, which is essentially designed for full-analysis of topics.

4.2. Data sets & Experimental Settings

Data sets. In order to comprehensively evaluate the performance of our proposed
model, we conduct experiments on different types of text. In particular, three types of
documents are considered, including short, medium and long texts. For each type of
documents, we select three data sets. The description of the nine datasets used in our
experiments is provided in Table 3. The datasets are all publicly available at the URLs
listed in the bottom of Table 3.



Appl. Sci. 2021, 11, 10162 12 of 22

Experimental Settings. In our experiments, we use various words as target queries to
analyse the influence exerted by diverse targets on performance. For parameter settings,
we follow the hyper-parameter setting in TTM: α = γ = 1, βir = 0.001, p = q = 1, and
the two smoothing priors are set as δ = 0.001, ε = 1× 10−7. Other baselines follow the
parameter settings in their respective papers.

Table 3. Datasets.

Datasets

Type Source Domain Length Size (KB)

cigar a Twitter 2.947836 641

short ecig a Twitter 3.499578 708

Oscars b Twitter 3.906165 565

baby c Amazon 28.07813 141

medium camera a Amazon 79.08307 1285

computer a Amazon 80.9001 1295

home c Amazon 179.4867 619

long food c Amazon 258.4938 195

care c Amazon 675.1493 1523
a http://jmcauley.ucsd.edu/data/amazon/, accessed on 28 October, 2021; b https://github.com/shuaiwanghk/
TTM, accessed on 28 October, 2021; c https://www.kaggle.com/madhurinani/oscars-2017-tweets, accessed on 28
October, 2021.

4.3. Quantitative Evaluation

In this subsection, we analyse the quality of discovered topics from two aspects: topic
coherence (representing topic interpretability or semantic coherence) and P@n (indicating
topic relevance).

Analysing the results of topic coherence: The average topic coherence achieved by
BiTTM and TTM is shown in Table 4, the more the score approximates to zero, the more
coherent the discovered topics are. As we can see from the table, BiTTM is not comparable
to TTM for analysing short texts in terms of topic coherence. However, with the increase
of document length, BiTTM starts to outperform TTM. The reason why BiTTM generally
works better than TTM on medium and long texts is because TTM is a sentence-based
model for which the information between consecutive sentences will be lost. In contrast,
by considering core biterms that may come from neighbouring sentences, our BiTTM
model captures the semantics crossing sentences so that more interpretable topics can be
generated. However, since it is quite often for a short text document to contain only one
sentence, the limitation of sentence-based TTM cannot be reflected. Generally, by beating
TTM on non-short text documents, BiTTM has a broader applications in text data analysis.

To evaluate the model performance with respect to different queries, we randomly sample
query keywords from the documents according to word frequency distributions. We plot
the comparative results of BiTTM and TTM in Figure 4, where the horizontal axis represents
the word frequency of the target keyword, and the vertical axis indicates the percentage of
documents containing the target. There are three types of symbol in the figure: red dots, green
squares and blue triangles. Each symbol corresponds to a comparison between the topics
discovered by BiTTM and TTM with respect to a query. In particular, a green square means
BiTTM obtains a better topic coherence than TTM for this query, while a blue triangle implies
the opposite. For a red dot, it indicates that TTM fails to discover the specified number of
topics or words under some topics for this particular query. For example, we set the number
of topics to 5 for the experiments in Figure 4 and consider the top 10 words for each topic.
However, TTM discovers less than 5 topics or less than 10 words for a topic when handling
queries corresponding to red dots. Note that, this situation does not happen for BiTTM.

http://jmcauley.ucsd.edu/data/amazon/
https://github.com/shuaiwanghk/TTM
https://github.com/shuaiwanghk/TTM
https://www.kaggle.com/madhurinani/oscars-2017-tweets
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Table 4. Topic coherence.

Datasets
BiTTM

TopM = 5 TopM = 10 TopM = 15 TopM = 20 TopM = 25 TopM = 30

cigar −43.85160224 −213.938738 −515.6799558 −942.5318026 −1493.639111 −2170.963155

ecig −47.18005764 −225.7818028 −537.0456906 −975.5867746 −1540.959263 −2233.885475

Oscars −41.56838081 −203.696938 −495.7966598 −913.9376539 −1451.063314 −2102.622643

baby −18.77161638 −97.92745779 −258.704099 −512.2443085 −862.3028153 −1314.514524

camera −11.60928852 −57.83209167 −151.6040027 −295.3511581 −493.2409214 −748.8210303

computer −14.82764795 −66.09833632 −163.5166346 −310.8723517 −517.6532656 −789.6438756

home −9.146932399 −45.84159746 −117.7837843 −239.7455224 −418.9237371 −656.914665

food −7.47342957 −42.52194503 −109.7998671 −220.2148208 −370.0466113 −563.1454128

care −11.52868834 −49.17233659 −116.4456707 −224.1156048 −375.6415389 −585.8790988

Datasets
TTM

TopM = 5 TopM = 10 TopM = 15 TopM = 20 TopM = 25 TopM = 30

cigar −34.68247162 −197.0478114 −493.1432304 −921.1591797 −1481.235217 −2165.174583

ecig −34.67967533 −200.4202621 −502.3021289 −935.8301943 −1495.777983 −2182.933002

Oscars −31.17239749 −178.8829525 −456.1151923 −858.0192159 −1383.122495 −2032.967068

baby −16.2223621 −101.2752879 −281.5019366 −562.4756204 −937.8116571 −1440.487996

camera −11.28057698 −62.01834755 −164.0824617 −318.5467601 −529.0200582 −801.4709905

computer −13.16215736 −68.04826101 −174.2534566 −332.9993329 −549.2408003 −824.3810116

home −9.934943893 −51.89310174 −131.4846734 −254.4960003 −428.6019462 −643.0140473

food −11.33222981 −54.36687511 −128.2609949 −242.0789656 −399.9506445 −600.8773534

care −9.739145131 −53.9780039 −133.7955495 −254.3544155 −432.013784 −666.1259446
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Figure 4. Effect of various targets on topic coherence. The x-axis shows the word frequency of targets, and the y-axis
represents the percentage of documents containing a target.

The most obvious trend that can be observed from Figure 4 is that the red dots usually
appear in the lower left corner, the blue triangles gather in the upper right corner, and
the green squares fall in between. The red dots in the lower left corner imply that TTM is
prone to miss out topics when dealing with infrequent targets. The blue triangles in the
right corner suggest that TTM performs better when the targets appear very frequently in
many documents. However, the number of such target keywords may be limited. On the
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contrary, BiTTM achieves satisfactory performance for a diverse range of targets even if
they are infrequent in the corpus. This also verifies the effectiveness of using core words to
enrich the semantic information in the context of the target keyword (i.e., BiTTM strategy)
than taking words in same sentences as bridges to connect potentially target-related words
(i.e., TTM strategy).

Analysing the results of P@n: To calculate the measure of P@n, similar to TTM, three
human labelers familiar with the data sets are engaged to label the results. The P@n values
at the rank positions of 5, 10 and 20 are reported in Table 5, from which several interesting
outcomes can be observed. Firstly, the performance of the two variations of BTM (i.e.,
BTM-PD and BTM?) is generally worse than that of the two specialised topic models
(i.e., BiTTM and TTM), which demonstrates that full-analysis topic models with filtering
strategies are not suitable for targeted analysis because they are prone to detect general
topics instead of fine-grained target-related topics. In addition, comparing the two BTM
variations, BTM-PD is better than BTM? in most cases, which proves that the pre-filtering
strategy is more effective in removing irrelevant words than the post-filtering strategy.
Secondly, the average P@n of BiTTM achieves a gain of more than 10% compared with
TTM, and more than 26% compared with BTM-PD, over all queries in the table and the
settings of n. Moreover, the performance difference among the three types of document
is not significant, whereas the different target queries have influence on the P@n results,
which will be explained later using concrete examples. Thirdly, TTM is the second best
model for P@5. However, for P@10, TTM achieves the best performance than all other
models for some queries. It suggests the tendency of TTM to put target-related words in
lower-ranked positions.

Table 5. P@n scores of all models over a set of 18 targets on 9 data sets. n is set to 5, 10 and 20.

Type Datasets Targets BiTTM TTM BTM-PD BTM?

P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20

short

cigar ashtray 0.92 0.84 0.6 0.92 0.66 0.46 0.6 0.6 0.39 0.2 0.2 0.135

place 0.64 0.56 0.43 0.52 0.44 0.29 0.48 0.4 0.26 0.22 0.17 0.135

ecig smokeless 0.72 0.64 0.45 0.56 0.5 0.45 0.44 0.4 0.31 0.3 0.24 0.19

warning 0.6 0.54 0.54 0.48 0.46 0.37 0.36 0.3 0.25 0.4 0.24 0.215

Oscars mistake 0.6 0.56 0.49 0.4 0.48 0.45 0.2 0.32 0.28 0.28 0.18 0.14

oscarsfail 0.64 0.52 0.44 0.36 0.4 0.31 0.24 0.18 0.15 0.26 0.18 0.125

medium

baby rinses 0.52 0.38 0.3 0.2 0.26 0.24 0.08 0.1 0.11 0.12 0.12 0.085

shower 0.52 0.48 0.38 0.44 0.4 0.32 0.2 0.36 0.31 0.24 0.19 0.145

camera portable 0.52 0.48 0.4 0.4 0.44 0.29 0.32 0.28 0.23 0.1 0.09 0.08

price 0.52 0.48 0.51 0.48 0.44 0.42 0.44 0.34 0.26 0.08 0.11 0.09

computer display 0.48 0.74 0.72 0.4 0.62 0.62 0.28 0.32 0.32 0.1 0.15 0.165

keyboard 0.52 0.66 0.59 0.44 0.6 0.52 0.32 0.34 0.33 0.18 0.15 0.14

long

home clean 0.76 0.8 0.69 0.68 0.72 0.64 0.32 0.34 0.32 0.25 0.19 0.18

kitchen 0.72 0.72 0.66 0.68 0.8 0.66 0.64 0.52 0.44 0.22 0.18 0.16

food disease 0.6 0.6 0.6 0.48 0.46 0.42 0.44 0.4 0.38 0.22 0.23 0.19

microwave 0.84 0.58 0.47 0.68 0.64 0.44 0.32 0.32 0.26 0.18 0.17 0.125

care diabetic 0.56 0.62 0.53 0.48 0.44 0.25 0.28 0.28 0.23 0.12 0.13 0.12

infant 0.48 0.54 0.51 0.36 0.3 0.29 0.2 0.14 0.11 0.18 0.15 0.105

average score 0.62 0.60 0.52 0.50 0.50 0.41 0.34 0.33 0.27 0.20 0.17 0.14

improvement by BiTTM +0.12 +0.09 +0.10 +0.28 +0.27 +0.24 +0.42 +0.43 +0.38
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To explore the influence of different queries, let us take a closer look at two specific
targets: “ashtray” (in the short-text data set “cigar”) and “rinses” (in the medium-text data
set “baby”). As shown in Figure 4, both targets are infrequent words (appearing in the
lower left corner) in respective datasets. However, the P@n scores of BiTTM and TTM
for the two queries, as shown in Table 5, are remarkably different. Basically, both models
perform well with respect to “ashtray” but not with respect to “rinses”, especially for
TTM. The P@n score of TTM for handling “rinse” is unsatisfactory and several inexplicable
words, such as “attention” and “entertain”, appear in the discovered topics, which makes it
hard to interpret the topics. By examining the datasets, we find that documents containing
“ashtray” consistently describe the appearance of ashtrays such as colours and materials.
That is, the documents are pretty clean and relevant, which explains why both BiTTM and
TTM process the query well. Nevertheless, the documents containing “rinses” are mostly
composed of short sentences, such as “It rinses out well and dries quickly.” and “Rinses/Washes
easy.”, where the meaningful descriptions are hidden in the context of sentences containing
“rinses”. TTM cannot handle this situation since it is a sentence-based model. The two
examples explain why the performance varies with respect to query keywords.

Comparing the performance in terms of topic coherence and P@n, we notice that
BiTTM is more capable to acquire topics related to the target (i.e., high P@n scores) than to
generate semantically coherent topics (i.e., better topic coherence values), especially for
short text documents. This is because words related to the target do not necessarily have
high co-occurrence, which is used to calculate topic coherence. For instance, “Oktoberfest”
is an appropriate word related to the target “place” in the dataset cigar because a type
of cigar named Quesada Oktoberfest is released in October for celebrating the famous
Germany beer festival. However, “Oktoberfest” as a low-frequency word can not provide
enough mutual information, which directly causes the poor performance in topic coherence.
Conversely, a high-frequency word “rolled” contributes to high topic coherence score but
it is not selected by BiTTM since it is too general to describe the target “place”.

4.4. Time Efficiency Analysis

As mentioned before, it is ideal for targeted analysis to provide responses to user
queries as soon as possible. Therefore, in this experiment, we analyse the time efficiency of
the comparative models.

The average time cost of the four methods on each dataset over 40 random queries
is shown in Table 6. It can be observed that, generally, BiTTM has the best time efficiency,
followed by BTM-PD. TTM is significantly slower without any preprocessing strategy,
and BTM? is the most inefficient model since BTM performs full analysis on the com-
plete dataset.

Table 6. The time cost (seconds) of all datasets. The best performance on each dataset is in bold.

Domain Size (KB) BiTTM BTM-PD TTM BTM?

cigar 641 6.012 0.378 60.994 314.940

ecig 708 2.960 2.900 107.008 489.180

Oscars 565 3.620 3.934 58.042 418.560

baby 141 16.011 9.753 24.246 1153.740

camera 1285 81.086 164.834 811.684 15,997.380

computer 1295 96.978 147.023 713.068 17,559.660

home 619 37.083 90.283 129.481 7116.300

food 195 9.166 31.833 18.534 2496.600

care 1523 135.040 218.065 1516.927 18,767.580
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To clearly demonstrate the impact of data size on the time efficiency, we plot the results
in Figure 5 where the grey bars denote the size of datasets and the polylines in different
colours indicate the time cost of different methods. Note that, since the time consumption
of BTM? is not comparable to the others, only three models (i.e., BiTTM, BTM-PD and TTM)
are displayed in the figure. It can be observed that, generally, the time cost of all methods
increases with respect to the increment of data size. However, the size of dataset has a
greater impact on TTM than the other two methods, which shows that TTM is not suitable
for processing large data sets. In contrast, BiTTM and BTM-PD have a better capability to
adapt to large data sets. For these two methods, the difference of data size does not make
dramatic changes to time consumption since they both have preprocessing strategies to
focus on only the portion of data related to query targets. The difference between BiTTM
and BTM-PD is that BiTTM is faster than BTM-PD especially when the length of documents
increases. The reason is that the pre-filtering strategy adopted by BTM-PD is a simple
and rough processing. It selects documents as long as they contain the query keywords.
Consequently, irrelevant information contained by such documents will be included and
processed as well, which negatively contributes to the time efficiency of BTM-PD.
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Figure 5. Time cost in datasets of different sizes.

To illustrate the impact of document length on the time efficiency, the percentage
histogram of time cost of BiTTM, TTM and BTM-PD is plotted in Figure 6, where the
average document length increases from left to right. It can be observed that the time
efficiency of TTM is worst on short texts. Recall that the topic coherence of TTM on short
texts is better than BiTTM. This experiment shows that TTM achieves this by significantly
sacrificing time efficiency, while the topic quality in terms P@n of TTM on short texts
is also worse than that of BiTTM. Moreover, we can see that efficiency performance of
BTM-PD is worse on long texts, compared to its performance on short texts. This is because
BTM-PD is a biterm-based topic model and long texts generally have more biterms than
short texts. Although BiTTM is also a biterm-based model, the strategy of selecting “core
biterms” removes a lot of irrelevant biterms so that the performance of BiTTM on long
texts is also promising.

Therefore, Figures 5 and 6 demonstrate that BiTTM can be widely applied to various
types of text data, because both data size and document length have no great impact on its
time efficiency, thanks to the core biterm-based preprocessing strategy.

4.5. Qualitative Evaluation

We present qualitative analysis of the result topics generated by comparative models
in this subsection. We focus on evaluating from two aspects: performance of discovering as
many fine-grained relevant topics as possible and performance of dealing with semantically
approximate targets. For exemplified queries discussed in the following, we have shown
their word frequency and document frequency in Figure 4.
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Figure 6. Time cost in datasets with different document lengths.

4.5.1. Discovering Relevant Topics

We take the query “disease” in the dataset food as an example. Table 7 shows the topics
discovered by the four comparative models, together with the top 10 words of each topic.
The third row of Table 7 are the labels we assign manually to summarise the semantics
of each topic, where SFA is the abbreviation for Saturated Fatty Acid. Words that do not
semantically align with the topics are displayed in red.

Table 7. The contents of topics on target “disease” in long texts food.

Datasets: Food. Target: Disease

BiTTM TTM BTM-PD BTM?

Tea SFA Research Risk Prevention Tea SFA Research Risk Tea SFA Research Tea SFA Research

tea fat study disease cherry disease fat heart risk tea protein cherry tea fat study
effect cancer increase risk reduce tea saturated study disease green oil chocolate antioxidant saturated disease

benefit people research heart tart flavour tart cancer cherry weight fat tart disease disease risk
work health small high prevent bad chip reduce star fat palm study heart risk heart
lower fruit antioxidant green include price sweetener order bag loss saturated disease fruit oil reduce
taste blood good cell body higher follow brand measure study quality dark rich coconut show
long sugar eat level find company thing vegetable calorie increase eat cocoa provide find cherry
kind animal amount show product back production cook state body diet sweet health study health
pure saturated diet day result nutrient add large price drink disease cancer substitute increase food
rich drink water sweet add simply expensive drink shipping calorie gram product vegetable health cancer

Compared with the topics discovered by BiTTM, all the other three methods fail to
identify the topic prevention, which is clearly a relevant topic of “disease”. Moreover, the
two BTM variation models (i.e., BTM-PD and BTM?) miss out the topic risk. By taking a
closer look, we find that this is because the two BTM models cannot distinguish between
the two topics risk and research that are different delicately. In other words, the two BTM
models discover a topic combining research and risk. This is understandable because BTM
as a full-analysis topic model discovers general topics. TTM succeeds in discovering both
research and risk, but the topic quality is poorer than that of BiTTM (e.g., there are more
bold words in the two topics discovered by TTM, which means more inconsistent words in
results of TTM). Therefore, BiTTM discovers more relevant and fine-grained topics than
other models for this example query.

Consider the topic SFA that is discovered by all of the four models. Results of BiTTM
clearly indicate that saturated fatty acids affect blood sugar and carcinogenesis, but the
results of other methods are not satisfactory. For example, TTM tends to find out which
foods (e.g., tart, chip and sweetener) have unsaturated fatty acids. BTM-PD and BTM?

focus on food ingredients (e.g., palm oil and protein). These results are not related with the
target “disease” queried by users. Hence, the topic quality of BiTTM is better than that of
other models as well in this example.



Appl. Sci. 2021, 11, 10162 18 of 22

4.5.2. Handling Semantically Approximate Targets

When the targets supplied by users are semantically approximate, a set of similar
relevant topics are supposed to be discovered. We further examine the performance of
the comparative models in handling semantically approximate targets. In particular, we
analyse two types of semantically approximate queries mentioned in Section 3.1: synonyms
and diverse descriptions of the same event.

An example of the first type is shown in Table 8. We query the dataset “baby” with
two targets, “bath” and “shower”, which share similar semantics in the data set of Amazon
reviews of baby products. A successful model should return similar topics. As shown in
the table, BiTTM is the only model that can obtain the set of four meaningful topics for
both queries, while other methods either miss topics or generate vague content for topics.

Table 8. The contents of topics on two approximate semantic targets in dataset “baby”.

BiTTM TTM BTM-PD BTM?

Target: Bath

Blanket Spout Protection Sentiment Blanket Spout Sentiment - - Blanket Spout-1 Spout-2

cover spout cute fit spout fit spout cover spout faucet
pull head play time cover cute bath bath cute easy

product stay tub daughter snap son shower spout head spout
shower bath put faucet bright whale tub faucet fit cute

time whale easy give hate quickly cover head cover tub
child month buy nice read shower whale protect faucet cover

recommend crib thing problem realize bend fit tub tub product
blanket easily kid bump mobile bear faucet whale son bath

lot side protect diaper break front knob fit whale head
start year bumper find parent touch perfect time bath whale

Target: shower

blanket spout cute son shower spout cover spout spout blanket spout spout
buy shower thing pull gift tub fit shower shower buy cover fit

cover head easy bath bath kid cute cover cover gift fit shower
put stay faucet time buy top whale cute whale swaddle faucet cute
big kid product daughter hole easy face faucet bath receive head pull

pretty gift side play blanket head easily head tub friend shower stay
safe perfect problem nice time remove couple pull pull child product cover

stroller soft install protect thing worry snap tub mold day tub son
change worry child find trip picture high whale kid hold time tub
quality bag car fall totally face expect bath faucet shower pull whale

For instance, except BiTTM, the other three methods fail to identify the topic blanket
with respect to the query “bath”, while TTM and BTM? can retrieve the topic with respect to
the target “shower”. According to the results of BiTTM, we find that blanket is an important
aspect of bath/shower, because most people will cover their babies with a blanket after a
bath/shower. Hence, the topic blanket is an aspect in which users are interested. Ignoring
an important topic hinders downstream analysis and applications, such as high-quality
personalised services and commodity recommended systems. As another example, there
are two topics discovered by BiTTM only: sentiment and protection. Checking the content of
topic sentiment, we learn that users tend to associate emotional expressions (e.g., “have a
nice time with daughter/son”) when commenting on shower/bath products. This topic
thus implies users’ emotional polarity of products, which is important for applications such
as user profiling, recommendation and public opinion monitoring. The topic protection
describes safety products that can be installed in tubs or on faucets. The safety issue of
bath is an important concern especially for baby products, and it is non-ideal for the other
three methods to ignore this topic.

Moreover, we find that BTM-PD extracts only two topics for both queries and the
content of the topics are too vague to understand (e.g., we are not able to assign semantic
labels to the topics). There are six identical words between the two sets of top 10 words,
which makes it very hard to distinguish between the semantics of the topics. The same
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situation occurs to BTM?—there are two similar topics about “spout”. For example, given
the query “bath”, the two topics have eight identical words in the top 10 words. The
content of these two topics may be correct, but the information expressed is redundant. It
is not useful to generate identical topics but increasing the difficulty of further analysis.

Table 9 shows an example of the second type. Given the dataset Oscars, both “mistake”
and “oscarsfail” refer to the same event that the Best Picture Award, which should belong
to Moonlight, was wrongly presented to La La Land because of a wrong envelope. As we can
see from the table, BiTTM can acquire three fine-grained relevant topics, which describes
the process of the event development: At the beginning of the event, two guests present
the Best Picture to La La Land, and no one was aware of the mistake. Many tweets emerge
to talk about La La Land and express congratulations to the actors and the producer, which
can be seen from the content of the topic beginning. Next, the error is corrected and the real
winner is another movie Moonlight. Topic correction is a perfect interpretation of this stage.
Note that, the top 10 words of this topic with respect to the query “mistake” contains the
word “oscarsfail”, which demonstrates the usefulness of the core biterms strategy used
by BiTTM. The third topic discussion covers the discussion of the actors’ reaction after this
mistake has happened.

Table 9. The contents of topics on two approximate semantic targets in dataset “Oscars”.

BiTTM TTM BTM-PD BTM?

Target: Oscarsfail

Beginning Correction Discussion Discussion Discussion Discussion Discussion

lalaland moonlight oscar oscarsfail win win moonlight
hollywood oscarsfail envelopegate oscar oscarsfail vote bestpicture

winner award picture envelopegate lalaland lalaland lalaland
cast mistake actor majorgroup vote moonlight russians

actress vote reaction pick short popular hack
emma variety electoral scene white electoral election
people moment time hollywood rating oscarsfail envelope
white mahershala movie hack helmets lrihendry votetrumppics

barryjenkins violadavis word moana moonlight word neontaster
bestpicture black affleck auliicravalho documentary oscar oscarsfail

Target: mistake

lalaland moonlight win win lalaland lalaland moonlight
realize winner mistake moonlight mistake moonlight winner

announce real academy picture moonlight picture picture
award oscar black moment crew win announce

producer night film realize realize realize lalaland
moment people reaction lalaland cast mistake real
congrat oscarsfail give watch moment moment abc

abc movie congratulation mistake watch crew watch
thr theellenshow time cast win watch mistake

happen russians support crew picture cast realize

In contrast, TTM only retrieves the topic discussion and the quality is not satisfactory.
Some irrelevant words like Moana, another movie, appear in the topic. BTM-PD and BTM?

also discover only the topic of discussion with respect to the target of “oscarsfail”, and the
quality is low. For example, the word “documentary” which is not related with the two
movies appears in results. Although the quality has improved with respect to the target
“mistake”, the two topics discovered BTM? are too similar with 6 identical words in top 10.

5. Conclusions

Targeted topic modelling is an increasingly vital task due to the prevalence of texts on
the web and the limit of users’ interests. Compared with full-analysis topic models, such
as LDA [41] and BTM [2], which are designed to discover all topics in a dataset, targeted
analysis models aim to perform an in-depth semantic analysis to extract fine-grained topics
about which users are concerned. In this paper, we propose a core biterm-based topic
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model for targeted analysis named BiTTM. Motivated by the fact that only part of the entire
dataset is related with target aspects and the requirement to efficiently provide responses
to user queries, a pre-processing mechanism is indispensable and core biterms related
to target queries are proposed to be extracted (from neighbouring sentences) to preserve
relevant information and to capture semantics across documents. Fine-grained topics are
then modelled from core biterms where different topics are allowed to be sampled for
each word in a biterm. Extensive experiments have been conducted to evaluate BiTTM,
compared with the state-of-the-arts, in terms of topic coherence, topic relevance and time
efficiency on nine real-world data sets including short texts, medium texts as well as long
texts with respect to various query keywords randomly sampled from the corpus. The
experimental results demonstrate that BiTTM outperforms existing models remarkably in
terms of retrieving high quality topics relevant to targets and computation efficiency.

Future research should consider the potential effects of relevance in semantic space
more carefully, for example, using multi-source semantic information to enhance the
computational accuracy of relevance may significantly improve model performance. Recent
studies [42–46] have shown that using word embeddings for topic modelling is potential
for text analysis, and this may constitute the object of future studies.
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