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Abstract: In this paper, the laser-accelerated plasma–propulsion system (LAPPS) for a spacecraft is
revisited. Starting from the general properties of relativistic propellants, the relations between specific
impulse, engine thrust and rocket dynamics have been obtained. The specific impulse is defined in
terms of the relativistic velocity of the propellant using the Walter’s parameterization, which is a
suitable and general formalism for closed–cycle engines. Finally, the laser-driven acceleration of light
ions via Target Normal Sheath Acceleration (TNSA) is discussed as a thruster. We find that LAPPS is
capable of an impressive specific impulse Isp in the 105 s range for a laser intensity I0 ' 1021 W/cm2.
The limit of Isp . 104 s, which characterizes most of the other plasma-based space electric propulsion
systems, can be obtained with a relatively low laser intensity of I0 & 1019 W/cm2. Finally, at fixed
laser energy, the engine thrust can be larger by a factor 102 with respect to previous estimates, making
the LAPPS potentially capable of thrust-power ratios in the N/MW range.

Keywords: laser–plasma accelerator; TNSA; space propulsion; LAPPS; laser–plasma thruster; high
specific impulse

1. Introduction

The use of light in space propulsion has been firstly proposed by Eugen Sanger in
1955 [1]. In his well known article, he considered a pure photon rocket propelled by
an antimatter pumped “laser”. Later, with the development of the first laser systems,
rockets driven by reflection, transmission or absorption of photons, emitted by a ground-
based laser system, have also been proposed [2,3]. In 1971, Kantrowitz [4] and later, in
1972, Mockel [5] suggested a more practical scheme for space propulsion based on the
generation of thrust through the continuous heating of a propellant induced by a laser
pulse. Nowadays, several schemes for spacecraft propulsion based on directed energy
radiation (DE) or laser ablation propulsion (LAP) are under investigation for deep or
interplanetary space exploration over a wide range of spacecraft masses [6,7].

In 2000, after the observation [8–10] of intense multi–MeV proton emission from solid
targets irradiated at ultra–high laser intensities, a substantially new scheme for laser–based
space propulsion emerged. This hybrid scheme, which is classifiable as a relativistic laser–
driven plasma-acceleration system, can be considered as the connection between LAP
engines [6] and plasma-based electric propulsion [11]. Horisawa [12] and Kammash [13]
firstly discussed, in 2000 and 2001 respectively, the laser–accelerated plasma-propulsion
system (LAPPS). In their articles, mainly oriented on the possibility of interstellar missions,
they considered 100–1000 MeV energy proton bunches, in the wake of the tremendous
progress in experimental laser–plasma acceleration that occurred in the early 2000s. An
impressive specific impulse in the 106–107 s range is often reported as a realistic achievable
result for these schemes [6,13–15]. According to Ref. [14], once considering the relativis-
tic effects, the LAPPS specific impulse for a 1 GeV protons exhaust is expected to be
Isp ' 5.5× 107 s, which apparently (the meaning of “apparently” will be clarified later)
overcomes the performance of the ideal matter–antimatter photon thruster [16] for which
Isp ' 1.7× 107 s. However, despite the remarkable claimed performances, no further
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development of the LAPPS has been considered until today [17,18]. Because of the inade-
quate expected thrust, LAPPS is generally unmentioned in the list of the advanced space
propulsion systems, which are potentially developable in the near future [19]. In contrast,
in the last 10 years, laser–plasma ion acceleration has been widely explored from both
theoretical and experimental points of view [20,21].

The aim of this work is therefore to revisit the LAPPS scheme, to explore its po-
tentialities and to obtain more accurate figures of merit of its performance. Relying on
laser–plasma acceleration parameters, as given by the Target Normal Sheath Acceleration
(TNSA) scheme, as the main mechanism of light ions acceleration scheme [22–27], we
present a general theory able to estimate the LAPPS performance over a large variety
of configurations. Remarkably, the results differ by orders of magnitude from previous
estimates, potentially making this propulsion system competitive with other mechanisms.
Finally, we discuss the possibility of a realistic implementation in a spacecraft by using the
current technology.

The article is organized as follows: in Section 2, we introduce the basic kinematic
relations of a rocket–propellant system; a fully covariant formalism of momentum conser-
vation is introduced here for a correct treatment of the relativistic propellant. In Section 3,
the covariant formalism is extended to the dynamics of the rocket, deriving the expression
of the engine thrust. In Section 4, we discuss the complete energy balance of a closed–cycle
rocket engine, including the efficiency of the different processes and the channels of energy
dissipation. In Section 5, we discuss the figures of merit and the performance limits of a
generic LAPPS engine, relying on the parametrization introduced in Section 4. In Section 6,
we present a detailed analytical model of a LAPPS engine, where the propellant includes
both TNSA–accelerated high–energy particles and low–velocity massive particles accel-
erated by other mechanisms. The conditions for obtaining the optimization of thrust and
impulse of the engine are discussed, for different laser intensities and experimental setups.
In Section 7, we discuss the relevance of radiation contribution in a LAPPS system. Finally,
in Section 8, we summarize the main results obtained in previous sections and discuss
possible directions of future research for refining the above described LAPPS model. A
nomenclature section is also reported at the end of the paper.

2. Relativistic Propellant

Although only the exhaust flow may move at relativistic velocity, it is convenient to
introduce the problem using a fully covariant formalism. A relativistic reaction engine
(basically a thruster based on a particle accelerator) expels, in an infinitesimal time interval,
an infinitesimal exhaust mass at relativistic velocity with respect to the rocket rest frame.
As presented in Figure 1, the problem can be schematized as a 1D system in which the
four-velocity of the rocket is given by:

uµ = γ(u)(c, u), (1)

where c is the speed of light in vacuum while γ(u) = (1− (u/c)2)−1/2 is the relativistic
factor associated with the scalar rocket velocity u. We will use the standard Einstein notation
in which the 1D covariant four–velocity is given by uµ = ηνµuν = γ(u)(c,−u), where ηµν is
the Minkowski tensor with trace (+,−). The product is given by uµuµ = γ2(u)(c2−u2) = c2

(summation over indices). From the differential of the four–velocity duµ = γ3(u)(u/c, 1)du,
we can easily construct the scalar relation:

duµduµ = −γ4(u)(du)2 = −(cdθ)2, (2)

where the rapidity θ ≡ tanh−1(u/c) has been introduced to simplify the notation. Some-
times, the quantities σ = cθ, which is referred as the proper speed of the rocket, is used
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instead of the rapidity. If an infinitesimal mass dm is expelled from the rocket, the instanta-
neous conservation of the four-momentum implies:

d(Muµ) + dmvµ = 0, (3)

where M is the instantaneous rocket mass while vµ is the propellant four–velocity. Dif-
ferently from dm, dM does not correspond to the propellant mass but, more correctly,
represents the mass “lost” by the rocket. In fact, a fraction of dM is also converted into
kinetic energy according to relativistic principles. The limit is represented by the so–called
photonic rocket [1] (a photon–based engine), in which the propellant mass is zero. In this
case, the total photons four–momentum is given by dmvµ ≡ ∑ h̄kµ, where kµ is the wave
four-vector. An other independent equation can be retrieved directly from Equation (3)
once contracted with uµ. Considering that duµuµ = 0, uµuµ = c2 and vµuµ = c2γ(vr),
we obtain:

dMc2 + dmc2γ(vr) = 0, (4)

where d(Muµ)uµ = dMuµuµ + Mduµuµ has been used. As expected, the relevant speed
is represented by the propellant relative velocity vr, which is measured from the rocket
rest frame. In more detail, the term vµuµ = γ(u)γ(v)(c2 − uv), which is invariant under
Lorentz transformations, has been rearranged to c2γ(vr), expressed in the rocket frame.
Thus, Equation (4) can be used to eliminate dm from Equation (3):

Mduµ + dM(uµ − vµ/γ(vr)) = 0. (5)

From Equation (5), once the terms are separated and squared, we finally obtain the
differential invariant rocket equation:

M2(−cdθ)2 = −(dM)2v2
r , (6)

where the relation (2) and uµuµ = vµvµ = c2 have been used. It is interesting to observe
that Equation (6), which is valid also for photonic rockets, does not contain any explicit
propellant relativistic factor. Considering that the rapidity dθ is an additive function,
Equation (6) can be directly integrated once chosen Mdθ = −dMvr/c as a physical solution,
and gives:

θ =
vr

c
ln
[

Mi
M

]
, (7)

where Mi and M are the initial rocket mass and the instantaneous rocket mass respectively,
calculated in the rocket rest frame. Using the proper speed σ = cθ instead of rapidity, we
find that Equation (7) is formally identical to the classical non–relativistic Tsiolkovsky’s
rocket equation [28]. However, according to the covariant derivation of Equation (7), an
engine based on photons emission can be simply obtained in the limit of vr → c. As
expected, these results are in accordance with a non–covariant derivation [29].

Figure 1. A schematic image of a relativistic rocket system. The relativistic propellant, of infinitesimal
mass dm, is expelled to produce the rocket motion. In case of massless propellant, dmvµ is the photons
four–momentum.
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We are interested in the case of non-relativistic rocket motion (i.e., θ ' u/c) with a
thruster based on a LAPPS. If we define ∆M = Mi −M as the amount of the consumed
fuel during the flight, Equation (7) can be expressed as

u ' vr

∞

∑
n=1

(−1)n+1
(

∆M
Mi

)n
, (8)

where the Taylor’s expansion of the logarithm has been used. Equation (8), in contrast to
Equation (7), is valid only in the case of non-relativistic rocket motion, for which σ ' u.
For particle accelerators, differently from chemical fuel engines, the consumed propellant
is expected to consist of a small fraction of the entire system mass, so that we may assume
∆M/Mi � 1. In this case, considering only the first term in Equation (8), we obtain

u ' vr
∆M
Mi

. (9)

Equation (9) admits a simple physical interpretation as the classical total momentum of
both rocket and propellant are conserved. Here, the propellant mass is defined as the rocket
“lost” mass ∆M measured in the rest frame. Again, despite the classical aspect, Equation (9)
remains valid in the case of relativistic (and eventually massless) propellant. Therefore, the
laser pulse or the emitted radiation can be considered as a part of propellant. Realistically, in
order to produce propulsive capabilities adequate for orbital maneuvering or interplanetary
space missions, we need spacecraft velocities u ∼ 103–104 m/s. Considering a conservative
fuel–mass ratio of ∆M/Mi = 0.01, the above velocities can be obtained by expelling the
propellant at relative velocities vr ∼ 105–106 m/s. This suggests that a relativistic speed
of the propellant is not mandatory as the condition vr/c ∼ 10−2 seems to fulfill the
requirements. This example also fixes the expected order of magnitude for one of the most
relevant engine parameters, the specific impulse (see formal definition in Equation (13))
Isp = vr/g0 ' 104–105 s, where g0 = 9.81 m/s2 is the gravitational acceleration measured
on Earth at sea level. It is worth mentioning that Equations (3) and (4) do not include
explicitly the mass wasted for the acceleration of the propellant; a more complete treatment,
accounting for the dissipation channels and therefore including the efficiency of the process,
will be tackled in a following section. It is however important to anticipate that, in a
comprehensive approach, the specific impulse is obtained by substituting the propellant
velocity vr with an “effective” v∗r < vr, accounting for the efficiency of the system (see
Equation (19)).

3. Engine Thrust

In general, in order to meet the needs of interplanetary robotic (or manned) missions,
the travel time Tt should be limited to years or tens of years according to the classical
optimized Hohmann or bi–elliptic transfer orbit maneuverings. A desirable rocket configu-
ration, however, should meet the relation Ti � Tt, where Ti is the total engine firing time. In
this case, all the interplanetary space maneuverings can be considered local. Equation (7),
however, does not contain any information about the time needed to accelerate the rocket
up to the desired speed u ∼ 103–104 m/s. For this reason, it is important to derive the
relativistic expression of the engine thrust.

In the case of relativistic systems characterized by a variable rest mass, some of the
standard covariant relations must be reformulated. In order to avoid any confusion, the
simplest way is to consider only kinematic quantities as, for example, the rocket four-
acceleration aµ = duµ/dτ, where dτ = dt/γ(u) is the proper time in the rocket frame. In a
1D system, the quantity aµaµ = −γ6(u)a2, where a = du/dt is the ordinary acceleration, is
invariant under Lorentz transformations. In general, the rapidity and the four–acceleration
are related through the expression:

dθ

dτ
=

1
c

γ3(u)a =
1
c

√
−aµaµ, (10)
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where the definition θ ≡ tanh−1(u/c) has been used. Equation (10) can also be expressed in
terms of the proper velocity dσ/dτ =

√
−aµaµ, which clearly shows the physical meaning

of this cinematic relation. Finally, from Equations (7) and (10), we can find the invariant
relation for the relativistic rocket acceleration:√

−aµaµ = − vr

M
dM
dτ

. (11)

The engine is the only mechanism able to accelerate and decelerate the rocket; thus,
the thrust can be defined as the total force F acting on the system. From the definition
F = Md(γ(u)u)/dt, and considering that force and acceleration are here parallel to the
rocket velocity, we need only the expression of the longitudinal acceleration:
a‖ = γ(u)−3(F‖/M). Combining a‖ with Equation (11), we obtain the engine trust mea-
sured in the laboratory space frame:

F = −vr
dM
dτ

. (12)

The specific impulse can be defined, starting from Equation (12), according to the
classical definition:

Isp ≡
F
g0

(
−dM

dτ

)−1
=

vr

g0
, (13)

where −dM/dτ represents the rocket lost mass as it appears from the rocket space frame.
As expected, Isp is an invariant that does not contain any relativistic factor. This property
can be directly obtained considering that θ is linear in vr (see Equation (7)). In terms of the
specific impulse, the engine thrust calculated in the laboratory rest frame is given by:

F = −Ispg0
dM
dτ

, (14)

which is analogous to the classical non–relativistic equation in the limit of u/c � 1. In
Ref. [14], the alternative relativistic definition of the specific impulse I′sp = γ(vr)vr/g0
diverges for vr → c, making this choice ambiguous in the case of comparison with other
advanced propulsion schemes, for which the def. (13) is generally used.

Basically, considering the linear increasing of Isp with vr, we do not obtain a dramatic
gain when the propellant approaches the light speed. However, Isp ranges through several
orders of magnitude and the limit Isp → Imax

sp ≡ c/g0 allows for obtaining spacecraft
velocities which are compatible with interplanetary (or even interstellar) space missions for
∆M/Mi � 1. In this case, the fuel is fully used to accelerate the entire payload overcoming
the so–called “rocket tyranny”. In case of non–relativistic rocket motion (γ(u) ' 1), the
firing time Ti can be defined as the time needed for the engine to consume all the available
fuel. In the approximation of ∆M/Mi � 1 (see Equation (9)), we find

∆M ' −
∫ Ti

0
Ṁdt, (15)

u ' 1
Mi

∫ Ti

0
Fdt, (16)

defining the elementary relations between the thrust F, the initial rocket mass Mi, the
rocket speed u, and the firing time Ti. In the case of a uniform thrust, for an arbitrary
weight–thrust ratio of 10b (i.e., b = log10(g0Mi/F)), we obtain:

Ti ' u
Mi
F

=
u
g0

10b. (17)

For interplanetary missions (u ∼ 104 m/s), the firing time is given by Ti ∼ 10b−2 days.
By considering a firing time Ti = 100 days (realistically, the traveling time Tt is in the range
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of years for interplanetary missions) and an initial mass Mi = 1000 Kg, a force F = 1 N
is required. Finally, for a propellant velocity vr ' 106 m/s, a total fuel consumption of
∆M ' 10 Kg and an instantaneous fuel consumption of Ṁ ' 10−3 g/s are obtained.

4. Specific Impulse

Besides the general considerations on the rocket dynamics, it becomes important to
introduce a more complete approach, including a practical parametrization to calculate
the specific impulse of a generic particle accelerator. In this way, it will be possible to
analyze the fundamental properties of the LAPPS engine with the appropriate formalism.
The calculation of Isp requires determining the relative propellant speed vr that can be
interpreted as the first moment of the velocity distribution of an heterogeneous variety of
particles with different masses. For this reason, the optimization of Isp may not coincide
with the classical performance optimization of a particle accelerator, independently on the
specific acceleration mechanism.

We start considering more in detail the infinitesimal mass dM lost by the rocket. We
will use the convention introduced by Walter [30]. According to the scheme presented in
Figure 2, if we define the fraction (1− ε)dM as the mass of the massive particles actually
expelled, εc2dM defines the energy available for utilization. Of the total energy available,
in general, only a fraction ηεc2dM is utilized to increase the energy of the propellant of
which only a fraction δηεc2dM is used to accelerate massive particles. Thus, in the rocket
rest frame, we find:

δηεc2dM ≡ (γ(vm
r )− 1)(1− ε)c2dM, (18)

which simply defines, in terms of the Walter’s parameters (ε, η, δ), the fraction of available
energy converted into kinetic energy of massive particles. From Equation (18), we can
easily retrieve the propellant speed of massive particles [30]:

vm
r
c

=

√
1−

(
1− ε

1− ε(1− δη)

)2
. (19)

The general invariant solution Mdθ = −dMvr/c of the rocket motion is linear
in vr, thus it can be used to find the effective exhaust speed in terms of a classical
weighted average over velocities. The mass lost by the rocket due to massive particles is
((1− ε) + δηε)dM; this fraction includes the rest mass of the expelled particles (1− ε)dM
and the mass–equivalent energy used to accelerate them δηεdM. Note that in the original
paper [30] this term was omitted leading to an error. In the same way, the mass lost by
the rocket which is used to “create” massless particles is (1− δ)ηεdM. We can therefore
calculate a weighted velocity, including both massive and massless particles, as:

v∗r ≡ [1− ε(1− δη)]vm
r + (1− δ)ηεc. (20)

Equation (20) represents the effective propellant speed measured from the rocket
rest frame. Basically, in the general Equation (7), vr must be replaced with v∗r to take
into account the rocket global efficiency. In terms of Walter’s parameters, i.e., using
Equations (19) and (20) can be written as:

v∗r = c
[√

δηε(2− 2ε + εδη) + (1− δ)ηε

]
, (21)

which corresponds to the corrected solution given by Westmorelend [31]. The expression (21) is
valid for all the rocket configurations in which both propellant and energy are stored inside
(closed cycle). This list does not include, for example, spacecraft propelled by directed
energy, jet engines and atmospheric LAP engine as the Myrabo’s lightcraft [32].
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Figure 2. Energy scheme calculated in the rocket space frame. The total infinitesimal mass dM lost
by the rocket is related to the rest mass of the accelerated particles, their energy and the energy
of the massless expelled particles. Energy that is not used to accelerate the rocket is considered
wasted energy.

5. LAPPS Performance Limits

We are interested in a rocket in which the engine is based on a LAPPS. As presented
in Figure 3, this implies that a laser system must be installed and powered directly on the
rocket. From Equation (21), we can now define the specific impulse Isp ≡ v∗r /g0, which
is a generalized form of the impulse already defined in Equation (13), accounting for all
possible channels of energy dissipation; as already said, the effective velocity v∗r is here
lower than the propellant speed vr. In case of a photon rocket (δ = 0 and ε = 1), in which
the laser pulse is directly used as propellant, the specific impulse assumes the form

IL
sp =

cηL
g0

, (22)

where ηL is the energy conversion efficiency of the laser system calculated considering
all the energy released by the nuclear reactor. The parameter 0 ≤ (1− η) ≤ 1 indicates
the fraction of the available energy wasted by the system. The wasted energy takes into
account, among other factors, of heating dissipation and of the orthogonal component
of particle velocity, which does not contribute to rocket acceleration. For this reason, in
the case of a well collimated laser beam, we obtain η ' ηL. On the other side, if the laser
pulse is focalized (and almost stopped) on a target, as it occurs in a LAPPS, we expect that
the photons contribution to the rocket motion can be considered negligible at first order
(the EM radiation will be considered later in detail). In this case δ ' 1, and differentiating
Equation (21), we find that the maximum specific impulse is reached for

εmax '
1

2− ηLP
' 1

2

[
1 +

ηLP
2

]
, (23)

where usually ηLP < ηL � 1. Equation (23) indicates that the best performance is obtained
when the infinitesimal mass dM is almost equally distributed between the rest mass of
the accelerated particles (1− εmax)dM and the available energy εmaxdM. Consequently,
the kinetic energy acquired by the massive propellant becomes εk ' (ηLP/2)c2dM. This
quantity is related to the averaged power generated by the nuclear reactor PR calculated in
the rest frame through

〈ε̇kin〉 '
c2ηLP
2g0

(
FLP

ILP
sp

)
= ηIηL〈PR〉, (24)
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where Equation (14) has been used, while 0 ≤ ηI ≤ 1 characterizes the laser–plasma
interaction efficiency. The parameter ηI indicates, for δ = 1, the fraction of the laser pulse
energy converted into “parallel” kinetic energy. Considering Equation (23), the maximum
specific impulse which can be obtained in a LAPPS is given by

Imax
sp ' c

g0

√
ηLP

2− ηLP
' c

g0

√
ηLP

2

[
1 +

ηLP
4

]
, (25)

and gives, once combined with Equation (24), the expression for the engine thrust

FLP
(

Imax
sp

)
' ηIηL

c

√
2

ηLP
〈PR〉. (26)

For an ideal system (maximum specific impulse), the relative speed of the massive
propellant becomes

vm
r

(
Imax
sp

)
' c
√

2ηLP

[
1 +

ηLP
2

]
. (27)

Equation (27) is intrinsically limited by ηLP, which is the fractional amount of available
energy that is actually utilized for propulsion. Both laser efficiency ηL and interaction
efficiency ηI contribute to this limit according to the general relation

ηLP ≡
ERηIηL

εc2dM
, (28)

where ER is the total energy generated by the system (ĖR = PR). From Equation (28), we
also obtain the relation between Imax

sp and IL
sp:

Imax
sp ' IL

sp

√
ηI ER

ηLc2dM
. (29)

For typical laser systems and targets, ηL and ηI are of the same order of magnitude
while ER � c2dM. According to Equation (29), the relation Imax

sp < IL
sp is therefore usually

fulfilled. However, in the limit of ε→ 1, the conditions ER . c2dM and Imax
sp > IL

sp become
potentially achievable (although without any specific advantages for space propulsion due
to the low specific impulse which characterizes this condition).

Realistically, the conditions (27) and (28) exclude the possibility of obtaining a rel-
ativistic propellant speed from any optimized laser–based closed cycle scheme. This is
a general property which depends on the low efficiency of the energy transfer from the
power supply to the laser pulse. In conclusion, despite laser–plasma interaction has not
yet been discussed in detail, basic properties and limitations of the LAPPS scheme have
been already obtained. These results suggest that a space thruster based on laser–plasma
interaction should primarily generate a well collimated particle beam with a low fraction
of wasted target material. This also implies that schemes, as for example laser–driven
plasma-based electron accelerators [33], where the largest fraction of the target (usually a
gas–jet) is not accelerated, are not indicated as thrusters.
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Figure 3. Basic scheme of the Laser-Accelerated Plasma-Propulsion System (LAPPS). The laser
system is represented by the red box. LAPPS is a closed cycle engine.

6. LAPPS Analytical Model

Realistically, the present laser systems are not yet able to directly accelerate ions.
Among the different schemes which have been proposed for laser–driven ion acceleration,
we here consider Target Normal Sheath Acceleration (TNSA), where light ions are acceler-
ated by the electric sheath field produced on the rear side of a thin solid target irradiated
by high–intensity laser pulse. In turn, the sheath field is produced by the charge separation
generated by the so–called “fast” electrons, which are accelerated during the laser–plasma
interaction in front of the target, and successively propagate through the target bulk, trying
to escape from its rear surface [20,25]. The choice of TNSA is here dictated by its robustness
and by potential implementation at high rep–rates [34]. Moreover, due to the intensive
research in the field, TNSA is well–known and modelled, admitting an analytical descrip-
tion [22]. Therefore, it is possible to obtain an analytical estimation of Isp and F and their
relative fundamental parametric dependencies. Other free parameters, which do not admit
a simple analytical description, can be estimated or measured through experiments [26,27].

6.1. TNSA Acceleration

In this section, we describe the TNSA scheme and its relevant parameters. We consider
the case, investigated in a large number of experiments, where a few-µm thick target is
irradiated by a relativistic (Iλ2

L & 1018 W µm2/cm2) laser pulse of a few tens of femtosec-
onds, which is nowadays available by using Chirped Pulse Amplification laser systems.
In these conditions and for a Gaussian laser beam, the density of the electrons which are
accelerated in the forward direction during laser–plasma interaction can be expressed by
the relation [22]:

n0(I0) '
3I0Ω(I0)

2ckbThot(I0)
, (30)

where I0 is the laser intensity, Ω(I0) = 1.2× 10−15 I0.74
0
[
W/cm2] is the conversion efficiency

in fast electrons with a maximum value Ω = 0.5 for I0 > 5.7× 1019 W/cm2, and Thot(I0) is
the fast electrons temperature, which can be determined by the ponderomotive scaling [23]

kbThot
mec2 =

√
1 +

I0[W/cm2]λ2
L[µm2]

1.37× 1018 − 1, (31)

where me is the electron rest mass and λL is the laser wavelength. As shown in Figure 4a,
the fast electron density is a monotonically increasing function of I0. Moreover, as evident
from Equation (30), n0 does not depend, in this approximation, on the specific target
properties. The thickness and the atomic properties of the target, however, affect the
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propagation of the fast electrons into the target bulk, and therefore determine their density
when they reach the rear target surface, which can be calculated by:

n0e(I0, d, φ) =
n0(I0)(

1 + d tan(φ/2)
w0

)2 , (32)

where w0 is the laser waist, d is the target thickness, and tan(φ/2) expresses the fast electron
divergence. The laser waist defines the size of the focal spot and for a Gaussian beam
with peak intensity I0 is equal to the radius where laser intensity I = I0e−2. The detailed
dependence of the broadening angle φ is not trivial [24], since it is affected by many factors,
including, among the others, the laser intensity, the mechanism of fast electron generation,
the ionization Z of the target (determining multiple Coulomb scattering), and the self-
generated magnetic fields induced into the target; for the moment, we only observe that
n0e can be remarkably lower than n0 for thick targets or high–Z ions.

(a) Overall electron density inside the target. (b) Ions relative velocity.

Figure 4. The plots consider the intensity range I0 = 1018 − 1021 W/cm2 and a laser wavelength
λL = 0.8 µm, typical of a Ti:Sa laser system. The discontinuity in the subplot (a) corresponds to the
saturation of conversion efficiency Ω(I0) = 0.5. In subplot (b), low Z metals and typical constituent
of organic polymers are considered. Except for the carbon, only first ionization is considered in order
to present the lower velocity limit of each species.

Ion acceleration is driven by the electrostatic sheath field generated by the electrons
that arrive at the rear side of the target and try to escape into the vacuum. Assuming that
the acceleration of ions with density neI = n0I/Z can be described by using a self–similar,
isothermal, fluid model [22], their energy distribution can be expressed by:

dN
dEk

=
n0eCst√

2ZkbThotEk
exp

(
−

√
2Ek

ZkbThot

)
, (33)

where Cs =
√

ZkbThot/mI is the ion–acoustic velocity, mI and Z are the ion rest mass and
charge, and N is the number of ions accelerated per unit of surface. The kinetic energy
Ek = mIv2

I /2 can be considered classical. According to the above model, described by
Fuchs [22], the number of ions accelerated per unit surface N grows with time, suggesting
that the calculation must be stopped at an opportune time t = τacc. Their energy distribu-
tion is here constant with time; however, the model predicts that the accelerated protons
exhibit a high energy cutoff increasing with the duration of the laser pulse, and therefore
with the acceleration time [22].
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For the calculation of the specific impulse Isp, it is necessary to estimate the averaged
relative velocity of the accelerated ions. This quantity, which is independent of τacc, is
obtained from the integration of Equation (33):

〈vr〉I = Cs =

√
ZkbThot

mI
. (34)

The ratio Z/mI is the only parameter that characterizes the exhaust speed at fixed
laser intensity. Typical ion velocities are presented in Figure 4b, where metals with low
atomic number and organic components have been considered. For low laser intensities of
the order of I0 ' 1018 W/cm2, the condition 〈vr〉I & 106 m/s, assuring a specific impulse
Isp & 105 s, that is needed for realistic interplanetary applications, is reached only by low
atomic number targets. The estimate of Isp, however, does not account for the efficiency of
the system ηLP; a more detailed calculation of the impulse will be given in the dedicated
section. Considering a more realistic situation, the ensemble of accelerated ions nij

0I can
include different species i and different ionization states j, where

n0e =
max(i)

∑
j=1

species

∑
i=1

Zjn
ij
0I . (35)

Their thermodynamic state, and therefore the relative ratios nij
0I/nlm

0I , is here mainly
determined by the intensity of the sheath field, by the Ohmic heating of thermal (cold) elec-
trons, by the scattering of fast electrons and by the absorption of X–rays produced during
laser–plasma interaction. Numerical simulations, describing laser–plasma interaction and
collisional–radiative equilibrium, are therefore required to retrieve a realistic ionization
distribution [35]. In general, the relative velocity of accelerated ions, averaged over all
species, is given by:

〈vr〉tnsa
I ≡

√
kbThot

∑i,j nij
0I
√

Zjmi

∑i,j nij
0Imi

, (36)

which can be expressed in terms of the averaged atomic charge 〈
√

Zi〉 ≡ ∑j nij
0I
√

Zj/ ∑j nij
0I

as:

〈vr〉tnsa
I =

√
kbThot

∑i
√

mi
〈√

Zi
〉

∑i mi
. (37)

It is important to observe that the averaged speed given by Equation (37) does not
represent the propellant speed of massive particles to be considered in Equation (19). In
fact, the angular distribution of the accelerated particles is not yet taken into account
and, most importantly, TNSA is only one of the acceleration mechanisms involved in
laser–target interaction. For these reasons, the propellant speed of massive particles can be
expressed as:

vm
r = A〈vr〉tnsa

I cos(
ϕ

2
) + B〈vr〉All cos(

ϕ′

2
), (38)

where 〈vr〉All is the average relative speed of massive particles accelerated through other
mechanisms, while ϕ and ϕ′ (where usually ϕ′ > ϕ) are the values of the angular diver-
gence of particle beams in the two cases. The dimensionless coefficients A and B indicate
the weight of each component, where A + B = 1.

6.2. Fraction of TNSA Particles

When the laser pulse hits a thin solid target an amount dM of propellant is vaporized
and expelled. Since the laser power supply causes a negligible decreasing of the rocket
weight compared to the target vaporization, the infinitesimal mass dM can be considered,
in practice, as the total mass lost by the rocket in a single shot. In a rocket powered by
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a nuclear reactor, this approximation can be considered always valid except in the case
of a pure photon rocket. For a target characterized by a thickness d and a density ρ, the
infinitesimal mass expelled in every laser cycle can be approximated by

dM ' ρdπw2
0

(
1 +

d tan(φ/2)
2w0

)2
, (39)

where a conical frustum volume with an average radius of w0 + (d/2) tan(φ/2) has been
considered (see Equation (32)). Unfortunately, we expect that only a small fraction of
dM will be accelerated through the TNSA mechanism. This quantity can be roughly
estimated as:

dMtnsa

π(w0σ(φ))2 ' τacc ∑
i,j

min
ij
0I

√
ZjkbThot

mi
, (40)

which is the generalization of M/Sr ' mI N for more than one ion species, where Sr =
π(w0σ)2 is the rear target surface with σ(φ) = 1 + d tan(φ/2)/w0. Using Equation (36), it
is possible to simplify Equation (40) as:

dMtnsa

π(w0σ(φ))2 ' ρtnsa〈vr〉tnsa
I τacc, (41)

where the TNSA particle density ρtnsa is defined by:

ρtnsa ≡
species

∑
i=1

mini
0I , (42)

where ni
0I ≡ ∑j nij

0I is the whole particle density of the i–th ion species. The total density
ρtnsa, which is a function of both target and laser intensity, can be approximated in terms of
averaged quantities as:

ρtnsa ' n0e
〈mI〉
〈Z〉 , (43)

where 〈mI〉 ≡ ∑i mini
0I/ ∑i ni

0I is the averaged ions mass while 〈Z〉 ≡ ∑i ni
0I〈Zi〉/ ∑i ni

0I is
the atomic charge averaged over both ionization level and ion species.

In order to retrieve the explicit form of vm
r , it is necessary to estimate the fractions

(A, B) ∈ [0, 1] introduced in Equation (38). By definition, we have A ≡ dMtnsa/dM and
B = 1− A. Using Equations (39) and (41), we immediately obtain:

A ' ρtnsa〈vr〉tnsa
I τacc

ρd

(
1 +

σ(φ)− 1
σ(φ) + 1

)2
. (44)

The fraction A of the TNSA accelerated particles represents a fundamental parameter
affecting the performance of a TNSA engine. In fact, considering that usually 〈vr〉All � 〈vr〉tnsa,
the optimization of Isp requires increasing A as much as possible. One of the easiest ways
to maximise A is to consider the limit of ultra–thin targets. This is a consequence of the
TNSA mechanism which extracts ions only from the rear side of the target. Indeed, in real
experimental conditions, the lowest target thickness dmin is determined by the contrast of
the laser pulse, which is a parameter quantifying the precursor radiation of the laser peak,
as well as the mechanical and chemical properties of the target. In optimized setups, where
an ultrahigh contrast laser is used, and a dmin of the order of a few hundreds nanometers
can be utilized [25]. In addition to the minimum target thickness, the optimization of
A requires to maximise the relative velocity of accelerated ions. The reduction of target
thickness produces also an enhancement of the ion velocity since a thinner target results, for
geometrical factors, in a smaller radius of the sheath region on the rear side, and therefore
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in a stronger sheath field. Another way to enhance the ion velocity is the use of low atomic
number targets. For an optimized target with d & dmin, Equation (44) can be written as

A ' n0τacc

ρd
〈mI〉〈vr〉tnsa

I
〈Z〉 , (45)

where σ(φ) ≈ 1, ne0 ≈ n0 and Equation (43) has been used. The acceleration time τacc
can be approximated by τacc ' α(I0)(τL + tmin), where τL is the laser pulse duration
and tmin ' 60 fs is the time needed to transfer the energy from the electrons to the ions.
The coefficient α(I0) ∝ I0 takes into account of the laser expansion and becomes con-
stant (αmax ' 1.3) above I0 = 3× 1019 W/cm2 [22,36]. Estimated values of A through
Equation (45) are shown in Figure 5a, where an idealized (uniformly ionized) carbon target
was considered. It is shown that, for a thickness of d = 5 µm and a laser pulse duration
of τL = 100 fs, an intensity of I0 & 1020 W/cm2 is required to reach the fraction of a few
percents (depending on the ionization level). These parameters, in the range of laser inten-
sities I0 = 1018 − 1021 W/cm2, are typically reached in TNSA experiments and thus can be
realistically considered conservative quantities in view of a proper engine optimization.

(a) Fraction A. (b) Target scheme.

Figure 5. On the left, the fraction A of the TNSA accelerated particle as a function of laser intensity.
Uniformly ionized C+ and C6+ targets, with thickness d = 5µm and density ρ = 1 g/cm3, irradiated
by a laser pulse of duration τL = 100 fs, have been considered. On the right, the scheme of a
laser–solid target interaction. The propellant includes a variety of contributions including radiation.

6.3. LAPPS Specific Impulse

The specific impulse for a LAPPS engine can be calculated starting from the general
Equations (13) and (20). Neglecting the photon contribution, we obtain:

ILP
sp '

(1− ε(1− δηLP))

g0
vm

r . (46)

The term (δηLP � 1) can be omitted at first order while vm
r is given by Equation (38).

In the previous section, we assumed that the rocket mass lost coincides with that of the
massive particles expelled, so that (1− ε) ' 1 .This approximation relies on the fact that
the expelled particles are non-relativistic, at least considering their ensemble average.
Therefore, their kinetic energy is negligible if compared to their rest mass. However,
without loss of generality, we may now account for a certain amount of mass that is wasted
in the process, contributing to ε. By using a simple model (see Figure 5b), we consider that
a fraction of the solid target, with a radius larger than the laser waist w0, detaches without
any significant initial acceleration, therefore without producing any thrust. This region is
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heated by electron conduction into the target and by the shock propagation. The simplest
model is then:

1− ε '
(

w0

we f f

)2

, (47)

where we f f ≥ w0 is the effective radius of the destructive laser-target interaction. Consider-
ing that we f f can be limited by the target–holder conic guide, ε can be approximated as a
small constant in many realistic situations.

As previously discussed, we are interested to maximize the specific impulse at fixed
laser intensity. In the limit of a thin target, combining Equations (38), (45) and (46) and
considering ηLP ' 0, we can obtain a general expression for the LAPPS specific impulse ILP

sp :

ILP
sp '

(1− ε)

g0

[
2n0τacc

ρd〈Z〉
(
Etnsa − E

)
+ V

]
(48)

where we have introduced the parameter Etnsa, given by

Etnsa ≡ 1
2
〈mI〉

[
〈vr〉tnsa

I

]2
cos(

ϕ

2
), (49)

and representing the mean kinetic energy of the forward–accelerated TNSA particles. The
cross term E, which is generally characterized by E� Etnsa, is defined by

E ≡ 1
2
〈mI〉〈vr〉All〈vr〉tnsa

I cos(
ϕ′

2
), (50)

and can be interpreted as a corrective term. Finally, the parameter V accounts for the effect
of the longitudinal averaged velocity of the residual (non–TNSA) accelerated particles:

V ≡ 〈vr〉All cos(
ϕ′

2
). (51)

Differently from E, the velocity V may represent the dominant term in Equation (48)
in the Low Intensity (LI) limit, which is defined by:

ILP
sp '

(1− ε)

g0
V (LI). (52)

The specific impulse in the High Intensity (HI) regime can be obtained considering
that n0 and Etnsa are monotonically increasing functions of I0. Thus, above a certain laser
intensity (which depends on the target properties), the specific impulse becomes dominated
by the TNSA mechanism and we obtain:

ILP
sp '

(1− ε)

g0

(
2n0τacc

ρd〈Z〉

)
Etnsa (HI). (53)

From Equation (53), we conclude that, for a pure TNSA engine, the specific impulse
linearly increases with the mean kinetic energy released to the accelerated particles. This
fundamental property characterizes the ideal LAPPS engine.

The calculation of the specific impulse in the general form of Equation (48) requires
to estimate the relative speed V ∼ 〈vr〉All . In addition to TNSA, several mechanisms may
contribute to produce a local acceleration of ions, electrons or uncharged debris when
an ultra–intense laser-pulse hits a thin target. For these reasons, an analytical estimation
of V is generally difficult to obtain. However, we can quantify the effects of the non–
TNSA accelerated particles by investigating the dependence of the specific impulse ILP

sp on
the parameter:

χ ≡ 〈vr〉All

〈vr〉tnsa � 1. (54)
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Realistically, the model of TNSA presented here cannot be extended to arbitrarily high
laser intensities. As previously discussed, a conservative limit may be represented by a
maximum laser intensity of I0 ' 1021 W/cm2. Within this limit, it is interesting to define
the conditions to reach the ideal range for the specific impulse discussed in Section 2. The
dependence of ILP

sp on the parameter χ is shown in Figure 6a. In the low–middle intensity
range, any small variation of χ induces a drastic difference in the specific impulse. This
property indicates that the TNSA contribution is not dominant. Roughly speaking, the
highest non–TNSA contribution coincides with an LAP engine [6]. Differently, for higher
intensities close to I0 & 1021 W/cm2, a specific impulse ILP

sp ' 105 s is achieved, with a
negligible dependence on χ (always in the limit of χ � 1). This condition corresponds
to the high–intensity limit described by Equation (53), indicating that the contribution of
non–TNSA ions is negligible here. For high intensities, the differences also induced by
the ionization properties of the target vanish as the terms Etnsa/〈Z〉 are independent from
the ionization distribution in case of a single accelerated species. In view of the above
results, despite χ � 1, an evaluation of V is mandatory in order to quantify ILP

sp along
the entire laser intensity range. The upper limit χmax = 0.05 reported in Figure 6a was
estimated by considering that the non–TNSA particles leaving the target have a velocity of
the order of the plasma expansion speed, i.e., 〈vr〉All ∼ CI . This implies that χ ∼

√
TI/Thot,

where TI is the ion temperature in the plasma. The maximum value χ(I0) ' 0.05 was
therefore obtained by taking a value of TI ≈ 2–2.5 keV. A more accurate evaluation of the
χ parameter needs dedicated experimental measurements in the conditions of interest or
extensive molecular dynamics/hydrodynamic numerical simulations.

(a) Specific impulse. (b) Engine thrust.

Figure 6. Specific impulse and engine thrust calculated for a C6+ target as a function of laser intensity.
Parameters are fixed by d = 5 µm, ρ = 1 g/cm3 and τL = 100 fs. The considered angular spread
are ϕ = 30° and ϕ′ = 60°, while 1− ε = 90%. The function χ ≤ 0.05 is used as a fixed parameter.
In subplot (b) the engine thrust is calculated at fixed pulse energy of εL = 5× 103 J with a laser
repetition rate of νL = 1 kHz.

Compared to other advanced electric-propulsion schemes [11,37,38], an LAPPS is
actually capable of far better performance in terms of the specific impulse, even in the
mid-intensity range. These conclusions were already obtained in previous papers but with
a general overestimation of several orders of magnitude. For instance, in Ref. [39], a laser
pulse of intensity I0 = 3× 1020 W/cm2 and a gold-foil target of thickness d = 125 µm were
considered. Despite the thick and the high-atomic number target, they found impressive
values of Isp = 3.2× 106 s, which is well beyond the results presented in Figure 6a. This
value was directly estimated from experimental results considering the averaged velocity
of the protons contribution only. Unfortunately, this approach turns out to be incorrect as
the accelerated protons usually comes from target back–side impurities and thus can have
a minor role in the determination of ILP

sp .
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6.4. LAPPS Thrust

As discussed in the previous section, LAPPS is effectively able to generate an adequate
specific impulse for interplanetary space missions. This condition is reached even for a
relatively low fraction of TNSA accelerated particles suggesting the possibility of further
significant improvements. In contrast, the realization of a sufficiently high thrust is a
much more challenging task, representing the main limit of this scheme [39]. An order of
magnitude for the thrust needed in deep–space missions can be obtained from the firing
time Equation (17):

Ti ' u[m/s]10b−6 Days, (55)

where b = log10(g0Mi/F) is the weight–thrust ratio. Considering a relatively high accel-
eration of 100 m/s per day, a thrust of 1 N for each tonne (b ' 4) is roughly required for
thruster based on a particle accelerator.

The LAPPS thrust can be obtained directly from the definition (14) in the non-
relativistic limit:

FLP ' (1− ε)

[
2n0τacc

ρd〈Z〉
(
Etnsa − E

)
+ V

]
Ṁ (56)

where Equation (48) has been used for the specific impulse. The infinitesimal mass Ṁ
expelled in every laser cycle can be obtained from Equation (39) and gives, in the limit
of a thin target Ṁ ≈ πνsdρw2

0/(1− ε), where νs is the laser repetition rate. According to
Equation (53), the thrust in the high intensity limit (HI) admits a pure TNSA interpretation:

FLP '
2πn0τaccνsw2

0
〈Z〉 Etnsa =

2πn0τaccw2
0ηL〈PR〉

〈Z〉εL
Etnsa (HI) (57)

where εLνL = ηL〈PR〉 has been used. As expected, density and thickness of the target are
not relevant in this limit. Moreover, the term n0w2

0Etnsa ∼ Ω(I0) does not depend on I0
above I0 = 5.7× 1019 W/cm2. In other words, the TNSA contribution to the thrust becomes
constant above this threshold. As it occurs in LAP engines [6], the thrust can be here varied
independently of Isp by modifying the laser repetition rate νs. This is limited by the laser
pumping frequency νs = νp/n, where n ≥ 1 is a positive integer. Within this range, it is
possible, in principle, to regulate the thrust preserving the specific impulse.

Relying on the expression in Equation (56), the dependence of FLP on the laser intensity
and the parameter χ are reported in Figure 6b. For each laser intensity I0, the laser waist
(w2

0 = 4εL
√

ln 2/2/(πτL I0)) has been calculated considering a fixed laser pulse energy of
εL = 5× 103 J. Similarly to the specific impulse, the thrust is strongly affected by the non–
TNSA accelerated particles in the low–mid laser intensity range. When the laser intensity
grows, however, FLP becomes almost independent from both the fraction χ and the target
ionization. The blue line reported in Figure 6b represents the plot of Equation (57) and, as
expected, correctly describes the high–intensity behaviour.

At fixed laser pulse energy εL and repetition rate νs, the optimization of the thrust
strongly depends on both specific orbital maneuvers and spacecraft mass. In particular,
the mass of the power supply, electronics, power source, and laser system need to be
considered within the calculation. Without going into details, considering a mass in the few
tons range for a εL = 103, νL = 1 kHz laser system [39], a thrust of & 1 N would represent
an attractive result in the view of a realistic LAPPS implementation. As it generally occurs
with electric propulsion, at fixed input power, the specific impulse and the thrust cannot
be independently varied. For this reason, it is convenient to investigate more in detail
the effects of the target and laser properties on the thrust. In Figure 7a, the effect of the
target thickness d and pulse duration τL is considered. Assuming a conservative value of
χ = 0.001, we find that better results can be obtained for thicker targets and for shorter
pulses. However, in the limit of high intensity, the target thickness becomes irrelevant
while the effect of the pulse duration is preserved as it is proportional to τacc/τL. In some
specific configurations (always characterized by very low values of χ), it may occur that
specific impulse and thrust can be simultaneously maximised, though without producing
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any significant thrust. In Figure 7b, the same examples of Figure 7a are reported but for the
higher values of χmax = 0.05. As is shown, the diagram of the thrust substantially changes.
Considerations about d and τL remain valid, but, in this case, it is always convenient to
operate at low intensity to optimize the thrust as there are no local minima or maxima in
the considered intensity range. In general, at fixed values of I0, χ, and εL, the thrust can
be easily adjusted by a factor 10 by tuning the duration of ultra–short laser pulses and
the thickness of the targets. However, the major role in the thrust maximization is played
by the parameter χ, and thus on V ∼ 〈vr〉All . These properties are evident from Figure 8,
where the performance of the LAPPS engine is reported. Indeed, considering that Ṁ ∝ I−1

0 ,
the thrust is very sensitive to any increase of the specific impulse in the low intensity range,
which is linear in χ (see Equation (52)).

(a) Engine thrust (χ = 0.001). (b) Engine thrust (χ = 0.05).

Figure 7. Engine thrust as a function of laser intensity at fixed pulse energy εL = 103 J. A uniformly
ionized C6+ target with a density of ρ = 1 g/cm3 has been considered. Different target thickness and
pulse duration have been analyzed. The laser repetition rate is fixed by νL = 1 kHz.

In Ref. [39], a maximum thrust of F = 3.1× 10−2 N was found for a 1 kHz pulse of
εL = 1 kJ energy focalized onto a thick gold–foil target. This result can be easily improved,
in our model, by using a thin (10 µm) carbon foil with an optimized laser pulse with
the same energy. Considering the upper limit of χ = 0.05, which is not unrealistic, the
thrust can reach and exceed the remarkable values of 4 N. In this example, for a laser
efficiency of ηL = 5%, the averaged power generated by the nuclear reactor is given by
PR = 20 MW (thermal).

7. Radiation Contribution and High Intensity Limit

As well known, high power laser experiments in the TNSA regime produce radiation.
From the rocket dynamics point of view, the relevant contributions may come from both
bremsstrahlung and recombination X– and γ–ray photons emitted from the plasma and
produced by the interaction of high-energy electrons with the target. In addition, laser pho-
tons which are scattered or reflected during the interaction, can also be taken into account.
The specific impulse for a LAPPS engine produced by the photons can be calculated by
means of general Equations (13) and (20), obtaining a photon contribution to Equation (46)
given by:

∆IR
sp '

(1− δ)εηLP
g0

c. (58)

The infinitesimal mass lost by the rocket in every laser cycle is then given by

dMTot '
dM

1− ε
+

ER

c2 , (59)
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where dM is given by Equation (39), while ER takes into account the total energy generated
by the system (nuclear energy). The approximation of 1− ε ' (w0/we f f )

2 is still valid in
this model. In the case of a thin target, we immediately find:

∆IR
sp '

(1− δ)ERηI IL
sp(

w2
e f f c2πdρ + ER

) , (60)

where the definitions (22) and (28) have been used. As shown in Equation (60), as long as
the term ER/c2 is negligible with respect to the rest mass of the propellant, also ∆IR

sp ' 0
and therefore can be considered negligible. The upper limit of ∆IR

sp corresponds to the
photon rocket specific impulse and can be obtained by removing the solid target, i.e., for
δ = ρ = 0 and ηI = 1. In the same way, the total correction to Equation (48), which is
given by

∆ILP
sp '

ERηI

(
(1− δ)IL

sp + δηLvm
r /g0

)
(

w2
e f f c2πdρ + ER

) , (61)

can be considered negligible using current laser technology and solid targets. As already
discussed, we are not able to extend the LAPPS model over arbitrary high laser intensities.
However, the ultimate limit of high intensity interaction at fixed pulse energy must coincide
with the photon rocket, which is independent from the laser intensity and well defined. For
this reason, it is interesting to define the condition above which a photon rocket becomes
convenient over a LAPPS rocket. Considering that, for a single laser shot, the spacecraft
speed gain is proportional to IspdMtot, we find:

I0 ≥
π
√

32 ln 2τaccn0c
〈Z〉τL

Etnsa, (62)

where ILP
sp dM/(1− ε) ≤ IL

spER/c2 has been used with ILP
sp given by Equation (53). The

threshold (62), if calculated for typical laser–plasma accelerator parameters, exceeds
the intensity range in which the TNSA model is well defined. In other words, an op-
timized LAPPS scheme is always convenient compared to a pure photon rocket at least
for I0 . 1021 W/cm2. This conclusion becomes evident in Figure 8, where the limit of the
photon rocket is reported for a relatively high efficiency of ηL = 5%.

Figure 8. Thrust as a function of the specific impulse at fixed pulse energy εL = 103 J. A uniformly
ionized C6+ target with a density of ρ = 1 g/cm3 has been considered. The laser repetition rate is
fixed by νL = 1 kHz. In case of photon rocket, the thrust is given by FL = νLεL/c.



Appl. Sci. 2021, 11, 10154 19 of 21

8. Conclusions

The original LAPPS scheme has been revised and expanded starting from the basic
principles of closed–cycle engines. A relativistic treatment of the propellant has been
used to determine the LAPPS performance limit and the role of the radiation in space
propulsion. From a theoretical point of view, we find that optimal results in terms of
specific impulse can be obtained well before the achievement of the relativistic limit of
the propellant. In fact, it is not convenient to accelerate the particles by consuming a
mass (ER/c2) comparable to the mass of the expelled propellant as the specific impulse is
linear in v∗r even in the relativistic limit; this is a general property of all thrusters based on
particle acceleration. For the same reason, we find that the radiation contribution to the
propulsion is negligible when the equivalent mass-energy used to accelerate the propellant
is negligible with respect to the mass of the vaporized target. In these conditions, the
massive fraction of the propellant defines the specific impulse.

The LAPPS has been analyzed in detail by considering a realistic model including the
acceleration of ions close to relativistic speed by means of a pure TNSA mechanism, besides
an additional amount of particles accelerated to non–relativistic speed during the laser
ablation process. The relative weight of these components determines the figures of merit of
the LAPSS engine. An analytical description of LAPPS specific impulse and thrust has been
obtained as a function of typical laser–plasma interaction parameters. We find that better
performances in terms of Isp are reached for high laser intensities using a thin low atomic
number target. For intensities close to I0 ' 1021 W/cm2, a specific impulse ILP

sp ' 105 s
can be achieved, with a negligible dependence on secondary acceleration mechanisms.
These results suggest that LAPPS is potentially capable of an impressive specific impulse
compared to other advanced electric-propulsion schemes. On the other side, the realization
of an ideal thrust-mass ratio of 1 N for each tonne is much more challenging as it roughly
requires a laser pulse with an energy of εL ' 103 J and a repetition rate of νL ' 1 kHz for
a spacecraft of a total mass of few tonnes, which must include a reactor with a thermal
power of PR ' 20 MW. Moreover, the increase of the thrust implies a drastic reduction
of the specific impulse down to values comparable to other advanced schemes. In short,
optimized thrusts are obtained when a large amount of mass is accelerated at low velocities
rather than when a few particles are brought close to relativistic speed, i.e., when the ion
acceleration due to laser ablation becomes dominant with respect to the TNSA scheme.
Nevertheless, unlike other closed–cycle electric propulsion, the thrust can be continuously
adjusted by varying the laser intensity (e.g., by tuning the relative position of the target with
respect to the focal spot) to produce a local increasing of the thrust only when required and
thus preserving the possibility of deep space traveling using an ultra–high specific impulse.

Realistically, although the TNSA mechanism is widely explored and well–known,
the comprehension of secondary accelerating mechanisms is crucial in LAPPS to correctly
characterize its performance, especially in the low intensity limit. For these reasons,
dedicated experimental measurements are required in order to fix the free parameters of
the theory.
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Nomenclature

c Speed of light in vacuum
uµ Four-velocity
u Scalar rocket velocity
γ Relativistic factor
θ Rapidity
σ Proper speed
vr Propellant relative velocity
Mi Initial rocket mass
M Instantaneous rocket mass
∆M Consumed fuel
dτ Infinitesimal proper time
aµ Four-acceleration
F Rocket thrust
Isp Specific impulse
Ti Firing time
(ε, η, δ) Walter’s parameters
vm

r Propellant relative speed of massive particles
v∗r Effective propellant speed
IL
sp Specific impulse of a photon (laser) rocket

ηL Laser energy conversion efficiency (Walter’s parameter)
ηLP Laser–plasma propulsion energy conversion efficiency (Walter’s parameter)
ηI Laser–plasma interaction efficiency
PR Thermal power generated by nuclear reactor
ER Thermal energy generated by nuclear reactor for a single shot
Imax
sp Maximum theoretical specific impulse of a laser–plasma thruster

FLP Laser–plasma propulsion thrust
FL Laser propulsion thrust
A Fraction of TNSA particles
τL Laser pulse duration
τacc Ions acceleration time
εL Laser pulse energy
w0 Laser waist
g0 Gravitational acceleration measured on Earth level
ϕ Angular divergence of TNSA particles
ϕ′ Angular divergence of non-TNSA particles
〈vr〉tnsa

I Averaged relative velocity of TNSA particles
〈vr〉All Averaged relative velocity of non-TNSA particles
〈mI〉 Averaged ion mass (TNSA particles)
χ Normalized relative velocity of non-TNSA accelerated particles
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